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In technology, a common helical surface is a right 
closed helicoid (auger). It is formed by a helical move-
ment of a horizontal segment, provided that the axis of 
the auger crosses at one of its ends. The formation of 
the surface of an open helicoid is similar but the seg-
ment must intersect the axis and be located at a constant 
distance from it. It is known from differential geometry 
that the helical surface can be transformed by bending 
to the surface of rotation. This fact is taken as the basis 
for calculating the geometric shape of a flat workpiece. 
The surface of the open helicoid is non-disjointed, so the 
shape of the workpiece must be found in such a way as to 
minimize plastic deformations during surface formation.

Parametric equations of continuous flexion of the 
turn of an open helicoid into the section of a single-cavi-
ty hyperboloid of rotation have been derived. Continuous 
bending can be represented as a gradual deformation of 
the turn while reducing its step. The meridian of hyper-
boloid rotation is the corresponding area of hyperbola. 
The hyperboloid section is proposed to be approximated 
by the surface of the truncated cone. This approximation 
will be more accurate in the area of the hyperbole where it 
asymptotically approaches the segment of the right line.  
After selecting a cone, it becomes possible to deter-
mine its size and build its exact sweep since the cone is  
a unfolding surface. The sweep is constructed in the form 
of a flat ring with a cut sector and will be the desired flat 
workpiece to form a turn of the auger from it.

Most accurately, the surface of the turn of the open 
helicoid can be made by stamping the workpiece of the 
resulting form. For small-scale production of the heli-
cal surface of an open helicoid, it is advisable to weld 
flat rings together and, during installation, stretch along 
the shaft while twisting around its axis. The accuracy of 
the obtained surface will depend on the accuracy of the 
approximation of the hyperboloid section of rotation with 
a truncated cone, which is the topic of this work
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1. Introduction

There are various technologies for the manufacture of 
turns of augers: stamping, rolling, bending. The problem is 
that, firstly, the surface is non-sweep, therefore, the exact 
dimensions of the flat workpiece do not exist, and secondly, 
there are no standards for the size of the turns (inner and 
outer diameters, pitch). The most accurate shape of the turn 
is achieved by stamping it from a flat workpiece, but it needs 
expensive equipment, which is why it is used in large-scale 
production. However, regardless of the technique for manu-
facturing the turns of the auger from flat blanks, the accuracy 
of the calculation of these blanks matters. Their shape can be 
determined on the basis of the theory of differential geome-
try with respect to the bending of helical surfaces. Given the 
possibility of obtaining new results, this approach is new, and 
the task itself is relevant.

2. Literature review and problem statement

Screw surfaces are very common in a variety of devices 
and mechanisms. They are widely used in screw conveyors 
for transporting various bulk materials, mixing them, grind-
ing, dosing, and performing other technological operations. 
The use of screw surfaces in engineering is fully covered 
in [1]. The agricultural sector deserves special attention. 
Thus, in work [2], the use of a screw surface for the design 
of the working body for surface tillage is considered. A unit 
with such working bodies can be an alternative to disk 
tillage tools. Quite interesting is the use of screw surfaces 
in architecture. In article [3], screw non-unfolding surfaces 
are used for the design, manufacture, and installation of two 
pavilions: the butterfly gallery and the Molusco pavilion. 
Screw surfaces in terms of the presence of spectral gaps  
in them have been investigated in [4], which can be used  
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in astronomy. All this confirms the geometric depth of he-
lical structures.

Modeling of various kinds of objects and processes can 
be carried out in different ways. In [5], point calculus is used 
for this purpose. This approach makes it possible to create 
solid-state three-dimensional models for various branches of 
science and technology of mechanical engineering, construc-
tion, and medicine. The problems that arise during visualiza-
tion using this method are described in [6]. The authors of 
works [5, 6] propose to use interpolation methods for model-
ing multivariate processes based on the experiment planning 
matrix [7]. Article [8] proposes a method of constructing  
a torus grid for creating images of a model according to spe
cified parameters and finds characteristic key determinants 
that ensure the implementation of the fundamental compo-
nent of architectural formation in automated design systems. 
But the cited article does not disclose aspects of the produc-
tion of the formed surfaces. In [9], a mathematical notation 
of petal closed screw surfaces is given; however, without 
taking into account the sweep of the surface and the process 
of its manufacture. Simulation of cutting a screw surface 
with a milling tool in an AutoLISP environment in order to 
predict the result obtained is revealed in [10]. Such a process 
requires the presence of parametric equations of the helical 
surface and vector characteristics of the tool positioning.

Thus, work [11] developed a system and criteria for a con
trolled choice of technology to ensure the required quality 
of the surfaces of parts. In [12], the authors set out the 
indicators that characterize the quality of the surface layer. 
The accuracy of the elements of complex screw surfaces from 
a microgeometric point of view is discussed in article [13]. 
Among the numerous machining processes by which such 
surfaces can be obtained, the authors considered threading. 
The article discusses the kinematics of the process, the influ-
ence of many design parameters on the elements of accuracy, 
but the material presented does not give an idea of the sweep 
of the surface for its manufacture. It should be noted that 
increasing the wear resistance and durability of parts is often 
proposed to be carried out by progressive processing methods.  
For example, in [14], for this purpose it is proposed to use 
electric doping of metal surfaces with graphite. In [15], the  
protective surface layer is proposed to be created using 
nanostructures formed by ionic nitriding and electro-spark 
doping. It is clear that the process of developing the latest 
technologies to ensure the proper quality of surfaces, their 
testing and implementation is 
rather long and costly. In addi-
tion, often the test results require 
further adjustment of the tech-
nological process and repeated 
tests. However, the symbiosis of 
the process of developing appro-
priate technologies with geomet-
ric methods of surface design can 
speed up this process, minimize 
the need to adjust the technology 
while reducing its cost.

It should be noted that much 
attention is paid to various ap-
proaches to the manufacture of 
turns of screw surfaces. Theore
tical bending of the surface of an 
open helicoid from the point of 
view of differential geometry is 

considered in [16]. Work [17] considered existing technolo-
gies for the manufacture of turns from a rectilinear strip by 
winding it, by deforming flat blanks in the form of a ring into 
a finished turn. 

Consequently, the technique of manufacturing the turns 
of the auger from flat blanks does not matter as much as the 
accuracy of the calculation of these blanks. Improving accu-
racy can be provided by methods of differential geometry, 
namely: determining the shape of the turns of the auger based 
on the theory of bending of screw surfaces. This suggests 
that it is expedient to conduct a study on the analytical cal-
culation of a flat workpiece for the manufacture of a turn of  
a right open helicoid.

3. The aim and objectives of the study

The aim of this study is to construct a turn of a right open 
helicoid by analytically calculating its flat workpiece. This 
will make it possible to improve the accuracy of the calcu-
lation, which, in turn, will help obtain the exact dimensions  
of the flat workpiece.

To accomplish the aim, the following tasks have been set:
– to find an analytical pattern of deformation of the turn 

of a right open helicoid into the surface of rotation; 
– to build a conditional sweep of the turn of the right 

open helicoid by approximating the resulting surface of ro-
tation by the cone. 

4. The study materials and methods

The formation of the surface of a right closed helicoid 
occurs by a helical movement of a horizontal segment.  
In this case, the axis of the auger and the end of the segment 
intersect. The formation of the surface of an open helicoid is 
similar but the segment intersects the axis and is at a con-
stant distance from it. From differential geometry it is known 
that the helical surface can be bent to the surface of rotation. 
This fact can be taken as the basis for the calculation of  
a flat workpiece. 

The surface shape of a right open helicoid is very simi-
lar to that of a right closed helicoid, known in technology  
as auger. Projections of one turn of an open helicoid with  
a cylindrical shaft are shown in Fig. 1. 

   
a b

Fig. 1. Projections of the turn of a right open helicoid: a – frontal projection; 	
b – horizontal projection
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The difference is the fact that the rectilinear product sur-
faces of the open helicoid do not cross its axis, as in the sur-
face of the auger, but pass near it at a certain distance a. On  
a horizontal projection, these generatrices are tangential to the 
circle of radius a (Fig. 1, b). All three circles (radii a, r – the  
inner edge of the surface, that is, the shaft, R – the outer edge 
of the surface) are projections of helical lines. 

For an open helicoid, unlike a closed one, the shaft has  
a limit on the minimum value of the diameter – its radius 
cannot be less than a since there is no surface there (Fig. 1, b).

The surface of the turn of both closed and open helicoids 
is made of sheet material. Since the surfaces are non-sweep, 
the flat workpiece for deformation into the surface is appro
ximate. For its construction for the closed helicoid as a very 
common surface in technology, reference literature is used. 
For a closed helicoid, such data are absent, so the construc-
tion of an approximate sweep can be carried out based on 
information from differential geometry, namely the fact that 
any helical surface can be bent into the surface of rotation. 
Therefore, the turn of an open helicoid must be bent into 
the appropriate section of the rotation surface, which can be 
approximated with a cone. For the cone, as for the unfolding 
surface, it is possible to build an exact sweep, which will be 
approximate for the turn of the open helicoid.

So, the calculation is carried out on the basis of the  
theory of differential geometry regarding the bending of 
screw surfaces into the surface of rotation. The calculations 
and visualization of the results are performed in the environ-
ment of the Mathematica and MatLab software.

5. Results of the calculation of a flat workpiece for the 
manufacture of a turn of a right helicoid

5. 1. Determining the analytical regularity of continu­
ous flexion of the turn of the right open helicoid into  
a single-cavity hyperboloid of rotation

The bending of the surface in differential geometry is under-
stood as its deformation, in which the lengths of the lines on the 
surface and the angles between them do not change. Work [16] 
presents parametric equations for the continuous bending of an 
oblique helicoid into a single-cavity hyperboloid of rotation. 
Continuous bending refers to such bending from the initial 
position to the final one when as many intermediate ones can 
be built between them. One of the intermediate positions is  
a right open helicoid. Below are the parametric equations of 
continuous bending of the surface from [16] for the case when 
the initial state is the surface of a right open helicoid, and the fi-
nal one is the surface of a single-cavity hyperboloid of rotation:
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In (1), the independent variables are s – the arc length 
of the helical line located on the cylinder of diameter a, and 
u – the length of the rectilinear surface generatrix, the count-
down of which starts from this helical line. Two other values 
are constant: γ – the angle of rise of the specified helical line;  
p – bending parameter, which can take values ranging 
from 1 (initial position of the surface) to 0 (final position of 
the surface). To select the desired bending section, you need 
to set the values of constants and the limits of change of inde-
pendent variables s and u. At u = 0, equation (1) will describe 
the helical line, which in its initial position is located on the 
cylinder of radius a and which is the guide for the formation 
of the surface. It is necessary to find the limits of changing 
the length of the arc s. To get one turn of the surface, the 
point on the helical line must make one full revolution, that 
is, 2π. The expression in parentheses of trigonometric func-

tions 
s

a p
cos

cos
γ

γ γ
α

−( ) =  is the value of the angle of rotation. 

Equating it to 2π:

s
a

=
2π

γcos
. 	 (2)

Therefore, s must vary within s = 0...2πa/cosγ. The next step 
is to find the value of the constant a. When turning the point 
of the helical line by an angle of 2π, which corresponds to the 
value of the arc s (1), its coordinate Z must be equal to step H.  
From the last equation (1) at u = 0 and p = 1, corresponding 
to the helical line before the start of bending, one can obtain: 
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It is also necessary to determine the limits of the change 
in distance u. At u = 0, equation (1) describes the guide screw 
line on the cylinder of radius a. At u = ρ = const, other helical 
lines will be described, including those that limit the section, 
at ρ = r and ρ = R (Fig. 1, a). The distance ρ (that is, the dis-
tance from the surface axis to a point on this surface) can be 
found from the following expression:

ρ
γ γ
γ
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Having solved equation (4) with respect to u, we can 
find its value for a given value ρ. Radii r and R, which limit 
the section of the helicoid, are set in the initial position, that 
is, until the surface is bent. This position corresponds to the 
value p = 1. This value of p must be substituted in (4) and 
solved with respect to u:

u a= −ρ2 2 . 	 (5)

The angle γ is the only constant value that can be selected 
from a certain range of valid values. Let the source surface be a 
right open helicoid with increments H = 100 and radii r = 20 and 
R = 60. In addition, let γ = π/3. From formula (3): a = 9.19. The 
length of the helical guide line can be determined from expres-
sion (2): s = 115.5. So, the arc s varies within s = 0...115.5. Finally, 
from formula (5), we find the limits of the change of the parame
ter u, alternately inserting into it instead of ρ the radii r and R: 
u = 17.8...59.3. According to these data, using equations (1), the 
initial (p = 1), the final (p = 0), and some intermediate positions  
of the surface were constructed when it was bent (Fig. 2).
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Fig. 2 shows that when bent, the rectilinear generatrices 
remains rectilinear, that is, the surface remains line-like all  
the time. It should be noted that the angle of rotation of the 
point along the guide of the helical line varies from 0 to 2π, 
which corresponds to one turn of the helicoid. This can be 
seen by substituting expression (2) into the α angle expression  
at p = 1. If we take p = 0, which corresponds to the bending of 
the surface in a single-cavity hyperboloid of rotation, then we 
get α = 2π/cosγ, which corresponds to the angle α = 4π. This 
means that the resulting hyperboloid (Fig. 2, d) is double, 
that is, during its formation, two full revolutions are made.

5. 2. Construction of a conditional sweep of the turn of 
a right open helicoid

As noted above, the surface of the open helicoid is non-
sweep, so we can talk about an approximate sweep. As can be 
seen from Fig. 2, d, the hyperboloid section is close to the sur-
face of the truncated cone. Replacing the hyperboloid section 
with a truncated cone will make it possible to find a sweep of 
the cone that can be built accurately. It is necessary to write the 
parametric equations of the meridian hyperboloid, which is hy-
perbole. One equation is obtained from expression (4) at p = 0, 
and the second is the last equation (1) also at p = 0. So, the para-
metric equations of the meridian hyperboloid will be written: 

ρ γh a u= +2 2 2cos ;

z uh = − sin .γ 	 (6)

In Fig. 3, a, part of the meridian is built, and the AB section, 
which is built at the found limits of the change of the parameter u 
and corresponds to the section of the hyperboloid, highlighted 
by a thickened line. The radius of the upper base of the hyper-
boloid section, obtained at the minimum value of the variable u, 

is indicated by ρhA, and the lower, 
at the maximum value of u, by ρhB. 
The arc AB of the meridian of the 
surface practically coincides with 
the segment of the right line, which 
we take as a rectilinear generatrix 
of the cone. Fig. 3, a demonstrates 
that the accuracy of the approxima-
tion of the hyperboloid of rotation 
by the cone increases as the radius 
ρhA increases, which corresponds 
to the shaft radius r. If we take the 
minimum value of the shaft radius 
r = a = ρhA, then the approximation 
accuracy will be the worst.

To build a sweep of a truncated 
cone that approximates the result-
ing surface of the hyperboloid of 
rotation, it is necessary to have 
its dimensions. To do this, it is 
enough to have the coordinates of 
points A and B (Fig. 3, a). We take 
the segment AB as a rectilinear 
cone generatrix. The coordinates 
of points A and B are obtained 
from equations (6), in which, for 
convenience, we proceed from the 
variable u to the variable ρ. To this 
end, we take into account expres-
sions (5) for u and (3) for a. After 
substituting them in (6), we get: 

ρ
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π
π ρh H= +
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;

2
4 2 2 2
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.
γ

π
π ρ γ

2
4 2 2 2 2tg 	 (7)

Expressions (7) make it possible to get the coordinates 
of points A and B through the specified design parameters 
of the helicoid. When substituting ρ = r in them, we get the 
coordinates of point A, and at ρ = R – the coordinates of 
point B. For example, for given parameters H = 100, r = 20,  
R = 60, γ = π/3, we get: 

– point A coordinates: ρhA = 12.8, zhA = 15.4;
– point B coordinates: ρhВ = 31.0, zhВ = 51.4.
According to known coordinates, the length of the seg-

ment AB can be found, that is, the length of the rectilinear trun-
cated cone generatrix, which is denoted through L: AB = L = 40.3.

It is known that the sweep of a truncated cone is a ring 
with a cut sector. The length of the rectilinear generatrix of 
the cone L is the difference between the radii R0 of the outer 
and r0 of the inner circles (Fig. 3, b). When constructing  
a sweep, it should be assumed that the arc length of a circle is 
determined by the product of the radius by the value of the 
central angle. For example, the arc length of the inner circle 
of radius r0 will be written as the product of j ·r0 (Fig. 3, b). 
On the other hand, on the cone, this arc is the double cir-
cumference of the radius ρhA since the cone, according to the 
hyperboloid, is double. Accordingly, the arc length on the 
double cone will be equal to 4π·ρhA. Similarly, we reason with 
respect to the arc of the outer circle, taking into account that 
its radius R0 is equal to R0 = r0+L. Based on this, a system of 
two equations can be obtained:

   
 
 

   

   
 
 

   

a

c

b

d

Fig. 2. Frontal projections of the positions of the turn of the right open helicoid 	
when it is bent into the surface of a single-cavity hyperboloid of rotation: 	

a – p = 1; b – p = 0.5; c – p = 0.25; d – p = 0
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System (8) includes two unknown quantities: angle j 
and radius r0. System (8) must be solved with respect to the 
specified values:

r
L hA

hB hA
0 =

−
ρ

ρ ρ
;

j
π

ρ ρ= −( )4
L hB hA . 	 (9)

In accordance with expressions (9), we find the di-
mensions of a flat workpiece for the manufacture of a he-
licoid turn (approximate sweep): r0 = 28.3, j = 5.68 (325°), 
R0 = r0+L = 68.6.

   
a b

Fig. 3. Graphic illustrations for the construction of a sweep 
of a truncated cone that approximates a single-cavity 

hyperboloid of rotation: a – meridian AB of the section of 
the hyperboloid rotation; b – sweep of a truncated cone 	

that approximates the hyperboloid

There is a limit to the choice of the angle γ. According to 
the second expression (3), it cannot be equal to zero, which 
is already clear from its physical essence since it is the angle 
of rise of the helical line. As noted above, a ≤ r (Fig. 1, b).  
At a = r, the angle γ will be minimal. To find it, in the sec-
ond equation (3) a must be replaced by r and resolved with 
respect to γ : γ = Arctg(H/2πr). For the case under consid-
eration, γ = 38.5°. In this case, point A (Fig. 3, a) will shift 
upwards along the curve and coincide with point zero, that 
is, the approximation of rotation by the hyperboloid cone 
deteriorates somewhat. As the γ angle increases, the radius a  
decreases, that is, the open helicoid approaches the closed 
one. At the same time, the dimensions of the workpiece 
change only at the beginning and, moreover, not significantly, 
and then practically do not change.

6. Discussion of results of investigating the methodology 
for constructing a flat workpiece for the manufacture  

of a turn of a right open helicoid

Since the exact dimensions of the flat ring – the blank of 
a right open helicoid do not exist, an approximate calculation 
is performed. Its essence is the fact that in the calculations we 
are guided by the equality of the lengths of the helical lines, 
which limit the turn of the auger in an external and internal 
way, and the corresponding lengths of the arcs of circles, 

which in the same way limit the flat ring. It is also assumed 
that the difference in radii between the external and internal 
cylinders limiting the turn of the helicoid must be equal to 
the difference between the outer and inner limiting circles of 
the flat ring. For this condition to be met, a flat ring should 
have a radial notch, as shown in Fig. 3, b.

However, finding the size of the ring can also be ap-
proached from the point of view of continuous bending of the 
helicoid surface into the surface of rotation. This approach 
corresponds to the physical essence of the process of making 
a turn by bending. On the basis of parametric equations (1), 
intermediate surfaces were obtained within one turn by re-
ducing their step (Fig. 2). When the pitch is zero, the turn of 
the screw surface is converted into the corresponding section 
of the rotation surface. Such a section for bending the turn of  
a right open helicoid is the section of a single-cavity hyperboloid 
of rotation (Fig. 2, d). This makes it possible to obtain paramet-
ric equations of the meridian (6), which is the arc of hyperbole. 
Then, the coordinates of points A and B on the hyperbole are 
determined through the parameters of the helicoid surface 
turn (Fig. 3, a) using (7). After that, the AB arc is replaced by 
a rectilinear segment, which is the generatrix of the truncated 
cone. The cone is an unfolding surface, so its sweep, which is  
a flat workpiece for the manufacture of the helicoid turn, is 
built accurately. At the same time, it is possible to visually assess 
the accuracy of the approximation of the single-cavity section 
hyperboloid rotation with a truncated cone. It involves assess-
ing the deviation of the AB arc from the rectilinear segment.  
Fig. 3, a demonstrates that this deviation is insignificant.

The peculiarity of the proposed method is the calcula-
tion of the flat workpiece of the turn in accordance with the 
physical essence of the bending process. In existing reference 
literature (for example, [18]), the parameters of the work-
piece are calculated by comparing the corresponding lines on 
the turn and on the workpiece without taking into account 
the bending process. The obtained calculation of the turn 
of the right open helicoid by analytical calculation of its flat 
workpiece with the proposed method differs slightly from the 
known methods of calculation but the method of obtaining it 
on the basis of the physical essence of bending gives reason to 
consider it more accurate. It should be noted that there are 
restrictions on the use of the developed approach to the calcu-
lation of a flat workpiece of the turn. They relate to the tech-
nology of its manufacture. The proposed method is designed 
for the manufacture of a turn by stamping sheet blanks. This 
is a limitation of the use of the method. The disadvantage is 
that the calculation does not take into account the thickness 
of both the surface of the turn itself and the thickness of the 
sheet material of the workpiece. In further studies, this factor 
may be taken into account to obtain more accurate results.

7. Conclusions 

1. The application of theoretical bending of the surface of 
a right open helicoid by reducing its pitch makes it possible to 
obtain intermediate positions, ending with the final – single- 
cavity hyperboloid of rotation. The design dimensions of the 
helicoid are converted to the design dimensions of the hyper-
boloid. This makes it possible to replace with a certain accu-
racy the section of the hyperboloid with a truncated cone, 
which is described by the resulting analytical dependence.

2. The sweep of the cone will be an approximate sweep 
of the hyperboloid because it is non-sweep. However, the 
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presence of this section makes it possible to replace it with  
a truncated cone with maximum accuracy. Since in the theo-
retical bending of the length of the lines, the angles between 
the lines and the area of the section of the truncated cone do 
not change, the resulting sweep will be a flat workpiece for the 
manufacture of a turn of a right open helicoid.
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