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The current stage in the development of mathematical and 
software support for the processes of designing the develop-
ment of hydrocarbon fields is characterized not only by the 
improvement of the means of geological and hydrodynam-
ic modeling of reservoir fluid filtration but also by the use 
of algorithms for optimizing the development of gas depos-
its. The paper considers the problem of optimal control of 
the depletion of a gas reservoir with a low-permeability top. 
Using the so-called Myatiev-Girinsky hydraulic scheme, a 
two-dimensional equation describing the unsteady gas flow in 
a reservoir with a jumper is averaged over the capacity of the 
productive reservoir. This comes down to a one-dimensional 
equation with an additional term, taking into account gas-dy-
namic relationships between the reservoir and the jumper. For 
the numerical solution of process control problems, a formula 
for the gradient of the functional characterizing the reservoir 
depletion is found, and the method of successive approxima-
tions based on Pontryagin’s maximum principle is applied. In 
this case, the direct and conjugate boundary value problems 
are solved by the method of straight lines, and the required 
flow rate, without taking it beyond the maximum and mini-
mum possible, is found by the gradient projection method with 
a special choice of step. A brief block diagram of the algorithm 
for solving the problem is shown; on its basis, a computer pro-
gram was compiled. The results of calculations are presented 
to identify the influence of the values of the complex commu-
nication parameter not only on the state of the object but also 
on the operating mode of the well. The expediency of using 
the presented optimization tool is dictated by an increase in 
the share of deposits
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1. Introduction

When studying control problems associated with the 
depletion of a gas reservoir with a low-permeable top (or 
bottom), we have to consider possible flows of filtering gas 
from one horizon to another, which greatly complicates the 
mathematical solution to the problem. Bearing in mind that 
the reservoir in the vertical section consists of several layers, 
then when solving the problem of optimal control associat-
ed with the choice of well flow rate, it is necessary to fix a 
system of several two-dimensional equations under certain 
boundary conditions set on wells and reservoir boundaries. 
At the same time, the more layers in the section, the more 
equations and, therefore, the more difficult to obtain a solu-
tion to the optimization problem described by these equa-
tions. An analysis of gas-bearing reservoir recovery, i.e. a de-
cline curve, shows that future productivity is well described 
by fitting an exponential equation to the rate of decline in 
gas-bearing layer productivity over time [1]. This kind of 
approach gives good results in the case of high reservoir 
productivity but does not adequately reflect the behavior of 
some production wells in depleted reservoirs. In [2], differ-
ential equations describing the productivity of gas-bearing 
layers are approximated by difference equations that are 
implicit for pressure and saturation and explicit for relative 
permeability. The joint solution of difference equations is 

obtained using either alternating directions or strongly 
implicit iterative procedures. Many authors agree that the 
solution of two-dimensional boundary value problems of 
parabolic type, describing the process of gas filtration, turns 
into a complex problem [3]. As seen, it is impossible to obtain 
exact solutions to these equations, even in the simplest case 
of filtration. Therefore, when compiling the basic differential 
equations, an approximate hydraulic method is often used, 
which is called the Myatiev-Girinsky scheme [4]. According 
to this scheme, the reservoir in the vertical section consists 
of several pore layers, where well-permeable layers alternate 
with low-permeable ones. In well-permeable formations, the 
vertical velocity component is neglected, assuming the flow 
to be horizontal, and in low-permeability formations, the 
horizontal filtration component is neglected, and the flow 
is assumed to be vertical. Based on this assumption, which 
does not introduce significant distortions into the flow pat-
tern, according to the Myatiev-Girinsky scheme the vertical 
pressures in the reservoirs are averaged, taking into account 
the presence of low-permeability interlayers, and thereby the 
basic differential equations for gas flow only in the reservoir 
are obtained. These equations involve additional terms that 
take into account the weak permeability of the overlying and 
underlying layers. The degree of accuracy of the described 
scheme depends on the ratio of the permeability of produc-
tive and low-permeable formations.

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license
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Thus, in the presence of gas-dynamic connections be-
tween the reservoirs and a weakly permeable jumper, the dis-
tribution of gas pressure in a productive reservoir is reduced 
to solving nonlinear boundary value problems for partial 
differential equations under appropriate initial and bound-
ary conditions. As boundary conditions, the impermeability 
of the outer boundaries of the productive formation and 
the conditions for production wells are set. The exchange 
processes occurring during the development of a multilayer 
field are taken into account by additional terms in the right 
parts of the equations.

Known exact and approximate solutions to non-station-
ary problems of liquid and gas filtration in reservoirs with a 
low-permeability jumper are obtained under the assumptions 
of several simplifications, the need for which is explained by 
the complexity of the corresponding boundary value prob-
lems. The complexity increases immeasurably when consid-
ering problems with a moving gas-water interface.

Examples of using the above scheme for solving a number 
of problems of stationary and non-stationary filtration of 
liquid and gas in reservoirs separated by a low-permeability 
jumper can be found in [5, 6]. Studies devoted to problems 
describing the flow of fluid in isotropic and anisotropic 
reservoirs, as well as in a multilayer system under elastic 
conditions, are of scientific relevance. At the same time, a 
mathematical model based on calculation formulas for well 
flow rates subsequently has high practical applicability. 
Such models define the required differential equations with 
partial derivatives, describing the filtration processes in res-
ervoirs separated with a low-permeability jumper between 
the layers.

2. Literature review and problem statement

In [7], using the Gauss-Seidel iterative block-type meth-
od, numerical methods are developed for jointly solving 
the problems of geo-filtration and geo-migration in multi-
layer systems in the study of the transport of impurities. A 
multilayer system consists of several aquifers separated by 
low-permeability layers. Mathematical models according to 
the Myatiev-Girinsky scheme are built under the following 
assumption: longitudinal currents prevail in the aquifer, and 
transverse ones predominate in the separating layers. Im-
plicit finite-volume difference schemes are used. 

In [8], for problems of optimal control and forecasting 
of production processes in gas fields, the processes in which 
are described by two-dimensional equations of parabolic 
type, mathematical and computer models are studied, and 
computational algorithms are created. Nevertheless, the 
convergence issues related to the solution of the grid analog 
of the optimal control problem under consideration have not 
been studied, the structure of the optimal control software is 
given, but the calculation results are not presented. 

In [9], the actual problem associated with the develop-
ment of oil and gas fields in order to increase the gas recovery 
of reservoir systems and determine the main indicators of 
the object of study is considered. An analysis of scientific 
papers related to the problem of mathematical modeling of 
the process of gas filtration in a reservoir is given. To conduct 
a comprehensive study of the process under consideration, a 
mathematical model was developed based on the basic laws 
of hydromechanics. The proposed numerical method for 
solving the problem can be easily generalized for a system of 

three or more equations. The developed mathematical tools 
can be used to analyze and develop multi-layer gas fields 
in the presence of a gas-dynamic connection between the 
layers and make management decisions. On the basis of the 
proposed mathematical tool, computational experiments are 
carried out, the results are presented in the form of graphic 
objects, and analysis is given.

In [10], based on Pontryagin’s maximum principle, the 
SMAC (Sequential Model-based Algorithm Configuration) 
algorithm is developed, which automatically determines the 
intelligent control that maximizes the net present value of 
the production process. The idea is to build an auto-adaptive 
parameterized decision tree that replaces arbitrarily chosen 
limit values for selected decision tree attributes with parame-
ters. A new tool has been developed linking the parameterized 
decision tree to the reservoir simulator and optimization tool. 
The created tool allowed to increase revenue by 49 %.

In [11], second-order optimality conditions are studied 
for optimal fuel control problems with both ends on man-
ifolds. Each locally optimal candidate extremal from Pon-
tryagin’s maximum principle is embedded in a parametrized 
family of extremals with classical second-order conditions 
for the absence of conjugate points or focal points. Two 
non-multiple conditions are developed for the projection of a 
parametrized family onto the state space to be a diffeomor-
phism. Thus, non-multiplicity conditions are sufficient (but 
not necessary) to ensure that a candidate extremal is locally 
optimal if the initial state is fixed. 

The paper [12] considers a control problem in which the 
equation of state is described by a nonlinear partial differen-
tial equation. The authors examine the situation of control 
at the frontiers with the assignment of the corresponding 
boundary conditions. This paper presents the necessary and 
sufficient optimality conditions in the form of Pontryagin’s 
maximum principle. Optimal control in the case when the 
control acts linearly is proved. However, the case of dynamic 
control is not studied in the work.

The paper [13] describes the optimal control method 
for maximizing oil revenues in oil reservoir systems. The 
fluid flow in an oil reservoir is represented by a system of 
non-linear partial differential equations of the second order. 
The model describes the interaction between the well and 
the reservoir; the paper pre-sets the boundary conditions 
for the fluid flow equations. At the same time, the flow rate 
is regulated by changing the bottom hole pressure. The pre-
sented method of increasing the recovery from the well takes 
into account the content of undesirable fluids, such as water 
or gas. The debit gradient is calculated using the adjoint 
method, and the optimal control setting is obtained using 
the linear search method, which slightly increases the time 
for finding the optimal solution. 

The manuscript [14] presents a necessary and sufficient 
condition for an optimal control problem with distributed 
parameters based on Pontryagin’s maximum principle, sub-
mitted by a second-order hyperbolic equation. The results 
obtained can be used in the theory of optimal processes for 
various controlled processes described by second-order hy-
perbolic equations. However, the paper mainly considers the 
case of boundary control, since in many cases it is possible to 
influence the course of the process only from the boundary 
of the examined area.

The purpose of the study [15] is to search for new indi-
cators characterizing the mechanism for increasing reservoir 
productivity. The paper presents a method for early deter-
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imations to solve problems of optimal control of depleted 
multilayer wells. This will reduce the significant cost of com-
putational resources in the calculation of complex flows and 
achieve the required accuracy of the solution with relatively 
low requirements for the density of the computational grid 
and time steps. Also, an important part of the proposed solu-
tion is the choice of the Myatiev-Girinsky scheme to simplify 
the equations describing the filtration process.

To achieve this aim, the following objectives were set:
– to apply the Myatiev-Girinsky hydraulic scheme for 

averaging a two-dimensional equation describing the un-
steady gas flow in a reservoir with a weakly permeable 
jumper;

– to find a formula for the gradient of the functional 
characterizing reservoir depletion and apply the method of 
successive approximations based on the Pontryagin maxi-
mum principle;

– to develop an algorithm and carry out software imple-
mentation to present the results of calculations to identify 
the influence of the values of the complex communication 
parameter not only on the state of the object but also on the 
wells’ operation mode.

4. Materials and methods of research

Due to the significant difficulty in obtaining a solution 
to boundary value problems for two-dimensional differential 
equations of parabolic type, and consequently, to the associ-
ated optimal control problems, various numerical methods 
for solving are proposed. It is important to note that a partic-
ular difficulty in the numerical solution of control problems 
for processes described by two-dimensional equations of 
parabolic or hyperbolic type is directly related to the calcu-
lation of the gradient of the functional. So, to apply gradient 
methods at each step of the iterative process, it is necessary 
to integrate two two-dimensional parabolic boundary value 
problems ‒ direct and adjoint. At present, Douglas’ method 
and Samarsky’s method in [6] have received wide distribu-
tion for the integration of these boundary value problems.

In order to avoid the above difficulties, this paper uses a 
different approach based on the reduction of a two-dimen-
sional equation describing the process of non-stationary 
filtration in a reservoir with a low-permeability roof to a 
one-dimensional equation. In this case, the problems of the 
filtration theory can be considered two-dimensional, and the 
conditions of indivisibility of flow and continuity of pressure 
must be observed at the boundary of the reservoir and the 
jumper. The solution to two-dimensional boundary value 
problems and related optimal control problems is currently 
difficult.

To avoid this difficulty, using the Myatiev-Girinsky 
hydraulic scheme, a one-dimensional differential equation is 
derived that describes the filtration process in a productive 
reservoir with an additional term that takes into account 
possible gas flows through the top of the reservoir. In the 
presented paper, the solution to optimal control problems, 
the processes of which are described by one-dimensional 
equations, is found by the gradient method based on Pontry-
agin’s maximum principle.

Computer numerical calculations and quantitative esti-
mates of the research results are given. The method indicat-
ed in the paper can be used to solve more general problems of 
optimal control associated with the flow of gas, as well as an 

mination of reservoir drive. The research results diagnose a 
strict relationship between the reservoir operation mode and 
the ratio of porosity volume to reservoir pressure. New diag-
nostic indicators have been discovered to help identify the 
drive mechanism, called Reservoir Drive Performance In-
dexes (RDPIs). Despite the great promise of this approach, 
it is not entirely applicable to depleted wells.

The paper [16] presents a new empirical model for estimat-
ing Pd pressure for gas condensate reservoirs. Statistical error 
analysis was used to determine the accuracy of the model. 
The results of the proposed model were compared with the 
Soave-Redlich-Kwong equation of state (SRK-EOS) and the 
Peng-Robinson equation of state (PR-EOS). Gas conden-
sate samples were used to verify the validity of the proposed 
model in relation to the equation of state. The proposed 
method requires large computing power.

The paper [17] presents the results of a research project 
aimed at developing heuristically driven development plans 
based on simple static simulation parameters rather than 
complex dynamic simulation parameters for traditional gas 
reservoirs. The combined use of heuristics based on the 
Maximum Efficient Rate (MER) criteria and the Maximum 
Depletion Rate Model (MDRM) was explored to model 
a systems approach to these reservoirs. The integration of 
these principles and their comparative evaluation led to 
conclusions about their relationship, in particular, that MER 
should be considered a special case of MDRM. The rules are 
based on the combined use of an exponential version of the 
Fundamental Equation of Mineral Production (EFE) with 
the exponential decline (ED) curve analysis. However, the 
presented production model is based on fairly accurate data 
and rules, which does not allow going beyond the prescribed 
volumes of reserves and production yields.

As can be seen from the review of the literature, the 
problems of unsteady gas flow are considered from different 
points of view, however, the experimental study of such flows 
is often associated with significant difficulties and costs. In 
most published works, the issue of simplifying multidimen-
sional equations describing the control problem, as well as 
the issue of the applicability of the models used for depleted 
wells, is left without consideration. Also, attention is often 
not paid to the quality of the obtained numerical solution, its 
independence from circuit factors, algorithmic computabili-
ty and software implementation.

To accurately take into account the behavior of gas flow 
in a multilayer medium, it is necessary to provide a numer-
ical solution that simulates not only the state of the object, 
but also the well operation mode. This means the need to 
use very dense computational grids over the entire compu-
tational domain. These requirements under the conditions 
of non-stationary multidimensional calculations lead to 
large expenditures of computational resources, which until 
recently made such calculations practically impossible. The 
opportunities that have opened up today, due to the growth 
of computer power, are changing the situation, and carrying 
out accurate calculations of unsteady fluid flows, with the 
accumulation of experience in overcoming possible difficul-
ties of a methodological nature, becomes a feasible task.

3. The aim and objectives of the study 

The aim of the work is to demonstrate the methodology 
for applying the numerical method of successive approx-
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elastic fluid in reservoirs that are heterogeneous in terms of 
reservoir properties and are separated by low-permeability 
jumpers.

5. Results of the study on the control problem of the gas 
reservoirs’ depletion 

5. 1. Application of the Myatiev-Girinsky scheme de-
scribing the unsteady gas flow 

For the case of unsteady plane-parallel filtration, the 
distribution of gas pressure in the reservoir is described by 
Leibenson’s differential equation:
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In (1)–(4), v is a gas filtration rate; F is a filtration area; 
k, kq and b, bq are the coefficients of permeability and capaci-
ty of the reservoir and the jumper, respectively; µ is a gas dy-
namic viscosity coefficient; m is a formation porosity; Q(t) is 
the given positive values; l is a formation length; t is the time.

The initial condition (2) means that at the initial time, the 
reservoir was in an undisturbed state, i.e. the pressure at each 
point of the reservoir was equal to the initial pressure pН. The 
first boundary condition in (3) shows that the well is being 
operated with a flow rate Q(t). The second condition in (3) 
and the first condition in (4) indicate the impermeability of 
the outer boundary and bottom of the formation, respectively. 
The second condition in (4) shows that flow continuity is ob-
served at the boundary between the reservoir and the jumper. 

Introducing dimensionless variables and parameters:
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and discarding the asterisks for simplicity, we repre-
sent (1)–(4) in the form:
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We assume l=1 and average equation (5) according to the 
above scheme. To do this, we multiply all the terms of equa-
tion (5) by 1/b and integrate (1) over y from 0 to b. Denoting:
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where a=kq/kbbq – connection coefficient [5]. 
Note that due to the poor permeability of the jumper, 

p and P little differ from each other. Therefore, in (9) and in 
what follows, we will write P instead of p. 

The boundary conditions for equations (9) have the form:
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The optimal control problem is formulated as follows. It is 
required to choose a piecewise-continuous control Q(t) with 
a constraint Q1≤Q(t)≤Q2 so that at the end of the formation 
depletion process with a low-permeability top, the pressure  
p(x, T) in the productive formation approaches the predetermined 
and based on technological considerations distribution p0(x).

As a measure of such a deviation, we take the quadratic 
functional:
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The boundary value problem (9)–(11) with fixed values 
will be called the direct problem. To calculate the first vari-
ation of functional (9), we compose the Lagrange function of 
problem (5)–(9):
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where ψ(x, t) is a Lagrange multiplier. Obviously, the ex-
trema of the functionals and I coincide if the connection 
equations are satisfied.

We calculate the first variation L. The variation of the 
Lagrange function (13), which is the main linear part of the 
increment of this function, has the form:
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We transform the double integral using integration by 
parts, taking into account the initial and boundary conditions:
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so that the expressions under the signs of the integrals do 
not contain partial derivatives of the variations of the phase 
variables. As a result, we get:
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where δp(x, t), δp(x, T), δp(0, t), δp(1, t) are arbitrary varia-
tions, δQ(t) is allowable variation. 

Assuming that the stationarity condition δL=0 is satis-
fied at the optimal point, and using a sufficiently large arbi-
trariness in the choice of variations of the phase variables, we 
equate the coefficients for the corresponding variations p to 
zero, that is, setting:
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Here H=ψ(0, t)Q (t) is the Hamilton function for the 
problem (9)–(12). Expressions (13)–(15) define the adjoint 
boundary value problem for the direct problem (9)–(11). 

From formula (19) for the first variation of function-
al (12), it follows that the gradient of functional (12) is 
equal to ψ(0, t). As can be seen, to obtain the gradient of 
functional (12) for given Q(t) and α, we have to solve two 
boundary value problems. First, from (9)–(11) it is neces-
sary to determine the function p(x, t) then put the resulting 
p(x, t) into (16)–(18), and from (16)–(18) find ψ(x, t) and, 
finally, ψ(0, t). 

5. 2. Finding a formula for the gradient of the func-
tional characterizing reservoir depletion 

It is not possible to obtain exact solutions to these 
boundary value problems due to the nonlinearity of equa-
tions (9). For the numerical solution of these boundary 
value problems, implicit finite-difference schemes combined 
with a run or the method of straight lines are usually used, 
although various linearization methods and special approx-
imate methods have been proposed for equations (9), often 
encountered in the theory of non-stationary gas filtration 

in a porous medium [6]. Functional (12) and its gradient are 
replaced by their approximating counterparts.

So, having formulas for the gradient for problem (9)–(12), 
we can state the gradient methods for solving it, particularly 
the gradient projection method.

Method for numerical solution of problem (9)–(12).
For the numerical solution of the problem by the gradient 

projection method based on the calculation of the gradient 
of the functional (12), as a rule, at each step of the iterative 
process, it is necessary to solve two boundary problems ‒ 
problem (9)–(11) and problem (16)–(18), and then use the 
formula to calculate the gradient.

An approximate solution of the boundary value prob-
lems (9)–(11) and (16)–(18) will be sought by the method 
of straight lines from the theory of approximate solutions 
of boundary value problems. Let xi=ih, i=1, 2, …, n is a grid 
with step h=1/n on the segment [0,1]. By introducing the 
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 = − + − ⋅ − − 

( )2 2 2 2
1 1 12

1
2 1 ,i

i i i

dp
p p p a p

dt h − + = − + − − 
 = −2,3,.., 1,i n 	(20)

( )2 2 2
12

1
1 ,n

n n n

dp
p p a p

dt h − = − + − − 

with initial conditions:

( )0 1,ip =  1,2,..., ,i n= 		   (21)

and conjugate system (16)–(18) subject to conditions 
ψ0(t)=ψ1(t), ψn(t)=ψn–1(t) can be approximated by the sys-
tem of homogeneous equations: 

[ ]1 1
1 2 1 1

2

2
2 ,

d p
ap

dt h
ψ = − −ψ + ψ + ψ

[ ]1 12

2
2 2 ,i i

i i i i i

d p
ap

dt h − +
ψ = − ψ − ψ + ψ + ψ  

= −2,3,..., 1,i n 		   (22)

[ ]12

2
2 ,n n

n n n n

d p
ap

dt h −
ψ = − ψ − ψ + ψ

with conditions at the right end: 

( ) ( ) ( )02 ,i i iT p T p x ψ = − −   = 1,2,..., ,i n  	 (23)

where pi(t), ψi(t) are the approximate values of functions 
p(x, t), ψ(x, t) at the grid nodes xi=ih, i=0, 1, …, n, (n+1)h=1, 
respectively.

5. 3. Developing an algorithm and carrying out soft-
ware implementation of the calculation results

It is important to note that the approach, which is 
based on calculating the first variation of the minimized 
functional, seems to be promising in relation not only to the 
optimization of systems similar to (9)–(12), but also to more 
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general optimization problems. In this case, the original 
distributed system can be solved by any numerical method 
without passing to systems of ordinary differential equa-
tions, as is done in [13].

The algorithm for solving the problem consists of the 
following steps:

1. Some admissible control Qk(t) is chosen.
2. According to the initial Qk(t), the direct sys-

tem (20), (21) is integrated by the Runge – Kutta method 
(possibly also by the Euler method when certain relations be-
tween sampling steps in time and space coordinates are met) 
in the “forward direction” and the values of the functions pi(t), 
i=1,…, n are found in the time interval 0≤t≤T. Note that in the 
case of linearity of boundary value problems, it is important 
to preserve its solution only at the ends of the time interval.

3. The values of the approximating functional are calcu-
lated:

( ) ( ) 20

0

,
n

n i i
i

I h p T p x
=

 = − ∑  		   (24)

subject to conditions ( ) ( ) ( )2 2
0 0 .p T p T hQ T= −  

4. Formula (23) calculates the boundary values ψi(t), 
i=1, …, n for the system of adjoint equations (22).

5. In the “reverse direction” of time, the adjoint sys-
tem (22), (23) is integrated, the coefficients of which are 
calculated along the trajectories pi(t), i=1, …, n. 

6. At each integration step, the maximum or minimum 
value ψ0(t)=ψ1(t) is found.

7. The new control Qk+1(t) is calculated by the formula: 

( ) ( )
( ) ( )

( ) ( )
( )

1 1

2 21

1

2

, if ,

, if ,
( )

( ), if

.

k k

k k

k

k k k

k

Q Q t Q t Q

Q Q t Q t Q
Q t

Q t Q t Q Q t

Q t Q

+

 + δ <


+ δ >= 
+ δ ≤ +

+δ ≤

 		  (25)

Here:

( ) ( )1

1

, 0,1,2,...
max

k
k

k

t
Q t k

ψ
δ = λ ⋅ =

ψ
 		   (26)

where k is an iteration number, and the parameter λ>0 is 
chosen depending on the change in the sign of the functions 

1
( )

k

y t  during iterations [18]. That is, if ψ1(t) does not change 
sign during iterations, then  can be increased to speed up 
convergence. If ψ1(t) changes sign at the previous iteration 
step, then for the next iteration we set the corresponding  
equal to λ/2 and so on. Note that the main work during the 
transition to the next iteration, as a rule, is associated with 
the calculation of the gradient.

8. A step is taken with a new control Qk+1(t) returning 
to step 2. 

To implement the algorithms described above for solv-
ing problems (20), (21), and (24), a computer program was 
compiled. A brief block diagram of the program is shown 
in Fig. 1.

The iterative process (25), (26) continues until one of the 
end-of-count criteria described in [19] is met, in particular, 
the number of iterations is specified. Integration of systems 
(20), (22) is carried out according to the Runge-Kutta 
method with a constant step ∆t=0.01, and the output of the 
results is carried out with a step t=0.02. The segment 0≤x≤1 
is divided into five equal parts with lengths h=0.2. 

It is easy to see that the chosen values of the parameters 
∆t and h satisfy the inequality:

2

1
.

2
t

h
∆ ≤ 				     (27)

Therefore, when solving the direct and adjoint boundary 
value problems numerically, even the explicit difference 
scheme can be used. However, it should be noted that this 
limitation is very strict. For the stability of the difference 
method for solving boundary value problems, the step q has 
to be taken very small, which increases the total number in 
time and, consequently, the total amount of computational 
work. In this regard, despite the great simplicity of the ex-
plicit grid method, its use in practice is very limited.

To identify the effect of the coupling coefficient, first 
of all, Fig. 2 shows the dependence of the gas pressure over 
the reservoir at t=0.2 and Q=0.5 for different values of the 
connection coefficient. It follows from the figure that under 
the conditions of the considered problem for α≤1, the per-
meability of the reservoir top has almost no effect on the gas 
pressure in the productive reservoir, however, for α>1 the 
effect of the permeability of the reservoir top becomes very 
noticeable and should be taken into account.

Fig. 2. Change in gas pressure in the reservoir for t=0.2 and 
Q=0.5 for different values of the connection coefficient
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Fig. 3 shows graphs of the change in the debit functions 
in time. From the analysis of the graphs built on the basis of 
the obtained numerical data, it follows that the greater the 
complex connection parameter a, the sooner the stationary 
operation of the well occurs, and it is important to take into 
account the effect of gas-dynamic connection on Q(t). 

Fig. 3. Variation in time of the flow rate functions for 
different values of the connection coefficient

Table 1 shows the results of calculations for different 
values of the connection coefficient. The calculations were 
carried out for the following values of dimensionless pa-
rameters: Q1=0.2, Q2=1, T=0.2, p0(x)=0.8. For the initial 
iteration, Q0(t) was assumed equal to 0.5. 

Note that with a further increase in the number of 
reiterations for all values of the coupling parameter a, the 
well operation mode will be a piecewise constant function, 
receiving alternately the upper and lower boundaries, i.e. has 
structures Q(t)=signψ1(t). To check the optimality of one of 
the controls found, for example, for a=1 as p0(x) we set the 
solution pi(t), i=1, …, n of problem (20), (21) with the control:

( ) 1, if 0 0.16,

0.2, if 0.16 0.2,

t
Q t

t

≤ ≤
=  < ≤

 		   (28)

having one switching point in segment 0≤t≤T (Fig. 4). 
Obviously, in this case the value of the minimum of 

the functional is equal to zero. The approximately optimal 
controls found in this case, as can be seen from the graphs 
shown in Fig. 4, do not have a character different from the 
optimal one, and approach it with an increase in the number 
of iterations.

6. Discussion of the results of the study on the control 
problem of the gas reservoirs’ depletion

The solution to the most important problem of increasing 
the efficiency of developing new and especially long-term 
exploited gas and gas condensate fields is possible only 
with the widespread industrial use of artificial methods for 
controlling well productivity. In this case, marginal wells de-
serve special attention, the number of which, unfortunately, 
is steadily increasing, and both the total gas and condensate 

production in the country and the cost of gas and conden-
sate production depend on the efficiency of working with 
such a fund. Compared to the existing literature in this 
area, the feature of the presented work is the reduction of a 
two-dimensional problem to a one-dimensional one, which 
greatly simplifies the calculations: 

1. To solve the considered optimization problem, the 
Myatiev-Girinsky scheme was used in the work, which 
allows the two-dimensional equation to be reduced to 
one-dimensional equations with an additional term that 
takes into account the influence of overlying or underlying 
low-permeable pores, as evidenced by equation (9). To de-
termine the desired flow rate, without taking it beyond the 
maximum and minimum possible, the gradient projection 
method with a special step selection was effectively used 
sequentially according to equations (20)‒(26).

2. A numerical solution of the problem has been ob-
tained based on the developed mathematical model of the 
medium with a low-permeability roof, which sufficient-

ly fully takes into account the physical properties of the 
reservoir (a reference to equations (19), (25), (26)). Such 
solutions make it possible to more deeply and fully study the 
features of non-stationary gas filtration in a reservoir with 
a jumper, to find calculation formulas for non-stationary 
filtration of an elastic fluid applicable to engineering calcula-
tions, which is generally relevant and of significant scientific 
and practical interest. 

3. Based on the calculations and plots, it was found 
that both in solving the boundary value problem and in 
solving the optimization problem associated with this 
boundary value problem, it is important to take into 
account the gas-dynamic relationships between the reser-
voir and the jumper. When running the model, despite the 
ill-posedness of optimal control problems with a quadratic 
functional, the gradient projection method did not show a 
tendency to “scatter” and gave a convergent sequence of 
controls ((26), Fig. 3, 4).
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Solutions to many problems of the theory of filtration in 
case of violation of the rectilinear-parallelism or radiality of 
the flow are obtained in the form of complex series (often slow-
ly converging) and, therefore, calculations on them become 
difficult. Due to the complexity of the resulting formulas, it 
is often impossible to draw any practical conclusions. The 
value of the presented approximate method lies not only in the 
simplification of calculations but also in the possibility, on the 
basis of simple formulas, to notice important qualitative pat-
terns. The presented work is based on the Myatiev-Girinsky 
scheme on the vertical nature of filtration in separate layers. 
Unfortunately, the paper does not present a case of overflow 
with a strong deposit permeability. A significant limitation 
of the work is the difficulty in determining how and where 
the main supply and main discharge of interlayer gas-bearing 
horizons occur. The non-linear nature of the processes under 
consideration with increasing dimensions leads to a strong 
complication of the problem from a mathematical point of 
view. For future researchers, the extension of this approach 
can be the development of an algorithm for approximating 
differential equations of geofiltration by finite differences. 

Although the approximate method presented in the pa-
per does not claim to be more accurate, it greatly facilitates 
calculations when solving many problems. 

7. Conclusions

1. On the basis of the Myatiev-Girinsky hydraulic scheme, 
the question of the interaction between the reservoir and the 
bridge was considered. The problem is solved under general 
conditions with respect to the reservoir boundaries. Based on 
the calculations, conclusions were drawn about the effect of 
the formation top permeability not only on the state of the ob-
ject under study but also on the wells’ operation mode. Based 
on the calculations, conclusions were drawn about the effect 
of the formation top permeability on the interaction of wells.

2. A formula for the gradient of the functional charac-
terizing the reservoir depletion is found, and the method of 
successive approximations based on the Pontryagin maxi-
mum principle is applied. In this case, to calculate the value 
of the gradient of the functional according to the formula 
I’(Q)=∂H/∂Q=ψ(0, t) in consecutive approximations, it is 
necessary to integrate two nonlinear boundary value prob-
lems for partial differential equations. 

3. An algorithm was developed and a software implemen-
tation was carried out to present the results of calculations 
to identify the influence of the values of the complex com-
munication parameter not only on the state of the object, 
but also on the well operation mode. Compared to existing 
methods, when using the proposed approach, convergence is 
accelerated, and what is more, this iterative method demon-
strates enhanced stability. The main purpose of this work is 
to study the effect of the flow coefficient on the wells’ oper-
ation mode under the condition of reservoir depletion by a 
given point in time.
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