
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 2/2 (122) 2023

26

– conceptual modeling and management of the XML
document;

– clustering and streaming XML data.
In terms of application, all the above scientific research

on XML data processing can be divided into the following
groups:

– database Systems – Ontology-Query Processing;
– industry-Web Services-Models;
– XML-Access Control-Labeling Scheme;
– software Engineering – Models-Software Design.
With the appearance of Web 2.0, data began to spread

throughout the Internet, through online and offline ap-
plications, and across all application domains. Web data is
semi-structured data downloaded through browsers and
applications that exchange data over HTTP Internet pro-
tocols. Basically, all web data is XML-based to provide the
following services:

– for simple display of commercial information – XHT-
ML/HTML on commercial websites;

– for instant messaging in WhatsApp, Skype, Gtalk –
XMPP;

– in e-commerce of financial transactions – CDF3;
– for processing and storing medical electronic re-

cords – HL7;

DEVELOPMENT OF AN

ADAPTIVE GRAPHIC WEB

INTERFACE MODEL FOR

EDITING XML DATA

A i g u l M u k h i t o v a
Doctoral Student*

Senior Lecture

Department of Information Technologies**

A i g e r i m Y e r i m b e t o v a
Corresponding author

PhD, Associate Professor, Leading Researcher*

Professor

Department of Software Engineering

Institute of Automation and Information Technologies

Satbayev University

Satbayev str., 22, Almaty, Republic of Kazakhstan, 050013

E-mail: aigerian@mail.ru

L y a i l y a C h e r i k b a y e v a
PhD, Acting Associate Professor

Department of Computer Science**

*Institute of Information and Computational Technologies

Shevchenko str., 28, Almaty,

Republic of Kazakhstan, 050010

**Al-Farabi Kazakh National University

Al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 05059

The ability of the end user to work with a large
amount of data from a large number of heterogeneous
sources and at the same time get an effective result
from the work is carried out through the use of
graphical web interfaces built on the basis of XML
technologies that allow displaying any structure of
a file presented in XML format. As a data exchange
method between applications on the Web, XML still
lacks capabilities for identification of web resources
and a system that uses them, and capabilities to
express the knowledge provided by XLM documents.
In this study, a web interface has been developed
(a web-based server application), as an XML
records editor that provides display forms for the
creation and editing of XML documents and is able
to adapt to the internal resources of the system used.
The technology is based on the XSD data set schema
transformation by the way of XSLT transformations.
Screen forms are generated on the server side and are
provided to the user with all the necessary tools for
correct input and/or editing of heterogeneous data.
A distinguishing characteristic of this technology is
the ability to display both properly and improperly
formed XML data. The developed graphical interface
allows any application to automatically exchange
and read information from other applications without
human intervention, which significantly improves
performance and ease of use. This software solution
could be used both as an independent data building
and editing module presented in the XML format,
and as a built-in module plugged into various server
software for heterogeneous information management
systems

Keywords: web interfaces, XML document
management/navigation, XML/XSLT
transformation, non-well-formed data

UDC 004.62;65

DOI: 10.15587/1729-4061.2023.276585

How to Cite: Mukhitova, A., Yerimbetova, A., Cherikbayeva, L. (2023). Development of an adaptive graphic web

interface model for editing XML data. Eastern-European Journal of Enterprise Technologies, 2 (2 (122)), 26–35.

doi: https://doi.org/10.15587/1729-4061.2023.276585

Received date 03.02.2023

Accepted date 11.04.2023

Published date 28.04.2023

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license

1. Introduction

The main task of integrating information resources is to
combine them at the physical or virtual level into a single
information space to provide users with access to hetero-
geneous information and the ability to manipulate it. This
is done using specialized adaptive administrative and user
graphical web interfaces that can adapt to the structure and
functionality of information resources.

Such interfaces can be developed using various data
presentation formats EDI, CSV, XML, JSON), do-
main-specific language and common languages (XSLT,
SQL, Java, C#). This diversity helps to choose the most
optimal data format or language based on specific require-
ments. A possible solution for this problem can be found
in the development of platform-independent specifications
that will be used for the source generation for each re-
quired platform.

Over the past decades, a number of studies on this topic
have been carried out, which can be conditionally classified
into three individual groups:

– data storage and request processing in statistical and
temporary XML databases;

 – XML document navigation and transformation;

Information technology

27

generalized chart to create validators on the basis of an ap-
proach based on the model of converting OCL constraints
into XPath assertions. The transformation is implemented at
the model level in the Query/View/Transformation language.
Some can be generated from one of the supported platform-in-
dependent models, the data model of the Eurasian Economic
Union or ISO 20022, while others can be embedded in XML
Schema 1.1, XSLT, or Java. This validator allows you to check
the conformity of an XML document to a specific UML dia-
gram of a given OCL annotation, but without the possibility
of changing the data values in the document itself.

Temporal XML databases have been proposed to study
the complete history of data changes over time. For data
modification, the author of the paper [5] suggests using
XML-oriented visual languages that formally define their
graphic and language syntax, as well as visual systems/tools.
The described methods are advisory in nature without a
practical result. In [6], XML uses a temporal data grouping
estimate that considers the most likely and efficient repre-
sentations of temporal information. The authors [7] propose
a new schema versioning control method in τXSchema,
which is a platform for creating and validating temporary
XML documents. This method allows for complete, inte-
grated, and secure schema change control. It defines their
operational semantics and provides a complete and reliable
set of variance primitives and a set of operations to serve
each component of the τXSchema schema. In subsequent
studies, the same authors [8] propose a general approach
called TempoX (Temporal XML) for manipulating data in
multi-temporal and multi-versioned XML databases. They
defined a new multi-temporal XML data model supporting
temporal schema versioning called TempoXDM (Temporal
XML Data Model). In the first case, the authors solve the
problem of collecting and storing data that changes over
time, without the possibility of correcting the data and stor-
ing it. In the second, the authors provide specifications for
the basic data manipulation operations: “insert”, “replace”,
“develop” and “delete”, but only for well-formed documents.

Editing an XML document can be a simple operation for
the data operator, for example, when editing directly through
a text editor, but such simplicity is unsystematic, as indicated
in [9]. From this, we can draw the following conclusion: the
preservation and control of the correctness of information
about the structure of the document when editing data, that is,
automatic validation and correction of documents transparent
to the user, require different approaches. For example, editing
through a graph representation of a document (Arbortext
Editor (https://www.ptc.com/en/products/arbortext), Xml-
Grid.net (https://xmlgrid.net/), CAM XML Editor (https://
camprocessor.sourceforge.net/wiki/)), or editing through the
presentation of the document in the form (Oxygen XML Ed-
itor (https://www.oxygenxml.com/), EditiX (https://www.
editix.com/)). All of the above editors are stand-alone tools
for creating and editing XML documents without the ability
to adapt to the internal resources of the system.

The paper [10] considers the automatic transformation of
queries in accordance with the schema update. The authors
first defined the ShEx schema update operations and then
proposed an algorithm for converting a given query into a
new query in accordance with the schema update. It sup-
ports TempoXUF and allows end users to manipulate (i. e.
insert, replace, delete, and modify) multi-temporal XML
data in the context of schema versioning through a GUI. The

– social media – Facebook, LinkedIn, Google Plus,
etc. – XHTML/HTML.

XML, which was originally defined as a metalanguage,
is now actively used in the Web-space as a way to exchange
data between applications; it still lacks the capabilities to
define web resources and the system that uses them, or the
ability to express knowledge provided by XML documents.

To present structured information in the XML-format,
the main point is the presence of a description of guidelines
for XML-record development guidelines, i.e. data scheme de-
scription. As a rule, when it comes to XML, these guidelines
are formulated in XSD terms, and they represent an XML
structure, which can be processed using standard methods,
such as XSLT.

Therefore, XML technologies-based graphical inter-
faces allow for displaying any XML-format file structure
presented. When using XML in information management
and information exchange strategies, there are problems as-
sociated with storing, retrieving, re-questing, indexing, and
manipulating data. As a result, new problems of information
modeling arise.

So, the studies of researching and applying adaptive
administrative and user interface development technologies
that help manage heterogeneous data (data creation and
modification) are relevant. Therefore, studies that are devot-
ed to the development of an adaptive graphic interface model
are of scientific relevance.

 2. Literature review and problem statement

There are various technologies, and data management
languages used to process data in XML format. The study [1]
presents an overview of the current state of XML data pro-
cessing in conventional and temporal XML databases, and
also suggests possible fields for future research on this subject.
The authors of the study [2] consider data storage and docu-
ment processing in registries and temporary XML databases.
Based on both analyses, there are no existing solutions to cre-
ate a graphical interface for displaying non-well-formed data.

The work [3] introduces an approach based on the ca-
nonical data model (CDM) through the implementation of a
collection of rules that make it possible to transform XSD into
an OWL ontology, which transforms both the XML file nodes
and the links between these nodes to preserve the same struc-
ture. It is shown that this method is intended for the efficient
management of web documents located in OWL, but the issue
of the possibility of manipulating data has not been resolved.

For XPointer-based positioning (an advanced address-
ing tool), there is still a problem of extracting the incorrect
format of the data content in an XML document, focused
on extracting incorrect data in XML documents based on
XPath 3.0. As a result of a deep analysis of the extract and
filter nodes, an XPointer-based location system was devel-
oped that provides advanced addressing for XML documents
to find and represent both properly and improperly formed
data in XML documents. The result of the work is a tree-like
display of the document structure in HTML. This allows
you to see the full structure of the retrieved document, but
does not solve the issue of the ability to manipulate data.

The paper [4] discusses an approach to generating XML
document validators based on UML models with Object
Constraint Language (OCL) rules. The authors propose a

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 2/2 (122) 2023

28

conversion algorithm works well, but it is intended only for
well-formed documents.

The need for flexible development of software is steadily
growing due to the technological complexity of the informa-
tion systems being developed. Despite the fact [11] that to-
day’s organizational knowledge is accumulated and managed
using an increasing number of different technologies and
methodologies, solutions for the continuous reintegration of
acquired knowledge into the overall design and production
process are still inadequate.

All this makes it possible to assert that it is expedient to
conduct a study on the development of an adaptive graph-
ical interface model that provides the display of forms for
creating and editing XML documents in accordance with
the selected XSD schema, capable of determining the web
resources and systems used.

3. The aim and objectives of the study

The aim of the study is to develop a model of an adaptive
graphical web interface for editing XML data. This will
make it possible to edit an XML document through an au-
tomatically created graphical interface on the basis of web
forms, based both on the schema of the document itself and
on schemas located on other components and nodes of the
system, as well as on nodes remote from the system located
on the web.

To achieve the aim, the following tasks have been set:
– to develop a model technology to solve the problem of

finding a structure description (XSD) for non-well-formed
documents and eliminating recursive definitions;

– to experimentally implement model verification in
order to analyze the effectiveness of the results in the dis-
tributed information system, based on XML/SOAP/SRW
technologies.

4. Materials and methods

The object of the study is an information system based on
Z39.50 using the Explain special standardized system ser-
vices. The ideology of the system is based on the implemen-
tation of Z39.50 functionality in web systems in the form of
XML/SOAP/SRW – ZeeRex technologies.

The main hypothesis of the study is the development of
web services, taking into account the search for information
based on arrays of their descriptions – metadata, including
an assessment of existing solutions for representing and
transforming metadata (in particular, XML).

The study was performed using the theory and practice
of engineering approaches used to create distributed infor-
mation systems.

 The system uses a special IR-Explain-1 database where
the server stores information on its configuration, data-
bases, attributes, formats, and other entities it supports.
Explain allows customers to additionally adjust to its
configuration, which is the key factor in building graph-
ical interfaces with an extensive system of self-adapting
names. It was found that in this type of the existing
distributed information systems, there are no subsystems
for adjusting to the data structure and semantics in the
form of an adaptive model for entering and editing in-

formation. An important factor in distributed systems is
that the structured XML format, after transmission over
the network, makes it possible to completely preserve the
original structure of the record, unlike other protocols
(http, ftp, etc.).

The research was performed using the system approach
methodology for the analysis and synthesis of architectural
solutions to create such systems and the principles of inte-
gration of these systems with external sources.

The work applied modern methods of knowledge en-
gineering, domain engineering, methods and principles
of designing problem-oriented systems, modern software
development methods, and the theory of relational database
building.

5. Results of experimental research on the development
of an adaptive graphic interface model

5. 1. Model development technology
 Currently, there are three main tools for XML documents

addressing – XLink, XPath and XPointer. To initialize graph-
ical data modification interfaces, you need the following:

– description of the data schema in the form of an XML
structure in accordance with the XSD rules;

– description of the rules for generating graphical inter-
face elements in accordance with the rules of the XSD used
and the value of the elements of the edited XML record.
However, these rules can act as the XSLT transformation
rules applied to the XSD.

It is still a problem, how to extract the incorrect format
of the data content in the XML document.

The model technology developed in this study is based
on the discussion of all possible ways to obtain a complete
description of the possible structure of the extracted re-
cord (XSD) (Fig. 1).

The XSD obtaining algorithm is as follows:
– Retrieve a link to the original XSD data schema as

an URL as the value of the schemaLocation attribute when
determining the namespace used:

If there is no link to the used XSD data schema in the
form of a URL address, make an inquiry to the information
system about the provision of XSD by the namespace iden-
tifier, if the XML record retrieved for editing contains the
namespace identifier (URI). In our system, such an inquiry
is processed by the Explain service:

…
$imp_file = $inp->getAttribute('schemaLocation');
 $imp_doc = new DOMDocument ("1.0", "UTF-8");
 $imp_doc->load ($imp_file);
…

…
$oprefix=$imp_doc->documentElement->lookupPrefix(
"http://www.w3.org/2001/XMLSchema");
 if($oprefix != "xsd")
{
 $s1 = $imp_doc->saveXML();
 $s2 = str_replace($oprefix.":","xsd:", $s1);
 $s2 = str_replace("xmlns:".$oprefix,"xmlns:xsd", $s2);
 $imp_doc->loadXML($s2);
 }
 …

Information technology

29

In the cases where the XML record retrieved for editing
does not have namespace definitions, or where it is impossible
to use the above two methods, an inquiry must be sent to the in-
formation system for XSD by the name of information resource
(database), or use the XSD that corresponded to the schema
requested in the formation of the data retrieval request.

Thus, in the paper we propose an original approach,
which consists in using an adaptive editor of XML records
in the client-server architecture, which is built into the web
server of a distributed information system. Actually, the
XML editor corresponds to the area highlighted in gray,
limited by the dashed line for the server part (Fig. 2).

Fig. 1. Functional diagram of the model for extracting the record structure

Fig. 2. Functional diagram of the operating procedure of the adaptive editor in the user-server architecture

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 2/2 (122) 2023

30

As indicated in Fig. 2, the process of transforming XML
data into an HTML form occurs by generating an XSLT-
based form of editing:

Input document:
Source XML-file (*.xml);
XML Schema (*.xsd);
Extensible stylesheet XSLT (*.xsl).

Output document:
HTML-page (*.html).

The generated HTML form serves as a data entry form,
i. e. is a simple low-level web-based XML editor.

The main functions of this editor are as follows:
‒ presentation of XML records in a browser window in a

user-friendly form;
‒ ensuring efficient data entry and editing;
‒ generation of new output XML documents;
‒ ending XML documents to the DBMS.
The originality of this work is in the functional diagram

of the XML record editor in the subsystem, which speaks
about the XML record editor principle in the user-server
architecture and comes in the following form:

– clients are provided with a ready-made HTML form
for entering and (or) editing data. And, the form already
contains all the necessary tools (java scripts) for correct
data entry;

– the editing form is generated on the server using the
XSLT method of transforming the modified XSD structure.
First, an empty edit form (with no data) is generated, which,
after the XSLT processor’s operation is completed, is filled
with the record data in XML format.

 Also, the implication of this study is the client part,
which represents a ready-made HTML form for entering
and (or) editing data, which contains all the necessary tools
for correct data entry, including the following:

– script to duplicate regular elements according to XSD;
– script to remove removable

elements according to XSD;
– script for verifying the cor-

rectness of data input, provided that
the corresponding custom template
is present in the form of a regular
expression in the XSD;

– script for hiding/opening of
any data element in the editing form.

Fig. 3, 4 show HTML form frag-
ments generated by the XML record
editor. Information entry fields are
provided next to the field names.

 It should also be noted that XSD
schema definitions may contain ref-
erences to other XSD schemas that
supplement definitions in both the
current namespace (the xsd:include
element) and other namespaces (the
xsd:import element). Therefore, the
original XSD structure needs to be
modified to record additional defi-
nitions before being processed by
the XSLT processor.

As noted above, the editing form
is generated on the server side using

the XSLT method of transforming the modified XSD struc-
ture. A blank edit form (with no data) is first generated,
which is filled with the record data in XML format, after the
XSLT processor has finished operation.

When generating an empty edit form, the following rules
are complied with.

A window is generated indicating the data schema iden-
tifier.

Documents (XSD summary of the data element) are
generated:

– a window indicating the name of the element and its
position (in XPath style) in the XML record structure;

– element hiding/opening button in the editing form;
– documentation (summary), if available, indicating the

language;
 nested elements (for structured ones);
– element value entry field (for simple ones);
– names and data entry fields for each of the possible

attributes;
– buttons for deleting (if allowed) and duplicating (if

allowed) an element.
The following buttons are generated:
“Record” – to save the editing result.
“Clear” – to regenerate an empty editing form.
“Close” – to close the editing form without saving the data.
 Following the requirements and analysis of the existing

solutions for data integration in distributed information
systems, a Web-oriented model for XML documents trans-
formation had been developed and implemented, designed
to set-up communication with a database server and fully
visualize the structure of a document for its editing.

The XSLT template describes the rules for how elements
from XML are transformed into HTML forms. It specifies
the order, nesting of elements, screen display rules, hints,
or additional information that could have been both in the
XSD file and in the XML document itself.

Below (Fig. 5) is an example where an XSLT template is
applied to an XML document.

Fig. 3. An adaptive editor interface: fields names and data entry fields

Information technology

31

An HTML code with JavaScript fragments
is obtained as a result of the conversion (Fig. 6),
which is displayed in the main editor window.

An XSLT template extracts the basic at-
tributes of elements from an XML document.

For each element, an xsl:template with a
match attribute equal to the element’s name
is created:

<xsl:template match=”//xs:ele-
ment”>...</xsl:template>

<xsl:template match=”//xs:complex-
Type”>...</xsl:template>

<xsl:template match=”//xs:simpleCon-
tent”>...</xsl:template>

<xsl:template match=”//xs:annota-
tion”>...</xsl:template>

<xsl:template match=”//xs:appinfo”>...</
xsl:template>

<xsl:template match=”//xs:documenta-
tion”>...</xsl:template>

<xsl:template match=”//xs:exten-
sion”>...</xsl:template>.

If a complex element is processed, then
the xsl:apply-templates select=”*” function
is added to the template with the appropriate
parameters.

The correct XSLT functions and elements
are added to the xsl:template so that xsl:template can gener-
ate the required elements for input, where needed.

A new XML document is created when the Record
button is clicked. The HTML form is checked against the
pre-built data model, and if no errors are found, a new XML
document is generated.

The main task is as follows:
1) for each element, create an xsl:template with a match

attribute equal to the element’s name;
2) if it is a datatype element, add it and the functions

needed to create the element’s value to xsl:template;
3) if it is a complex element, add the xsl:apply-templates

select=”*” function;

Fig. 4. An adaptive editor interface ‒ using different types of fields

<xsl:template match="/xsd:schema">
…
</head>

<body>

<h2 class="m_h2"> XML editor</h2>
<h3 class="m_h3"> Version 0.8</h3>

<form action="save.php" method="post">

<input type="hidden" name="nameSpace">
<xsl:attribute name="value">

<xsl:value of select="@targetNamespace" />
</xsl:attribute>

</input>

Fig. 5. Fragment of an XSLT template code

<html>
<head>

<meta http equiv="Content Type" content="text/html;
charset=UTF 8" />

<title> XML editor</title>
<link href="instr.css" type="text/css"
rel="stylesheet" />

<script language="javascript" type="text/javascript">
<xsl:comment>

Fig. 6. Fragment of the HTML code after transformation

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 2/2 (122) 2023

32

4) for each element, create an xsl:template with the
match attribute equal to insert-elementName, where ele-
mentName is the element name;

5) if it is a complexType element, recursively add all of its
child objects N times, where N is the value of the minOccurs
attribute for the child element.

An XSLT template extracts the main elements from an
XML document:

‒ straight text;
‒ comments;
‒ element attributes;
‒ complex element that may have a value, attributes and

that must contain other elements inside;
‒ simple element, has only a value and attributes.
In the course of generation of data entry fields, the data

type and imposed restrictions must be taken into account.
In particular, the input field for elements and attributes will
represent a drop-down list of values (Fig. 7) where there are
the following XSD-type definitions:

<xsd:simpleType name=”recordTypeType”>
 <xsd:restriction base=”xsd:NMTOKEN”>
 <xsd:enumeration value=”Bibliographic”/>
 <xsd:enumeration value=”Authority”/>
 <xsd:enumeration value=”Holdings”/>
 <xsd:enumeration value=”Classification”/>
 <xsd:enumeration value=”Community”/>
 </xsd:restriction>
</xsd:simpleType>.

Where the XSD element contains a template reference
(RegEx), for example:

<xsd:simpleType name=”indicatorDataType” id=”ind.st”>
 <xsd:restriction base=”xsd:string”>
 <xsd:pattern value=“[\da-z]{1}“/>
 </xsd:restriction>
</xsd:simpleType>,

then in the editing form, a call to the function of verifying
the compliance with the input data template is generated,
i. e. the XSLT code will be executed:

…
<xsl:for-each select=”xsd:simpleType/xsd:restriction/

xsd:pattern”>
 <xsl:attribute name=”onChange”>
 <xsl:text>e_change(this, /</xsl:text>
 <xsl:value-of select=”@value”/>

 <xsl:text>/);</xsl:text>
 </xsl:attribute>
</xsl:for-each>
…,

which, in turn, will generate the elements of the form:

The problem of recursive definitions that occurs when
using references to types and names, the possibility of hav-
ing XML elements with unlimited XPath length, by con-
trolling the number of attachments and restrictions based
on the current need has been solved. The entered data is
automatically saved in the same database from which the
record was retrieved.

5. 2. Experimental implementation and effectiveness
analysis of the proposed model in the distributed infor�
mation system

The sequence diagram given in Fig. 8 clearly shows the
place and purpose of an XML editor in a distributed infor-
mation system. The process from the moment of request (ref-
erence) and receipt of the resulting web page by the user to
the system. The editor itself is located on the server side with
access to databases, the levels and areas of access to which dif-
fer depending on the capabilities provided to different users.

Due to implementing the XML update model, an im-
portant criterion is the time it takes to generate the result-

ing HTML page on the client
side. For comparison, we mea-
sured the time of generating
the resulting HTML page
in various situations with or
without the described adap-
tive editor (Table 1).

Before the integration
of the created data editing
model, this function in the
system was performed by
the Explain service. It pro-
vided access through search
and retrieval services to the
IR-Explain-1 database. The
extracted data was present-

ed to the user in the Explain syntax, which has a special
form that is not very convenient for manipulating data.

Also, the time of generating a response to the client us-
ing the XML editor in various modifications of the file (by
URL, URI or by database) was measured without taking
into account the time of accessing the resource to generate
the XSD.

The following results were obtained.

Table 1

Formal representation of response time to the client

Time without an XML editor Time within an XML editor

a (ms) a+O(n) (ms)

In the above designations, a is the time it takes to enter
data to the document from the incoming XML file; n is the
number of elements in the entered XSD data, and O(n) is the
time it takes to bypass an individual XSD document.

Fig. 7. An adaptive editor interface: screen of a drop-down list of values

<input type="text" onChange="e_change(this, /[\da-z]{1}/);" . . . />

Information technology

33

On average, for documents present in the IS and for
which measurements were taken, the following values were
obtained: a=2, O(n)=6.

6. Discussion of experimental results of the development
of a web interface model for editing XML data

As part of the goal of the study, a model (Fig. 1) for
extracting the structure of an XML record for editing
data was developed. This model generates XSLT-to-XSD
transformation rules in order to obtain all possible ways
to fully describe the possible structure of an extracted re-
cord (XSD). In contrast to the technology proposed by the
authors [12] – a tree-like display of a document in HTML,
the created model is able to display the complete structure
of the file in a graphical interface, indicating the names of
all fields and data entry fields (Fig. 3) with the possibility

of manipulating them. In contrast to the works [7, 10], a
convenient web interface is presented with all nested scripts
for working with data.

In comparison with such editors available on the market
as Arbortext Editor, XmlGrid.net, Oxygen XML Editor, the
developed editor is able to adapt to system resources – to
extract a description of the file structure from all available
system resources (Fig. 2). The model (Fig. 4) implemented
in this study retains all identified XML constraints after any
update operation (i.e. insert, delete, or replace) performed
on the XML data. The XML document is updated and its
schema automatically adapts without any user or developer
involvement.

The study found that there are no subsystems in the
existing distributed information systems adjusting to the
structure and data semantics in the form of an adaptive mod-
el for entering and editing information. An important factor
in systems of such type is that the structured XML format,

Fig. 8. The editor sequence diagram

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 2/2 (122) 2023

34

after transmission over the network, makes it possible to
completely preserve the original record structure, unlike
other protocols (http, ftp, etc.).

Table 1 compares the quality characteristics by the time
of generating a response to the client without an XML editor
and within an XML editor in various file modifications (by
URL, URI or database) excluding taking into account the
time of accessing the XSD generation resource. The result
showed that the speed of generating a response to the client
is 3 times faster when using the editor.

However, a web page with a document to be edited can
take a long time to form; in exceptional cases reaching sev-
eral seconds per document. This fact is explained by the fact
that files located on resources with a long response time are
used as third-party XSD schemas. When using resources
with a fast response time, no such situations arise. This may
require research in the field of data caching applicable to the
described adaptive scheme.

Evaluation of the research results by introducing the
developed technology into a distributed information system
has demonstrated the efficiency of this technology in the
form of increasing the features and enhancing user-system
interaction based on the XSD application database schemas
using XSLT transformations. The described methodology
has got rather general designated uses and can be applied
to build adaptive graphical interfaces that help generate the
sent HTML forms for data entry and editing.

The implementation of the above concepts ensures reliable
interaction between client and server applications on various
platforms when operating in heterogeneous environments.

The developed adaptive XML records graphical editor
allows one to import any XML data and transform its struc-
ture efficiently and easily, while the same processing proce-
dure makes it possible to transform the source data of any
structure without any change in the program code.

A particularly critical advantage of a specialized inter-
face for entering and editing XML data is its integration
with the web environment, as well as platform independence.

For the integration between web systems using a differ-
ent data format as the main (JSON or XML), the convert-
ing mechanism from one format to another is needed. The
existing JSON data converters in XML do not provide an
interface for validating and verifying output data for com-
pliance with a certain structure, which can lead to their loss
or incorrectness after editing during reverse transformation.
We consider it advisable to conduct subsequent research in
this area. The purpose of which is to create a model of the
JSON-XML data converter (input – JSON, output – XSD
and XML), which would take into account the correspon-
dence of the output data of a given structure.

 7. Conclusions

1. A model for extracting the structure of an XML
record for non-well-formed documents was developed.
All possible ways to obtain a complete description of the
possible structure of the extracted record (XSD) have
been realized. Due to its adaptability, this model provides
screen forms for creating and editing XML documents in
accordance with the selected XSD schema and is able to
determine web resources and systems that use them. This
model is capable of providing extended addressing for
finding well-formed/non-well-formed XML documents.
The created web interface fully displays the content of
XML documents and has a convenient form for data ma-
nipulation.

2. An analysis of the effectiveness of the implementation
of the resulting model in the distributed information system,
based on XML/SOAP/SRW technologies, showed that in
the process of extracting records from databases, data is
processed in all possible representations:

– internal representation of data in a particular DBMS ‒
the form in which data is stored;

– internal abstract server representation ‒ the form in
which data is processed by the server;

– the external view is the form in which the data is
passed to the client.

The developed graphical interface allows any search
engines to automatically exchange and read information
among themselves without human intervention. Due to its
adaptability, it significantly improves the search and editing
of documents, thereby increasing the performance of the
system and the effectiveness of its use.

Conflict of interest

The authors declare that they have no conflict of interest
in relation to this research, whether financial, personal, au-
thorship or otherwise, that could affect the research and its
results presented in this paper.

Financing

The study was performed without financial support.

Data availability

Data will be made available on reasonable request.

References

1. Brahmia, Z., Hamrouni, H., Bouaziz, R. (2020). XML data manipulation in conventional and temporal XML databases: A survey.

Computer Science Review, 36, 100231. doi: https://doi.org/10.1016/j.cosrev.2020.100231

2. Bajaj, A., Bick, W. (2020). The rise of NoSQL systems: Research and pedagogy. Journal of Database Management, 31 (3), 67–82.

doi: https://doi.org/10.4018/JDM.2020070104

3. Jounaidi, A., Bahaj, M. (2018). Converting of an xml schema to an owl ontology using a canonical data model. Journal of Theoretical

and Applied Information Technology, 96 (5), 1422–1435. URL: http://www.jatit.org/volumes/Vol96No5/24Vol96No5.pdf

4. Nikiforov, D. A., Korj, D. V., Sivakov, R. L. (2017). An Approach to the Validation of XML Documents Based on the Model

Driven Architecture and the Object Constraint Language. A.P. Ershov Informatics Conference. doi: http://dx.doi.org/10.13140/

RG.2.2.16542.23364

Information technology

35

5. Tekli, G. (2021). A survey on semi-structured web data manipulations by non-expert users. Computer Science Review, 40, 100367.

doi: https://doi.org/10.1016/j.cosrev.2021.100367

6. Bao, L., Yang, J., Wu, C. Q., Qi, H., Zhang, X. Cai, S. (2022). XML2HBase: Storing and querying large collections of XML

documents using a NoSQL database system. Journal of Parallel and Distributed Computing, 161, 83–99. doi: https://

doi.org/10.1016/j.jpdc.2021.11.003

7. Brahmia, Z., Grandi, F., Oliboni, B., Bouaziz, R. (2018). Supporting Structural Evolution of Data in Web-Based Systems via

Schema Versioning in the tXSchema Framework. In Handbook of Research on Contemporary Perspectives on Web-Based Systems,

271–307. doi: https://doi.org/10.4018/978-1-5225-5384-7.ch013

8. Brahmia, Z., Hamrouni, H., Bouaziz, R. (2022). TempoX: A disciplined approach for data management in multi-temporal and multi-

schema-version XML databases. Journal of King Saud University - Computer and Information Sciences, 34 (1), 1472–1488. doi:

https://doi.org/10.1016/j.jksuci.2019.08.009

9. Engelfriet, J., Hoogeboom, H. J., Samwel, B. (2020). XML navigation and transformation by tree-walking automata and transducers

with visible and invisible pebbles. Theoretical Computer Science, 850, 40–97. doi: https://doi.org/10.1016/j.tcs.2020.10.030

10. Akazawa, G., Matsubara, N., Suzuki, N. (2022). An Algorithm for Transforming Property Path Query Based on Shape Expression

Schema Update. SN Computer Science, 3, 196. doi: https://doi.org/10.1007/s42979-022-01086-0

11. Mahmood, A. T., Kamil Naser, R., Khalil Abd, S. (2022). Privacy protection based distributed clustering with deep learning

algorithm for distributed data mining. Eastern-European Journal of Enterprise Technologies, 4 (9 (118)), 48–58. doi: https://

doi.org/10.15587/1729-4061.2022.263692

12. Fan, C., Li, Z. (2019). Research on Addressing Method in XML File Based on XPointer. Advances in Graphic Communication,

Printing and Packaging, 384–389. doi: https://doi.org/10.1007/978-981-13-3663-8_52

