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1. Introduction 

When solving problems of optimal control over complex 
technological objects, when their analytical models are 
unknown, it becomes necessary to build empirical models. 
Most methods for constructing such models (least squares 
method, reference vector method, nuclear evaluation meth-
od) require knowledge of the statistical characteristics of the 
input and output values of the object. Under real conditions, 
such information is usually not available.

Managing technological objects that operate under con-
ditions of uncertainty and incompleteness of information 
puts forward high demands on the content of information 
and methods of its processing. 

Assume that the object is affected by external distur-
bances that are not measurable. The statistical characteris-
tics of the disturbances are unknown. In such a situation, it 
is natural to assume that the input values are fuzzy numbers 
with triangular membership functions. The choice of this 
type of membership function is due to the fact that it is con-
venient to calculate and can be used for any number of terms. 
However, the triangular membership function cannot be 
differentiated at some points in the field of definition. This 

disadvantage can be avoided when approximating it with the 
Gaussian function. 

Therefore, a relevant task is to improve the method for 
constructing empirical models of complex technological 
processes, which is based on the assumption that input 
and output quantities are fuzzy numbers with a triangular 
membership function that is approximated by the Gaussian 
membership function, which makes it possible to build an 
empirical model taking into account the fuzziness of both 
input and output quantities.

2.    Literature review and problem statement

The well-known least squares method (LSM), which 
is used to build empirical models, assumes that the argu-
ments of the model are measured accurately, and an addi-
tive perturbation is superimposed on the original value. In 
the case when the disturbances in each observation of the 
original value are uncorrelated and have the same variance, 
then LSM gives the best unbiased estimate for the linear 
regression model [1]. This situation is rare in practice. As a 
rule, input and output variables are under the influence of 
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dure for the least squares for calculating the coefficients of 
the empirical model is formed.

The proposed methods for constructing empirical models 
of objects that function under conditions of uncertainty have 
the disadvantage that they cover only a small class of models, 
and it is necessary to use rather complex computational pro-
cedures to calculate their coefficients.

In general, when constructing empirical models, it is 
assumed that the structure of the model is known, and the 
task of identification is to determine the parameters of such a 
model. However, in practice, situations often arise when the 
structure of the model is a priori unknown. Then it is nec-
essary to choose a suitable empirical model by conducting a 
series of machine experiments based on a certain criterion. 
At the same time, there is no certainty that the chosen model 
is optimal in its class of models.

For the first time, the idea of choosing a model structure 
from a class of polynomial models with a certain criterion 
was proposed in [11]. In the process of implementing this 
idea, a method was developed that was termed the method 
for group consideration of arguments [11], where in the pro-
cess of identification the model structure is selected from a 
given class of models. The method is based on sorting out 
the models that are gradually becoming more complex. Such 
a complication occurs due to an increase in the power of 
polynomial or the addition of a new one term of the series, 
leading to an increase in the volume of calculations. To 
reduce the volume of calculations, it is proposed to consider 
a method that uses the theory of genetic algorithms in its 
implementation [12].

The main advantage of using genetic algorithms is the 
absence of the need for additional information. Moreover, 
it was shown in [12] that this algorithm has internal paral-
lelism. This makes it possible to develop software that will 
reduce the cost of machine time for calculations.

Therefore, it can be argued that in order to solve the 
problem of optimizing multiparametric functions, it is advis-
able to apply the method of choosing the optimal empirical 
model based on genetic algorithms.

3.  The aim and objectives of the study

The aim of this work is to improve the inductive method 
for self-organization of empirical models based on genetic 
algorithms, taking into account the fuzziness of both input 
and output quantities. This will make it possible to optimize 
multiparametric functions that describe complex technolog-
ical objects, the input and output parameters of which can be 
estimated only with a certain approximation.    

To accomplish the aim, the following tasks have been set:
− to devise a method for approximating the triangular 

membership function with a Gaussian function to construct 
an empirical polynomial model;

− to devise a method for identifying the parameters of 
empirical models of complex technological objects based on 
a genetic algorithm, taking into account the fuzziness of the 
input parameters.

4.  The study materials and methods

The object of our research is methods and algorithms for 
constructing empirical models of complex technological ob-

disturbances, taking into account which in the construction 
of empirical models, is possible if one uses the Bayesian ap-
proach [2].

Over the past few decades, considerable attention has 
been paid to non-parametric models. The main reason for 
their growing popularity is that they do not take a specific 
form of regression function that characterizes the relation-
ship between input and output values [3]. They require only 
weak identification assumptions and thus minimize the risk 
of incorrect model specification. However, the main dis-
advantage of this method is that its use does not take into 
account the features of non-parametric evaluation, such as 
kernel choice and asymptotically descending support for 
local evaluation. This disadvantage can be avoided using 
the method of reference vectors [4], which occupies an im-
portant place in the modern theory of the construction of 
empirical models. Its linear version is close to the method 
of ridge regression [5]. The idea of this method is to build a 
hyperplane that divides the sample elements in an optimal 
way. Moreover, the hyperplane should as much as possible 
separate positive and negative examples from the set that is 
being trained. Underlying the construction of the algorithm 
for training reference vectors is the concept of the core of the 
scalar product of the reference vector and the vector taken 
from the input space, which is a significant drawback. The 
core must be calculated for all possible pairs of points, which 
may be impossible when training, thereby leading to long 
calculations when predicting new points. The effectiveness 
of the method of reference vectors strongly depends on the 
selection of parameters. 

To build regression models of objects that function under 
conditions of uncertainty, the apparatus of fuzzy sets can be 
used. Thus, in [6], an empirical model is synthesized in the 
form of a first-order polynomial, in which the coefficients 
of the model are represented as fuzzy numbers with a trian-
gular membership function. The procedure for determining 
the coefficients of such a model is reduced to the problem of 
linear programming.

A similar approach to the construction of regression 
models is proposed in [7]. The empirical model is a first-or-
der polynomial with fuzzy coefficients. The calculation of 
the parameters of the model was carried out according to 
the criterion of minimums of the sums of the areas of the 
membership functions of fuzzy coefficients. Its use ensures 
the selection of fuzzy numbers (model coefficients) that are 
the least blurred and take modal values as close to zero as 
possible.

In works [8, 9], for the synthesis of regression models 
of the first order, a procedure is proposed that is similar to 
the one developed in work [7]. Additionally, the method for 
artificial orthogonalization of plans for a passive experiment, 
which is based on fuzzy data clustering, was used. 

The implementation of the described procedures that 
form the methodology makes it possible to obtain adequate 
mathematical models and find the optimal control, in terms 
of the final state, over complex technological processes under 
conditions of uncertainty.

Another approach [10] to the construction of first-order 
regression models is based on the assumption that the input 
values of the object are fuzzy numbers, and the coefficients 
of the model are the Gaussian membership functions. After 
conducting machine computational experiments, a refined 
membership function is obtained. These two functions are 
compared and, on the basis of such a comparison, the proce-
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jects under conditions of uncertainty. Empirical models that 
belong to the class of polynomial ones and have one output 
value and an arbitrary number of input quantities are consid-
ered. The output quantity and input values are interpreted 
as fuzzy quantities with a triangular membership function.

The data used to build empirical models contain inaccu-
racies that significantly affect the result of the identification 
problem [1]. Taking into account the disturbances that are 
superimposed on the input and output values of the model 
requires knowledge, as a rule, of the statistical character-
istics of such disturbances that are problematic to obtain 
under the conditions of operation at industrial facilities.

An alternative approach to taking into account the in-
accuracies that accompany the observation of the input and 
output quantities of an object is the interpretation of such 
quantities in terms of fuzzy set theory, namely the possibility 
of using the Gaussian membership function in the construc-
tion of empirical models. 

To find the parameters of such a model, it is advisable to 
use a genetic algorithm. Its essence is the fact that an ordered 
sequence of ones and zeros is built. Unity will correspond to 
a nonzero value of the model parameter, and zero will be the 
case when the corresponding parameter of the model becomes 
zero. At the initial stage, a pool of chromosomal relatives is 
randomly formed. Each of these chromosomes corresponds to 
some partial model from the selected class of models. The most 
“adapted” chromosome is selected from the pool of offspring 
by crossing and mutation using the fitness function (criterion 
of regularity or displacement). The selected chromosome de-
termines the structure of the empirical model.

Improvement of the inductive method for self-organiza-
tion of empirical models based on genetic algorithms, taking 
into account the fuzziness of both input and output quantities.

5. Results of research into the construction of empirical 
models of complex objects under conditions of uncertainty

5. 1. Method for approximating the triangular mem�
bership function with the Gaussian function to construct 
an empirical polynomial model

When solving a number of problems in the field of drill-
ing, oil and gas production, gas transportation by main pipe-
lines, etc., we have to deal with the fact that technological 
parameters are measured with certain errors. After all, the 
objects are subject to numerous disturbances. All this entails 
the need to consider technological parameters as fuzzy quan-
tities, which are conveniently characterized by a triangular 
membership function [13].

To take into account the factor of fuzziness, in the math-
ematical description of objects, it is necessary to perform 
certain arithmetic operations on fuzzy values. The process 
of performing arithmetic operations (addition, subtraction, 
multiplication, and division) becomes possible if fuzzy num-
bers are defined as numbers of the (L‒R)-type.

Let x be a fuzzy value of the (L‒R)-type. Then its mem-
bership function can be represented as a composition of L 
and R-functions [13]:

( )
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where αL>0, αR>0 are the left and right fuzziness coeffi-
cients; Z0 is the modal value of a fuzzy number.

So, a fuzzy number of the (L‒R)-type is uniquely deter-
mined by the trio of its parameters 〈ax, αL, αR〉. 

Note that the triangular membership function, which is 
symmetric with respect to ax, is a function of the (L–R)-type. 
Such a function is inconvenient for practical use because it 
is undifferentiated at some points from the definition area. 

Therefore, the triangular membership function:
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is proposed to be approximated with the Gaussian function:
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     (2)

where ∆ is the uncertainty interval of the fuzzy value x; 
μ(ax)=μG(ax)=1; α is the concentration coefficient of fuzzy 
value x.

Since functions (1) and (2) at each of the definition in-
tervals x∈[ax−∆/2; ax] and x∈[ax; ax+∆/2] are monotonous, 
then when they are approximated, they will have no more 
than two common points. The first of these is determined by 
the value of ax, and the second will occur when x=xa. With 
this x value, there will be an interelation:

μ(xa)=μG(xa)=θ.    (3)

Obviously, the ax value does not affect the form of 
membership functions (1) and (2) but only determines their 
position on the abscissa axis. Therefore, the ax value does not 
affect the accuracy of the approximation of function (1) with 
function (2). Let ax=0. Then formulas (1) and (2) will take 
the following form:

( )
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      (4)

and 

( )
2

2
exp .

2G

x
x

⎛ ⎞
μ = −⎜ ⎟α⎝ ⎠

     (5)

Given that functions (4) and (5) are symmetrical with 
respect to the origin of coordinates, approximation was car-
ried out on the range of values x∈[0; ∆/2].

On the range of values x∈[0; ∆/2], equation (4) produced:

( ) 2
1.a ax xμ = − +

Δ

Taking into account condition (3), we get the following 
expression:

2
1.axθ = − +

Δ

The last equation yielded:
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( )1
.

2ax
−θ Δ

=    (6)

Taking into account the ax value, defined by formula (6), 
the membership function (5) is as follows:
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Since μG(xa)=θ, then:

( )2 2

2

1
exp .

8

⎛ ⎞−θ Δ
⎜ ⎟− = θ
⎜ ⎟α⎝ ⎠

Henceforth: 

( )2 2
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,
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−θ Δ
α = −

θ
  (7)

where 0<θ<1.
Analysis of formula (7) shows that the 

coefficient of concentration α of member-
ship function (2) depends on the basis ∆ of 
the triangular membership function and the 
value of the ordinate, which is determined by 
the intersection point of membership func-
tions (1) and (2) at x∈[ax−∆/2; ax].

Since ∆ is a priori known quantity, the ac-
curacy of the approximation of function (1) 
by function (2) will depend on the value 
of the ordinate θ. It is possible to estimate 
the value of ∆ by constructing a confidence 
interval using the Chebyshev inequality [14]. 

The accuracy of approximation is defined 
as the sum of the squares of deviation of the 
ordinates of function (5) from the corre-
sponding ordinates of function (4):

( ) ( )( )2
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,
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i G i
i

E x x
=

= μ −μ∑  (8)

where x∈[0; ∆/(2iT)]; T – discreteness step; 
n is the number of ordinates of the function 
μ(x) on the segment x∈[0; ∆/2].

Parameter θ is selected from the minimum condition 
of expression (8). To do this, the value μG(xi), which is de-
termined by formula (5), is substituted into ratio (8). This 
takes into account the value of the value of α2 according to 
formula (7). As a result, the following was obtained:
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where μi=μ(xi).
The function E(θ) is nonlinear and the value of θ, which 

minimizes (9), can only be found by the numerical method. 
Since known numerical methods find only the local mini-
mum [15] at a certain change interval θ, we construct a plot 
of the function E(θ) (Fig. 1).

The plot, which is constructed for ∆=0.5, demonstrate 
that function (9) reaches its smallest value on the segment θ∈[0.4; 0.7]. To find the minimum of function (9), we use the 
method of golden section [1∈6]. 

The following program parameters were selected:
− the starting point for finding the interval of the local 

minimum is 0.4;
− an error of finding the minimum function (9) is 10‒6;
− the uncertainty interval of a fuzzy value is 0.5.
As a result, we got the following solution to the problem:θ*=0.5152; E(α*)=0.0703.

Fig. 2 illustrates the process of approximation of func-
tion (4) with function (5).

Analysis of formula (9) shows that the value of E(θ) 
depends not only on θ but also on the magnitude of the un-
certainty interval of the fuzzy value Δ, which is an a priori 
quantity; its value is set by the researcher.

To identify the influence of value ∆ on the approximation 
process, the problem of minimizing function (9) was solved 
for different values of Δ (Table 1).

Table 1

Results of approximating a triangular function with the 

Gaussian membership function at different 

values of ∆
No. of entry ∆ θ* E(θ*)

1 1.0 0.5138 0.1380

2 0.8 0.5141 0.1112

3 0.6 0.5147 0.0839

4 0.4 0.5159 0.0567

5 0.2 0.5197 0.0297

Fig. 1. Dependence of the approximation error on the value of θ

Fig. 2. Approximation of a triangular function with the Gaussian membership 

function
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Fig. 3 shows how the values θ* and E(θ*) change depend-
ing on the change in the value of ∆.

From the analysis of Fig. 3, it follows that the value of θ* 
is practically independent of the value of the uncertainty in-
terval ∆, and the value of E*(∆) is a monotonously increasing 
function that has a linear character.

The least squares method determined the coefficients of 
dependence:

E*(∆)=a0+a1∆.     (10)

As a result, we obtained; a0=0.0026 and a1=0.1355.
The accuracy of the approximation of triangular mem-

bership function (4) with Gaussian function (5) was esti-
mated by the coefficient of determination, which is calculat-
ed by the following formula [17]:
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Gμ  are the value of the triangular and Gaussian 
membership functions, calculated from formulas (4) and (5) 

at values
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=
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N=100. 

As a result of the calculations, we received: R=0.9913.
Since the value of the coefficient of determination R is 

close to unity, the accuracy of approximating membership 
function (4) with Gaussian function (5) is quite high.

It should be noted that in [18], without justification, 
based on intuitive reasoning, the value θ=0.5 was chosen. As 
follows from Table 1, the value θ=0.5 differs little from the 
values θ*, which are obtained as a result of solving minimi-
zation problem (9).

As an example of the application of the devised method 
for approximating a triangular membership function with a 
Gaussian function, the process of constructing an empirical 
model of an object that has m inputs and one output can be 
considered.

We assume that the object is affected by external distur-
bances that are not measurable. The statistical characteris-
tics of the disturbances are unknown. In such a situation, it 
is natural to assume that the input values are fuzzy numbers 
with triangular membership functions, which we approxi-
mate with Gaussian functions.

So, the following model of the object is considered:

( )
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j
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ϕ ≤∑  r is the power of polynomi

al (11); m is the number of variables. 
The number of terms N in polynomi-

al (11) is calculated by the following for-
mula [19]:
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The structure of empirical model (11) is 
determined by the matrix of the powers of poly-
nomial (11), which takes the following form:
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Since the input values xj are the fuzzy numbers that have 
a Gaussian membership function, the output value y, which 
is linear with respect to its parameters, is also a fuzzy value 
with a Gaussian membership function [13]: 

( ) ( )
exp

2

2
,

2
y

y

y a
y

⎛ ⎞−⎜ ⎟μ = −⎜ ⎟α⎜ ⎟⎝ ⎠
    (12) 

where ay, αy are the modal value and concentration coeffi-
cient of fuzzy quantity y.

To find the parameters ay and αy for membership func-
tion (11), the following actions on fuzzy numbers are nec-
essary: adding fuzzy numbers, multiplying positive fuzzy 
numbers, multiplying a fuzzy number by a defined value, and 
raising to the power of a fuzzy number. 

Based on the rules for performing arithmetic operations 
on fuzzy numbers [13], we adapt them for the case of Gauss-
ian membership functions (2). Then any fuzzy number will 
be characterized by two parameters – a modal value and a 
fuzziness coefficient.

Let ALR and BLR be fuzzy numbers with a Gaussian mem-
bership function, which are characterized by two parame-
ters ALR=áa1, αañ and BLR=áa2, αbñ. Therefore, CLR=ALR±
±BLR=áac, αcñ, where ac=a1±a2; αc=αa+αb. CLR=ALRBLR=
=áac, αcñ, where ac=a1a2; ac=a1αb+a2αa under condition 
a1>0 і a2>0. If a1 and a2 take different signs, then CLR=AL-

RBLR=áac, αcñ, where ac=a1a2; ac=a2αa‒a1αb. For negative 
values a1 and a2, the multiplication operation will be as fol-
lows: CLR=ALRBLR=áac, αcñ, where ac=a1a2; ac=‒a2αa‒a1αb. 
The operation of multiplying a fuzzy number a1 by a definite 
number q follows from the statement that a definite number 
can be considered as a fuzzy number BLR with parameters 
a2=q, αb=bb=0. Then, from the multiplication ratios of two 
fuzzy numbers for which a2=q, αb=bb=0, it follows that 
CLR=qALR=áac, αc,ñ, where ac=qa1; ac=qαa. In the last 
formulas, ac is treated as some physical quantity, therefore 
ac>0.

Fig. 3. The dependence of θ*(∆) and E*(∆) on changes in the value of ∆



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 2/2 ( 122 ) 2023

58

Now we can find 
1

,
k

i i
i

q A
=
∑  where Ai, qi are fuzzy and 

definite numbers. The modal value of the fuzzy number 
Ai is ai, and the fuzziness coefficients αi, 1,k.i =  We find 
q1A1+q2A2 first. We introduce the following notation V1=q1A1 
and V2=q2A2. Then we get the fuzzy number V=V1+V2 with 
the parameters VLR=〈ν, αν〉. According to the rule of adding 
fuzzy numbers V1 and V2, we have ν=ν1+ν2. Taking into 
account that ν1=q1a1, ν2=q2a2, 

1 1 1v qα = α and 
2 2 2,v qα = α  

we get (q1A1+q2A2)LR=〈as, α s〉, where νs=q1a1+q2a2,αs=q1α1+q2α2. Obviously, the result can be extended to an 
arbitrary number of terms. Then:
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Now we find the power of fuzzy number , .n
LR d dA a= α  

Let n=2. Then 2 .LR LR LRA A A= ⋅  Using the rule of multiplica-
tion of two fuzzy numbers for which a1=a2 and αa=α, we get:

2
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2
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For n=3, we have 3 2 .LR LR LRA A A= ⋅  Power 3
LRA  is the 

product of two fuzzy numbers 2
LRA  and ALR with parameters  

2
,2 1 ,da a=  a1, αd,2=2a1αa, and α. Based on the rule of multi-

plication of two fuzzy numbers, we have: 

2
,3 ,3, ,LR LR d dA A a⋅ = α  

where 

3
,3 1 ,da a=  2

,3 13 .d aaα = α

Extending the result to an arbitrary integer value n≥0, 
we come to the conclusion that:

, ,n
LR d dA a= α  

where 

1 ,n
da a=  1

1 .n
d ana −α = α   (14)

Assume that the following product of fuzzy numbers is

assigned: 1

.
n

i
i

A A
=

=∏  
It is necessary to find the parameters of 

a fuzzy number (A)LR=〈ap, αp〉.
For the product of two fuzzy numbers with param-

eters a1, a2, αa,1 and αa,2, we get the following ratio: 
( )1 2 ,2 ,2, ,p pLR
A A a= α  where ap,2=a1a2, αp,2=a1αa,2+a2αa,1.

Now we must derive the product of three fuzzy num-
bers, which can be written in the following form: A=(A1A2)
A3. The product of two numbers in parentheses is a fuzzy 
number with parameters ap,2=a1a2 and αp,2=a1αa,2+a2αa,1, 
and the fuzzy number A3 has parameters a3 and αa,3. Ac-

cording to the rule of multiplication of two fuzzy numbers 
(A1A2) and A3, we have ( )( )1 2 3 ,3 ,3, ,p pLR

A A A a= α  where 
ap,3=ap,2a3, αp,3=ap,2α3+a3αp,2. Taking into account the ap,2 
and αp,2 values, we come to the following result: αp,3=a1a2a3, αp,3=a2a3αa,1+a1a3αa,2+a1a2αa,3.

Extending the result to an arbitrary number of factors, 
we get:

,
1

, ,
n

i p a p
i LR

A a
=

⎛ ⎞ = α⎜ ⎟
⎝ ⎠
∏  

where 

1

,
n

p i
i

a a
=

=∏  
, ,

1 1,

.
nn

a p a i k
i k k i

a
= = ≠

α = α∑ ∏    (15)

In the partial case, when A1=A2=…=An=A, we arrive at 
formula (14). 

The resulting formulas (13) to (15) make it possible to 
find the parameters of fuzzy value y, which is determined 
by formula (11), where ci, 1,i N=  are definite numbers. 

We introduce the following notation:
 1

.ij

m

i j
j

xϕ

=

λ =∏ Then, 
if 

we take into account formula (13), then 
0

, ,
N

i i y
i LR

c a λ
=

⎛ ⎞λ = α⎜ ⎟
⎝ ⎠
∑

where ,
0

,
N

y i i
i

a c aλ
=

=∑ ,
0

.
N

i i
i

cλ λ
=

α = α∑ We introduce another no

tation .ij

ij jxϕπ =  Then 
1

.
m

i ij
j=

λ = π∏  Taking into account the 

accepted designation and formula (15), we get , ,
1

,
m

i ji
j

a aλ π
=

=∏  

, , ,
1 1,

.
mm

i ji ki
j k k j

aλ π π
= = ≠

α = α∑ ∏  Define the aπ,ji and απ,ji parameters for

the fuzzy value .ij

jxϕ  Taking into account formula (14), we 
come to the conclusion that , ,

ij

ji x ia aϕ
π =  and 1

, , , ,ij

ji ij x i x iaϕ −
πα = ϕ α  

where ax, j, αx, j are the modal value and concentration coeffi-
cient of the fuzzy value xj.

Knowing aπ,ji and απ,ji, we find , ,j
1

,ij

m

i x
j

a aϕ
λ

=

=∏

1
, , , ,

1 1,

.ij ik

mm

i ij x j x j x k
j k k j

a aϕ − ϕ
λ

= = ≠

α = ϕ α∑ ∏

Taking into account the results obtained, we find the 
modal value ay and the fuzziness coefficient αy for the fuzzy 
value y. So:

0 1

, ,ij

mN

i j y y
i j LR

c x aϕ

= =

⎛ ⎞
= α⎜ ⎟⎜ ⎟⎝ ⎠

∑ ∏     (16)

where 

,j
0 1

,ij

mN

y i x
i j

a c aϕ

= =

=∑ ∏  1
,j ,j ,k

0 1 1,

.ij ik

mN m

y i ij x x x
i j k k j

c a aϕ − ϕ

= = = ≠

α = ϕ α∑∑ ∏  

Let γ be the slice for membership function (12). Then:

( )
exp

2

2
,

2
y

y

y a⎛ ⎞−⎜ ⎟− = γ⎜ ⎟α⎜ ⎟⎝ ⎠

where 0<γ<1. 
From the last equation, we find:

ln
2

1
.y yy a= +α

γ



Industry control systems

59

If we take into account ay and αy, which are determined 
by ratios (16), we obtain an empirical model of the object, 
provided that the arguments of dependence (11) are inter-
preted as fuzzy quantities. So:

1 1
1

,j ,j ,j ,k
0 0 11 1,

,ij ij ik

m mN N m

i x i ij x x x
i i jj k k j

y c a a c a a
− −

ϕ ϕ − ϕ
γ

= = == = ≠

= + ϕ α∑ ∑∑∏ ∏  (17)

where ln
2

1
.aγ = γ

Since all the variables xj of empirical model (11) are in-
terpreted as fuzzy quantities with a triangular membership 
function (1), which are approximated with exponential func-
tion (2), αx, j, 1,j m=  is then calculated by (7):

, ,x j jα = ηΔ

 1, ,j m=      (18)

where ( )
1 2

1
1 8ln .

−
⎛ ⎞η = −θ ⎜ ⎟θ⎝ ⎠

Taking into account formula (18), empirical model (17) 
will take the following form:

1 1
1

,j ,j ,k
0 0 11 1,

,ij ij ik

m mN N m

i x i ij x j x
i i jj k k j

y c a A c a a
− −

ϕ ϕ − ϕ
γ

= = == = ≠

= + ϕ Δ∑ ∑∑∏ ∏   (19)

where .A aγ γ= η
If we take into account the value of aγ and η, then 

( ) ln
ln

1
1 .

2
Aγ

γ= −θ
θ

Analysis of formulas (11) and (19) shows that the fuzzi-
ness of the arguments xj, 1,j m=  leads to the appearance of 
an additional term in model (19), which is a kind of payment 
for the impossibility of accurately determining the values 
of xj, 1, .j m=  In the case when the uncertainty intervals ∆j, 1,j m=  tend to zero ax,j®xj, 1, ,j m= , then models (11) 
and (19) become identical. 

Model (19) will be represented in a slightly different 
form

1
1

,j ,j ,k
0 11 1,

.ij ij ik

m mN m

i x ij x j x
i jj k k j

y c a A a a
−

ϕ ϕ − ϕ
γ

= == = ≠

⎛ ⎞
= + ϕ Δ⎜ ⎟⎜ ⎟⎝ ⎠
∑ ∑∏ ∏   (20)

So, the empirical model (20) is obtained, which is linear 
with respect to its parameters ci. In the case when ∆j=0, 

1, ,j m=  then ax, j=xj, 1,j m= , and we come to the empirical 
model (11). 

We introduce the following designation:

1
,j ,j ,k

11 1,

,ij ij ik

m mm

i x ij x j x
jj k k j

X a A a aϕ ϕ − ϕ
γ
== = ≠

= + ϕ Δ∑∏ ∏  0, 1.i N= −   (21)

Variables Xi, 0, 1i N= −  can be interpreted as argu-
ments of a fuzzy empirical model (20) and their number is 
determined both by the number of m input (independent) 
quantities of model (11) and the power r of polynomial (11). 

Taking into account the accepted notation (21), empiri-
cal model (21) would be as follows:

0

.
N

i i
i

y c X
=

=∑       (22)

Assume that the result of observing the work of an 
object is a set of values of both input and output values. 
We form from the obtained values the ordered structures 
Xr and Y . The first ordered structure is Xr – the matrix of 
observations of the input values of the object, and the sec-
ond structure Y is the vector of observations of the output 
value of the object. 

As an approximation of the experimental data that are 
represented by the vector ,Y  to model (22), we take the sum 
of the squares of deviations: 

( ) ( )2
1

,
M

T
k k

k

J c Y c X
=

= −∑       (23)

where M is the dimensionality of the vector Y  (the num-
ber of observations); kX – is the argument vector of fuzzy 
model (22), the components of which are calculated for the 
values of the input variables of model (11), in each experi-
mental study.

The matrix of observations Xr has the size M×m, in which 
the first row is the value of variables xj, 1,j m=  in the first 
observation, the second row – the value of xj in the second 
observation, etc. Thus,

11 12 1

12 22 2

1 2

,

m

m
r

M M Mm

x x x

x x x
X

x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦




   


where xij, 1, ,i M=  1,mj =  is the value of the j-th input value 
in the i-th observation.

It is assumed that , ˆ ,x j ja x=  1, ,j m=  in formula (21), 
where ˆ jx  is the value of the input quantities obtained as a 
result of observations of the operation of the object. Taking 
into account the adopted designation, dependence (21) will 
take the following form:

1

ij ij ir
11 1,r

ˆ ˆ ˆ ,kj kj

m mm
ir

ik kj j
jj r j

X x A x x−ϕ ϕ ϕ
γ
== = ≠

= + ϕ Δ∑∏ ∏

1,M,i =

0, 1.k N= −    (24)

The components of vector kX  are calculated according 
to the following algorithm: for i=k: the k-th row of the matrix 
Φ determines the powers of polynomial (11) at coefficient ck; 
the value of Xik, 1,i M=  is determined at the values of φkj, 
when ax, j acquires values ˆ ,ijx  where ˆijx are the elements of 
the i-th row of the matrix Xr.

Minimizing the quotient criterion (23) relative to the pa-
rameters of the model ci makes it possible to obtain a matrix 
normal equation [1]:

( ) ,T TF F c F Y=     (25)

where 0 1 2 1k NF X X X X X −⎡ ⎤= ⎣ ⎦  is the matrix, whose size 
is M×N. The columns of matrix F are determined by the ele-
ments Xik. For the k-th column of matrix F:
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⎣ ⎦
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0, 1.k N= −

The matrix Φ, the structure of which is determined by 
the value of r and the number of independent variables m of 
the model, determines the class of models (23), where a cer-
tain number of its parameters can take zero values. The 
search for the best model from a given class will be carried 
out using the criterion of displacement or regularity [20]. To 
do this, the matrix F is divided into two parts F1 and F2. The 
vector of observations Y  is also divided into two parts 1Y  
and 2Y . The matrix F1 will have the size of wM×N, and 
t h e size of the matrix F2 will be (1−w)M×N. Accordingly, 

1Y  and 2Y  will have wM and (1−w)M components. The value 
of w is determined by the selected criterion. For the criterion 
of regularity, w=0.7, and for the criterion of displacement 
w=0.5.

5. 2. Method for identifying the parameters of com�
plex empirical models, taking into account the fuzziness 
of input parameters 

Since model (22) is linear relative to its parameters, then, 
to find them, we apply a method that is based on the theory 
of genetic algorithms [21]. 

Let’s form an ordered sequence of ones and zeros. Unity 
will correspond to the nonzero value of the model parame-
ter (22), and zero will be in the case when the corresponding 
parameter of model (22) acquires a zero value.

Such an ordered sequence in the theory of genetic al-
gorithms is called a chromosome, and its each individual 
element is termed a genome.

At the initial stage, a pool of chromosome relatives is 
randomly formed, each of which has a length of N. Each of 
these chromosomes corresponds to some partial model from 
the model class (22). By crossing and mutation using a fit-
ness function (the criterion of regularity or displacement), 
the most “adapted” chromosome is selected from the pool 
of descendants. The chromosome selected determines the 
structure of model (22).

The algorithm for selecting the best chromosome was 
built in [21]; we adapt it to the problem of synthesizing the 
optimal model, which belongs to the class of models (22). 
Such an algorithm consists of the following steps:

Step 1. Formation of the initial population. Randomly, 
the initial population of chromosomes from T individuals 
is formed. Each individual has N ordered unities and zeros, 
which set the structure T of models from the model class (22).

Step 2. Evaluation of chromosome fitness in a population. 
For each chromosome, the fitness function value is calcu-
lated as follows. Let the chromosome from the population T 
have ω zeros. Then ω columns are extracted from the matri-

ces F1 and F2. As a result, the matrices F1 and F2 will change 
their size. The size of the matrix 1F  will be wM×(N−ω), 
and the matrix 2F  will acquire the size of (1−w)M×(N−ω). 
Knowing the matrix 1F  and vector 1,Y  we obtain a matrix 
normal equation that is similar to equation (25): 

( )1 1 ,1 1 1.T T
FF F c F Y=         (26)

where ( ) ( ) ( )( )0 1 1
,1 ,1 ,1 ,1, , ,

T
N c

F F F Fa a a a − −=  is the vector of nonzero 
parameters of the model, which is associated with the 
next chromosome. Having solved equation (26), we find 
the parameter vector of the model, which is associated with 
the next chromosome from the population T. Calculate the 
value of the fitness function for the next chromosome, which 
depends on the values of the model output at the points of 
the test set: 

( )2 2 ,1.Fy F F c=       (27)

Similar calculations are carried out for other chromo-
somes from the population T. As a result, we find the value 
of the fitness function HF(chj), 1,j s=  (s is the number of ch 
chromosomes in the population) for all chromosomes from 
population T.

Step 3. Checking the stop condition of the algorithm. For 
values calculated in the second step, we find:

( ) { } ( )min :*

1,2, .
.F F jj s

H ch H ch
∈

=


    (28)

If the condition HF(ch*)≤Е, where E>0, is satisfied, then 
the calculations are terminated. The algorithm stops work-
ing, except for meeting condition (28), in two more cases. 
First, when there is no significant reduction in the fitness 
function as a result of the calculations; secondly, when the 
algorithm has carried out a given number of iterations, but 
condition (28) is not met.

After fulfilling one of the three conditions for stopping 
the algorithm, the ch* chromosome is selected, for which 
condition (28) holds. The ch* chromosome sets the structure 
of model (22) of optimal complexity and forms the F* matrix, 
removing from it those columns whose indices coincide with 
the position of the gene on the ch* chromosome. The recal-
culation of the parameters of model (22) is carried out by 
solving a normal equation, which, by analogy with (26), is 
written in the following form:

( )* * * * .T TF F c F Y=

Step 4. Chromosome selection. Among the chromo-
somes from the T population, a certain number of chromo-
somes are selected that will participate in the creation of 
a new population. Such selection is carried out according 
to the principle of natural selection, when chromosomes 
with the best value of fitness function have a chance to get 
into the new population. There are a number of methods 
for chromosome selection (tournament method, roulette 
method, elitist method, cut-off method, etc.). To solve the 
problem of minimizing the function, the tournament meth-
od is effective [22]. Tournament selection assumes that the 
chromosome population is divided into subgroups, followed 
by the selection of the most adapted chromosomes from 
each subgroup. The number of individuals in each subgroup 
may be different but most often subgroups of 2–3 individ-
uals are built.
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Step 5. The formation of a new population of descen-
dants. Selected chromosomes in the fourth step are subject 
to change with the help of two operators: crossing and mu-
tation. The mutation operator is used much less frequently 
than the crossing operator. The probability of crossing is 
quite high – 0.5≤Pc≤1, while the probability of mutation is 
0≤Pm≤0.1. 

For a uniform law of distribution, a random number 
pm is generated from the interval [0; 1] and, if the condi-
tion Pm≤pm is met, where Pm is the selected number from 
the interval [0; 0.1], a mutation of chromosomes occurs. 
Mutation in the chromosome is carried out over genes for 
which the Pm≤pm condition is valid, replacing one with 
zero and vice versa – zero by one. The mutation operator 
can be applied both to the pool of relatives and to the pool 
of descendants.

The crossing operator is applied to the pool of descen-
dants. From the pool of descendants, a pair of chromosomes 
is randomly selected. Generate a random number pc from the 
interval [0; 1]. When the Pc≤pc condition is satisfied, where 
Pc is the selected number from the interval [0.5; 1], then 
the crossing operator is applied to the pair of chromosomes. 
Otherwise, the pair of chromosomes remains unchanged. 
For a pair of chromosomes to be crossed, a random integer 
Lc is selected from the interval [1; N‒1]. The number (locus) 
Lc determines the crossing point for a pair of chromosomes. 
The action of the crossing operator leads to the fact that in 
positions from Lc to N a pair of relatives exchange their chro-
mosomes. As a result, a new pair of descendants is formed.

Step 6. After completing step 5, you move on to step 2.
The application of the developed method is discussed 

below on the example of compression of natural gas with 
centrifugal superchargers with a gas turbine drive. 

When solving the problem of optimal control over the 
operation of centrifugal superchargers of natural gas [19], 
it becomes necessary to build an empirical model of con-
sumption G of fuel gas, which is a function of technological 
parameters and temperature tc of the environment

( ), , , , ,in s in cG f t n P t= ε    (29)

where tin − temperature of the gas at the 
inlet to the supercharger, °С; ns − num-
ber of engine shaft revolutions, rpm; 

out

in

P
P

ε =  – the degree of increase in 

gas pressure; Pin, Pout is
 the pressure at 

the inlet and outlet of the pressurizer, 
MPa; tc is the ambient temperature, °C.

Functional dependence (29) will 
be approximated with empirical mod-
el (22). In accordance with the developed 
algorithm in the algorithmic language 
MatLab, the software for problem (23) 
was developed. The following program 
parameters were selected: 

− the power of polynomial is 4; 
− the number of chromosomes in 

the population – 30; 
− the number of chromosomes in 

the subgroup – 3; 
− the maximum number of itera-

tions of the genetic algorithm is 200; 

− the probability of crossing (0.5≤Pc≤1)–0.9; 
− the mutation probability (0≤Pm ≤0.1)–0.1; 
− the fitness function is a criterion of regularity.
The parameters of empirical model (22), which charac-

terize the conditions of uncertainty: the level of cut of the 
membership function γ=0.75; the approximation coefficient 
of triangular function (1) with the Gaussian function (2) 
is θ=0.52.

To control the main characteristics of gas pumping units, 
technological requirements have been compiled [23]. Ac-
cording to them, the following ∆j values were selected:

– gas temperature at the inlet to the supercharger – 
0.004;

– the number of revolutions of the engine shaft – 0.004;
– pressure at the inlet to the supercharger and at the 

outlet – 0.004; 
– degree of increase in gas pressure – 0.01; 
– ambient temperature – 0.02.
All ˆ ,ijx  values, as follows from formula (24), must be 

different from zero. Therefore, the ambient temperature is 
given in degrees of the Kelvin scale.

The data used to build empirical model (22) have differ-
ent units and scales of measurement. Therefore, all physical 
quantities that are included in formula (24), as well as the 
mass consumption of fuel gas, are expressed in dimensionless 
units according to the following formula:

max,

,j
j

j

X
x

X
=  1, 1,j m= +

where Xj are the dimensional physical quantities; Xmax,j – the 
maximum value of Xj quantity in the data set; Xm+1 − output 
of the empirical model.

Fig. 4 reflects the result of the synthesis of model (29) for 
the case where the empirical model (22) is chosen.

As a result, we obtained an empirical model in which the 
number of zero parameters is 64, and the number of parame-
ters other than zero is 62.

Fig. 4. Fitting experimental data to empirical model (22)
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In Fig. 4, icons “o” mark the values that are obtained 
as a result of solving the problem of minimizing func-
tion (29) (experimental data), and the solid line is built on 
equation (22). In fact, there was a complete coincidence of 
experimental and calculated data, as evidenced by the ap-
proximation error value, calculated as the sum of squares of 
deviations of the calculated values from the corresponding 
experimental data.

Verification of the adequacy of the model with experi-
mental data was carried out by calculating the correlation 
coefficient between the experimental and calculated values 
of the mass consumption of fuel gas. Its value is 0.997, which 
may indicate a high degree of consistency between experi-
mental and calculated data. 

6. Discussion of results of investigating the construction 
of an optimal�structure empirical model with fuzzy input 

values 

When solving a number of problems related to the iden-
tification and optimal control over technological objects, it 
is necessary to take into account the uncertainty that arises 
as a result of the interaction of the object with the external 
environment. In such conditions, technological parameters 
are interpreted as fuzzy values. For fuzzy sets, an important 
characteristic is the membership function. The choice of the 
type of membership function is crucial in the construction 
of mathematical models. But the use of the apparatus of 
fuzzy sets requires a large amount of operations on fuzzy 
variables. Therefore, for the convenience of performing op-
erations, it is desirable to work with membership functions 
with a standard form, for example, a triangular membership 
function. However, the triangular membership function is 
undifferentiated at some points, which makes it difficult to 
build a mathematical model. To eliminate this drawback, 
it is proposed to approximate the triangular membership 
function (4) with the Gaussian function (5), which is differ-
entiated throughout the field of definition. 

It is shown that the concentration coefficient α can be 
expressed through the uncertainty interval Δ using formu-
la (7), which makes it possible to obtain an effective algo-
rithm for constructing empirical models under uncertainty 
conditions.

The assessment of the accuracy of the approximation of 
the triangular membership function (4) with the Gaussian 
function (5) is made using the coefficient of determination, 
the value of which is R=0.9913. Since the obtained R  val-
ue is close to unity, function (5) adequately approximates 
function (4).

On the basis of our studies, which established the re-
lationship between the parameters Δ and α of membership 
functions (4) and (5), empirical models (22) were built 
that take into account the fuzziness of the input values. 
As a rule, empirical models are chosen in the form of 
polynomial dependences of a certain power, which means 
the choice of a certain class of models. When constructing 
empirical models, restrictions were made on the power 
of the polynomial. This limitation reduces the amount of 
calculations. 

To select a specific model from this class, a genetic algo-
rithm is used, which makes it possible to choose the optimal 
model in terms of its structure. On the example of solving 

the problem of identifying the parameters of the fuel gas 
consumption model, it is shown that when applying genetic 
algorithms, the number of significant parameters of the mod-
el decreased by almost 2 times, in contrast to the use of the 
LSM algorithm. 

The research results showed that the developed meth-
od for synthesis of empirical models makes it possible to 
choose the optimal models in terms of structure under 
uncertainty conditions. The effectiveness of the method is 
confirmed by machine calculations in the empirical mod-
eling of complex technological processes. The developed 
method, algorithms, and software can be used in solving 
the problem of optimal control over complex technological 
objects in the oil and gas sector, such as the processes of 
well construction, oil and gas production, and their trans-
portation.

Thus, the basis of the improved method is the assumption 
of the fuzziness of the technological parameters of the object, 
that is, such parameters are considered as fuzzy quantities 
with a triangular membership function. It is shown that the 
effective solution of the problem is achieved by approximat-
ing the triangular membership function with the Gaussian 
function. For polynomial models using fuzzy arithmetic, 
their structure is determined, which takes into account the 
parameters of the membership function – the fuzziness inter-
val and its modal value. 

The results of theoretical studies are confirmed by a 
specific example of the construction of an empirical model 
of fuel gas consumption in the form of polynomial (22), the 
power of which is 4, and the number of input variables is 5. 
The developed method for synthesis of empirical model (29) 
with polynomial (22) made it possible to reduce the number 
of its coefficients from 128 to 62. The correlation coeffi-
cient between the results of the experiment and the values 
produced by model (22) was calculated. It was established 
that the value of the correlation coefficient is 0.997, which 
indicates a high power of consistency between experimental 
and calculated data.

The main disadvantage of our method for choosing the 
optimal empirical model in terms of structure is that the 
researcher sets the parameters of the triangular membership 
function based on practical experience and his/her intuition. 
To eliminate this drawback, it is advisable to build an expert 
database where the necessary information would be stored, 
and to devise rules for selecting initial data on interval 
changes in technological parameters that are inherent in the 
processes of the oil and gas industry.

7. Conclusions

1. It is shown that the implementation of arithmetic 
operations on fuzzy numbers is greatly simplified if the 
triangular function is approximated with the Gaussian 
membership function. Using the least squares method, 
an approximation parameter is defined, which makes it 
possible to express the concentration coefficient through 
the uncertainty interval of the triangular membership 
function.

2. A method and algorithm for identifying the param-
eters of complex empirical polynomial models using the 
theory of genetic algorithms for the case when the input 
values of the models are interpreted as fuzzy numbers 
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have been developed. As a result of our calculations car-
ried out using the developed algorithm, it was established 
that there is a high degree of consistency between the 
experimental and calculated data, which is confirmed 
by the calculated value of the correlation coefficient. Its 
value is 0.997. 
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