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1. Introduction

Topology optimization (TO) is a technique used in engi-
neering design to achieve optimized designs while reducing 
costs. It involves determining the most efficient material 
distribution in a given design space to satisfy given bound-
ary conditions [1‒3]. TO is applied in structural design, fluid 
flow optimization, material design and additive manufac-
turing [4‒6]. In recent years, TO has been studied by many 
scientists. In [7], the authors employed a parameterized 
cellular model and a multiscale TO approach to predict bone 
remodeling around an uncemented femoral implant. In [8], 
the authors explored the application of a virtual phase meth-
od (VPM) that utilizes structured meshes to effectively ad-
dress optimization problems featuring intricate geometries 
and arbitrary non-design components. In [9], the authors 
introduced a TO approach that combines subtractive and 
additive manufacturing methods and focuses on remanufac-
turing. It proposed a design-for-remanufacturing strategy 
and offers solutions for product upgrades and repairs. The 
authors in [10] proposed a TO approach that employs finite 
element analysis of the assembly to achieve reduced weight 
and mitigate stress analysis distortion. The authors in [11] 
proposed a TO approach for rarefied gas flow problems, 
with the objective of determining the optimal structure 
of a flow channel as a configuration of both gas and solid 
domains. The authors in [12] introduced a novel method for 
translating TO outcomes into stereolithography (STL) and 
parametric computer-aided design (CAD) models. In [13], 
the authors suggested an evolutionary TO approach for 
minimizing stress in design, utilizing the bi-directional evo-
lutionary structural optimization (BESO) method. To allow 

for the TO of geometrically nonlinear structures undergoing 
significant deformations, the Iso-XFEM technique is ex-
panded through the implementation of a total Lagrangian 
finite element formulation [14]. The authors in [15] proposed 
a novel TO approach utilizing the extended finite element 
method (XFEM) to improve the fracture strength of specific 
locations in a structure. Therefore, studies that are devoted 
to the field of TO are scientific relevance. 

2. Literature review and problem statement

TO has become a reliable tool for achieving optimized de-
signs in structural, mechanical, and material systems. Despite 
the maturity of the field, a numerical problem known as the 
checkerboard problem remains a topic of extensive research. 
In [16], the authors proposed a node-based implementation 
in continuum TO that is resistant to element-wise checker 
boarding instabilities, which can be problematic with ele-
ment-based design variables. In [17], polygonal meshes con-
structed using Voronoi tessellations exhibit a higher degree 
of geometric isotropy and are more flexible in discretizing 
complex domains, without being influenced by numerical 
instabilities. In [18], to address checkerboard patterns in 
topologies, the ground element filtering (GEF) technique 
is used. Moreover, several authors have investigated filters 
to reduce the checkerboard phenomenon and enhance the 
optimization process’s performance. The authors in [19] pro-
posed an alternative to the padding method for PDE filtering 
by using the potential form of the PDE filter. This approach 
allows the inclusion of penalty terms with a clearly defined 
physical interpretation. Recent studies on TO have not yet 
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implemented a structural optimization approach that utilizes 
honeycomb hexagonal finite elements with double filters. 
By utilizing a tessellated honeycomb form, superior con-
nection geometry can be achieved, thereby eliminating the 
checkerboard patterns and single-point connections that are 
characteristic of optimized designs [20, 21]. Furthermore, as 
discussed in [22], the hexagonal finite element structure pro-
vides greater numerical accuracy and is well-suited for model-
ing polycrystalline materials. A new shadow density filter has 
been created and applied to structural TO with consideration 
given to molding manufacturability [23]. The authors in [24] 
introduced a novel density filter technique for TO of coated 
structures. Unlike previous approaches, this new method 
solely employs the density filter and its projection, without 
dependence on the density field’s gradient. All this allows to 
assert that it is expedient to conduct a study on TO for isotro-
pic elastic materials using honeycomb tessell.

3. The aim and objectives of the study

The aim of the study is to perform topology optimization 
on isotropic elastic materials. This will make it possible to 
increase performance and completely overcome the checker-
board phenomenon.

To achieve this aim, the following objectives are accom-
plished:

‒ to solve the optimization problem, this study designs a 
domain grid with hexagonal elements and honeycomb struc-
ture grids with elements with two degrees of freedom; 

‒ to increase the optimal performance to 11 %, the 
study conducted optimization using a combination of 
two filters: sensitivity filtering and density filtering, then 
compared it with the case where no filters were used. 

4. Materials and methods

By implementing this optimization, the mathematical 
modeling procedure is made more straightforward, imple-
menting the need for element updates, as highlighted in 
previous research studies [16–19]. With this foundation, the 
article proposes optimal conditions for implementation based 
on iterative processes. Furthermore, two filters are developed 
and combined to improve the optimization process’s efficiency 
and ensure the convergence condition is met.

The optimization problem is assumed to be within a design 
domain Ω⊂ℝ2. The domain is a Lipschitz bounded and open 
domain simultaneously subject to applied loads and boundary 
conditions. The boundary ∂Ω of Ω consists of two disjoint parts 
∂Ωu and ∂Ωp. The part ∂Ωu consists of zero displacements and 
∂Ωp is where the applied loads (Ω=∂Ωu∪∂Ωp and ∂Ωu∩∂Ωp=∅). 
According to [1], the compliance optimization problem involves 
minimizing the compliance c within a design domain:
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where F is the vector of nodal forces; U is the global displace-
ment; K is global stiffness matrix; ue and k0 are the element 

displacement vector and stiffness matrix, respectively; ρ is 
the vector of design variables; ρmin is non-zero to avoid sin-
gularity; ρe is the value representing the elemental material 
density e∈Ne (when ρe=0, the material is considered to be in 
a hollow state, while ρe=1 indicates that the material is in 
a solid state). Ne is a set of finite element indices; the finite 
element assembly operator is denoted as ∑; while V, ve and 
V0 represent the material volume, the volume of material in 
element e, and design domain volume, respectively; the pre-
scribed volume fraction is represented by the variable ζ. To 
enhance the convergence speed of the optimization problem, 
the modified SIMP approach is utilized along with a pow-
er-law interpolation penalty formulation [1]. In this method, 
the element Young’s modulus Ee is expressed as a power 
function of the design variable:

( ) ( )ρ = + − ρmin 0 min ,p
e e eE E E E    (2)

where Emin is an extremely small value to avoid singularities 
in the stiffness matrix, p is the is a penalization factor (typ-
ically p=3). E0 is the stiffness of the material. The element 
stiffness matrix is given by:
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e
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where B0, D0 are the strain–displacement matrix and the 
constitutive matrix with unit Young’s modulus, respectively. 
Let ϑ be the Poisson’s ratio of the isotropic material, the 
constitutive matrix is given by:

The process of discretizing the design domain involves 
dividing it into adjacent hexagons that do not overlap. With-
in a ξ(O1x1y1) frame, each hexagonal element is defined by its 
vertices and the circumscribing circle with a radius of 1 unit, 
represented by Cv(O1; rv=1) (Fig. 1). From Fig. 1, the coordi-
nates of the hexagonal vertices can be obtained:
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NeX and NeY represent the count of hexagonal elements 
in the x and y directions, respectively. Each element is com-
posed of six nodes, and each node has two degrees of free-
dom (DOFs). In the ξf(Ofxfyf) frame (Fig. 2), the vertex 
coordinates of a honeycomb cell are expressed:
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where a is the edge length of the hexagon.
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The standard optimality criteria method (OC) is employed 
to address the optimization problem stated in (1) [1]. The La-
grangian function associated with the problem is provided:
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where λe, λg, μρ-, μρ+ are the Lagrangian multipliers for the 
constraints of the optimization problem. The optimal state 
is attained when the conditions relating to the displacement 
vector and the design variables are met. Therefore, the 
optimality conditions for the design variables are obtained 
from (7) and are as follows:
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and switching conditions:
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Expanding and simplifying (8) results in:
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e e e e ep E E u k u  and assumption that 
each element has unit volume (∂V/∂ρe=1). Thus, in the case 
of ρe∈(ρmin;1) then ψe=1 and:
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According to [1], the formula below is utilized to update 
the design variables:
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where ρe,k+1 denotes the value of the design variable at 
iteration k, υ is the move limit, η is the tuning parameter. 
These values can be adjusted to enhance the convergence 
and stability of the iterative model, as presented in (12). The 
new design variable values are dependent on the Lagrangian 
multiplier. As the iterative process proceeds, the volume of 
the structure decreases, and the elements that contain the 
material are gradually eliminated until the optimal state of 
the compliance value.

The density value of an element is used to indicate the 
amount of material present at that element. If the element 
density values in TO problems alternate in a checkerboard 
pattern with alternating solid and hollow regions, it suggests 
that the material distribution is suboptimal. In order to 
eliminate these checkerboard patterns, filtering techniques 
are employed. The research being conducted utilizes two fil-
tering techniques ‒ sensitivity filtering and density filtering.

In order to prevent the creation of checkerboard patterns 
during linear elastic texture optimization, the sensitivity 
filter function is provided as follows:
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where Nf is a set of elements f that are restricted within the 
circle of the filter mesh with a radius of R (Fig. 3). The con-
volution operator ,

ˆ
e fH  is defined as follows:

( )= −,
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where the operator dist(e, f) is the distance between the 
center element f and the center of element e.

Similar to sensitivity filtering, the density grid in sen-
sitivity filtering comprises elements e as illustrated in (13). 
The original design variables υ lack physical significance. 
However, during the filtering procedure, the design variable 
elements are substituted by the design variable elements 
via the density grids. The filtered design variables, which 
represent the physical density of the elements, are expressed 
as follows: 
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Fig.	1.	Hexagonal	element

Fig.	2.	Grid	of	hexagonal	elements
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When using density filtering, the material volume and 
complimance function with respect to the physic density:
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(16), (17) show the change in volume and conformance, 
which characterizes a combined filter of sensivity filtering 
and density filtering.

5. Research results of topology optimization using 
honeycomb tessell 

5. 1. Hexagonal element grid
The MBB beam’s straightforward geometry and flexi-

bility in changing boundary conditions make it a commonly 
used element in TO. This section examines several numerical 
examples of MBB beams to demonstrate the effectiveness of 
a novel methodology. The MBB beam under consideration 
has the specific shape and boundary conditions illustrated 
in Fig. 4.

To depict the discrete portion of the design domain (as 
shown in Fig. 5), the MBB beam is divided into 30×20 and 
35×27 hexagonal elements. The cases of NeX and NeY com-
prise even and odd numbers, respectively. 

When NeY is an even number, it results in the elimina-
tion of hanging nodes and an update of node numbering.

5. 2. Optimization results for scenarios with and with-
out a filter 

The penalization factor for the following examples is 
set to p=3, and the Poisson ratio is ϑ=1/3. The calculations 
were conducted using a machine with a 64-bit operat-
ing system, 16.0 GB RAM, and an Intel(R) Core(TM) 
i7-8565U CPU 2.9 GHz. The mesh size is 160×65, the 
volume ratio is ζ=0.5, and the filter radius is =1.5 3R . 
Two scenarios were considered for the optimized results of 
the design domain depicted in Fig. 6: one without filter-
ing (Fig. 6, a–c) and another with filters (Fig. 6, d, e, 7). 
Please note that in Fig. 6, the yellow area within the rect-
angular design domain represents the material that was 
not used in the final design, while the dark purple color 
represents the optimized structure.

Fig.	3.	Filter	mesh	with	a	radius	

Fig.	4.	Design	domain	with	boundary	conditions	and	a	hexagonal	
element	grid

Fig.	5.	Design	a	domain	grid	with	a	hexagonal	element:		
a –	30×20	hexagonal	elements;	b –	30×20	hexagonal	elements

a b

Fig.	6.	The	optimization	results	for	scenarios	with	and	
without	a	filter;	a –	c =229.1963;	b –	c =192.1905;		

c –	c =186.7922;	d –	c =253.5322;	e –	c =192.3891;		
f –	c =173.0293

a b

c d

e f

Fig.	7.	The	compliance	in	the	filtered	and	unfiltered	
scenarios
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According to the boundary conditions described 
in Fig. 8, the study to determine the optimal texture with 
the proposed filter has been presented in Section 4 of the 
paper. The volume ratio is fixed at ζ=0.4, and the mesh sizes 
used are 60×60, 120×120, and 180×180. 

For each mesh size, the filter radius is set to 0.03 times 
the length of the design domain, resulting in values of 
=1.8 3,R  = 3.6 3,R  = 5.4 3,R  respectively. 

6. Discussion of results of the study of topology 
optimization using honeycomb tessell 

Fig. 6 illustrates that the optimization method achieves 
good optimal performance in both scenarios, with and with-
out a filter, without any checkerboard patterns. This is due to 
the honeycomb tessellation’s geometric structure, which au-
tomatically breaks any checkerboard patterns as it features 
edge-to-edge connections between hexagons. This demon-
strates the advantage of using honeycomb tessellation in the 
optimization method presented in the paper. This problem 
has addressed the challenges faced in previous studies that 
utilized quadrilateral elements [1, 3, 4]. However, without 
using a filter, the optimal structures are dependent on the 
mesh, which can result in uneven edges appearing at the 
boundary layers of the optimal profile, and numerous small 
lines that can make fabrication challenging. On the other 
hand, using the suggested filter yields optimal textures that 
are independent of the mesh, and thus have the same topol-
ogy, regardless of the mesh size employed. The utilization of 
both sensitivity filter and density filter (Fig. 6, e‒f) demon-
strated higher efficacy in comparison to having no filter at 
all (Fig. 6, a–c). The optimal texture also has a clear struc-
ture and lacks the fragmentation that occurs when no filter 
is used. Furthermore, Fig. 7 shows that when the proposed 
filter is used, the objective function value is c=173.0293, and 
convergence is achieved at iteration number 200. In contrast, 
when no filter is used, c=186.7922, and convergence occurs 
at iteration number 27. This indicates that using the filter 
results in higher optimal performance and a better optimal 
value compared to not using the filter.

Fig. 9 reveals that the optimal value converges in all 
three-grid cases by iteration number 175. However, the 
60×60 grid case shows the minimum compliance value 
of c=5.3392, followed by the 120×120 grid case with 
c=5.7622, and the largest compliance value of c=6.0148 
for the 180×180 case. Thus, changing the size of the design 
grid does not significantly affect the objective function 
value. Notably, the optimal design domain profile with the 
180×180 grid size exhibits less aliasing than the other two 
cases, indicating that higher resolution leads to reduced 
aliasing and improved design accuracy. Based on the re-
sults, the study’s range is constrained to two-dimensional 
isotropic elastomers. In this study, the boundary of the de-
sign domain is approximated by the honeycomb coverage. 
Hence, the current disadvantage of the study is its reliance 
on a specific finite element formulation, which necessi-
tates the use of honeycomb finite elements. Additionally, 
implementing the suggested approach of combining filters 
necessitates the creation of new material models and 3-di-
mensional design domains to enable a thorough assessment 
of the mathematical model’s efficacy. In order to be practi-
cal, two requirements must be fulfilled:

1) utilization of a mesh that eliminates contact with 
points and edges;

(2) choosing an appropriate interpolation method for 
finite elements. 

From there, it shows a very potential research direction, 
which is the optimization of the boundary and filter radi-
us of the filter. Besides, the optimization of the topology 
using the honeycomb structure and the improved filter of 
this study promise to be applied to the design of micro-
electromechanical systems and piezoelectric actuators in 
the future.

Fig.	8.	Design	domain	with	variable	grid	size

Fig.	9.	Optimum	structure	according	to	mesh	size	and	filter	
radius:	a –	60×60;	b –	120×120;	c –	180×180

a

b

c
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7. Conclusions 

1. The study shows that the use of hexagonal elements 
eliminates checkerboard formation while providing a robust 
and stable means of solving TO problems.

2. Without using a filter, the optimal structures are 
dependent on the mesh, which can result in fabrication 
challenges. The suggested filter this issue and yields optimal 
textures that are independent of the mesh employed size (the 
filter radius is set to 0.03 times the length of the design do-
main). Besides, using the filter results in higher performance 
and a better optimal value compared to not using the filter. 
Furthermore, changing the size of the design grid does not 
significantly affect the objective function value. However, 
higher resolution leads to reduced aliasing and improved 
design accuracy.
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