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1. Introduction

The study of non-stationary flow in pressurized cylin-
drical pipes is one of the main ways to improve machine tool 
structures. The management and regulation systems precise 
and stable operation depends on the accuracy of the research 
results. Of the cylindrical pipes, the fluid-bearing pressure 
system of a round cross-section is most often applicable, 
in which the flows can be stationary and non-stationary. 
According to the results on non-stationary flow patterns in 
the liquid channels of machines, their construction is carried 
out. The issue being discussed is pertinent and holds practi-
cal importance.

The main issue in studying fluid flow is developing a 
mathematical model of the given physical phenomenon. The 
results define the applicability limits of the chosen calcu-
lation method. The constructed model needs to describe 
the ongoing hydromechanical phenomena more accurately 
and, meanwhile, provide the possibility of getting analytical 
solutions. The study of non-stationary hydromechanical 

phenomena in pressure pipes is one of the most complicated 
problems in hydromechanics, where the change of values, 
besides the time, depends on the point data. From this point 
of view, the proposed topic has important theoretical inter-
est and practical significance, which is due to its relevance.

2. Literature review and problem statement

The study of the patterns of viscous fluid flow in the 
transition zones of liquid channels is one of the most complex 
tasks of hydromechanics, the results of which are used in 
their design. Because of their practical importance, re-
searching these problems is very relevant. It should be noted 
that studies of hydrodynamic phenomena in transition zones 
were mainly conducted in conditions of stationary fluid flow, 
which is one of the particular cases of flow. The flows in the 
transition zones of the liquid channels are non-stationary, 
and their study is aimed at solving important practical 
problems.
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solution of the approximating Navier-Stokes equa-
tions is presented depending on the initial conditions 
and the Reynolds number. In accordance with the 
type of flow, the boundary conditions of the problem 
are established, and the boundary-value problem is 
formulated. Regularities for the change in velocities 
lengthwise in the entrance region have been obtained 
for a constant and parabolic velocity distribution in 
the inlet cross-sections. Analytical solutions have 
been obtained, allowing to obtain patterns of chang-
es in velocities and pressures toward flow at any 
section and at any time. For the mentioned cases, 
the composite graphs of velocity changes in different 
sections along the length of the entrance transition 
area were constructed by computer analysis, for dif-
ferent time conditions. With the obtained composite 
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constructed, enabling to obtain fluid flow velocity 
at any point of the section. The length of the transi-
tion zone can be estimated based on the condition of 
reaching a certain percentage (99 %) of the maxi-
mum velocity of the flow.

The proposed solutions create the conditions for 
correctly constructing separate units of hydrome-
chanical equipment
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The system of Nave-Stokes equations in a non-deform-
able medium is used as the starting equation for non-sta-
tionary flows [1]. For each problem, boundary conditions 
are defined, and the basic equations are simplified. It is often 
impossible to obtain analytical solutions to this problem. 
Modern computing techniques make it possible to obtain ap-
proximate solutions for such problems, providing practically 
any accuracy. For studying the hydrodynamic processes in 
the entrance section transition area, many theoretical and 
approximate calculation methods have been developed. Con-
clusions concerning the nature of flow are drawn using each 
calculating method. A theoretical study and a presentation 
of the findings are conducted. Often, these conclusions are 
related to specific ranges of motion. It limits the applicabili-
ty of the results obtained.

In the works [2, 3] the authors studied the patterns of 
change in hydrodynamic flow parameters at the transitional 
section of the pipe entrance. By successive approximations, 
which simplified the Navier-Stokes equations they obtained 
a boundary problem. Then, by analytic solutions, they found 
regularities of velocity and pressure change [4] and the re-
sults compared with those of experimental investigations. 
The reliability of the obtained results is confirmed by the 
comparative analyses which have been conducted. However, 
the deformation of the velocity field occurs not only from 
changes in the coordinate of the point, but also from the 
time parameter. Therefore, studies of the patterns of change 
in the hydrodynamic parameters of the flow at the inlet sec-
tion with unsteady laminar motion are important and are of 
considerable practical interest.

In work [5], the problem of the pulsating flow of a viscous 
liquid at the entry region of the round pipe was solved on the 
basis of approximate equations. In [6], a comparison of the 
results of theoretical and experimental studies of the pulsation 
motion of a viscous fluid is given. The problem of a round pipe 
entry region with a suddenly applied velocity at the pipe inlet 
was solved in [7] using the hypothesis of self-similarity of the 
velocity profiles in the boundary layer and the momentum 
equation. Numerical integration of the Navier-Stokes equa-
tion solved a similar problem for a suddenly applied velocity at 
small Reynolds numbers in [8]. Under conditions of periodic 
perturbation and with the support of linear approximations, a 
thin boundary layer [9] was studied at the entrance region of 
a round pipe. However, the boundary layer is examined on a 
flat plate, which reduces the accuracy of the results. In [10], a 
non-stationary laminar flow of a viscous incompressible fluid 
at the entrance region of a round cylindrical pipe was consid-
ered for a constant velocity distribution at the entry. However, 
this condition limits the scope of the obtained results. These 
restrictions are partially overcome in [11]. A mathematical 
model has been created based on studies of changes in the 
hydrodynamic parameter pattern of a viscous incompressible 
fluid in the transitional sections of flat pipes, which allowed 
obtaining results with acceptable accuracy indicating motion 
dynamics patterns [12].

In [13], an attempt was made to find analytical solutions 
to simplify the hydrodynamic equation that describes the 
fluid flow under pressure in pipelines using new approxima-
tions of the Bessel function and its roots. Recommendations 
for the use of these solutions have been developed. The 
problem of a viscous fluid’s laminar non-stationary flow in 
axisymmetric pipes is considered based on the changes in 
viscosity and pressure gradient. The proposed method and 
the obtained solutions reveal the regularities of the flow’s 

hydrodynamic parameters while accounting for viscosity 
variability, and it can be applied to Newtonian fluid in par-
ticular [14]. An analytical solution of the momentum equa-
tion for non-stationary fluid flow in round pipes is presented 
in [15], where an arbitrary change in kinematic viscosity 
with the time change is permissible. Velocity and discharge 
are expressed as Bessel and Kelvin functions of the radial 
variable, while time dependence is expressed as a Fourier 
series. The analytical solution for velocity is compared to 
the direct momentum equation’s numerical solution. Let’s 
analyze the linear modal stability of the flow in a pipe with 
a stepwise increase in discharge from a stationary initial 
flow to a final flow. A stepwise increase in flow rate causes 
a non-periodic non-stationary flow. The analysis of the flow 
stability depending on the ratio of the current flow discharge 
to the steady-state laminar flow discharge was carried out 
in [16]. As a result, the conditions for the stability of an 
non-stationary flow in the pipe are obtained.

In [17], the author is studying the evolution of the main 
single-mode stationary flow of the viscous incompressible 
fluid in the flat diffuser. It is established that starting from 
some critical value of the Reynolds number, the existence of 
a stationary single-mode flow is impossible. The results of 
examining several laminar flow regimes in a flat diffuser/
confuser with a small opening angle were presented by the 
authors in [18]. Consequently, patterns of changes in the 
hydrodynamic parameters of a viscous incompressible fluid 
had been obtained through numerical modeling based on the 
solution of Navier-Stokes equations. The areas of existence 
and transitions of flow regimes from stationary-symmetric 
to stationary-asymmetric and non-stationary ones in the 
diffuser and confuser, depending on the Reynolds number are 
found. The values of the Reynolds number, which determine 
the ranges of the existence of these fluid flow regimes for New-
tonian and non-Newtonian fluids are given.

After conducting a literature review for the proposed 
problem, it is concluded that most of the research conducted 
in transitional areas of fluid channels has been on the condi-
tions of stationary flow of viscous fluid. However, the nature 
of the fluid flow in these areas is non-stationary, making 
it an urgent task to investigate the patterns of changes in 
hydrodynamic parameters in these transition areas, under 
non-stationary flow conditions.

3. The aim and objectives of the study

The aim of the study is the identification reveals patterns 
of changes in the hydrodynamic parameters of a viscous fluid 
in a round cylindrical pipe inlet section during non-station-
ary laminar flow of a viscous fluid depending on the Reyn-
olds number.

To achieve this aim, the following tasks must be solved:
‒ to formulate a boundary problem and determine the 

initial and boundary conditions;
‒ to develop a method for solving the boundary problem 

and identify the pattern of changes in the hydrodynamic 
parameters of viscous flow in the entrance region of a round 
cylindrical pipe;

‒ to draw graphs of changes in axial velocity depending 
on time and the Reynolds number;

‒ to identify the conditions for determining the length 
of the round pipe entrance section during non-stationary 
laminar flow.
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4. Materials and methods 

4. 1. Object and hypothesis of the study
The object of research is stationary laminar flow in ax-

isymmetric channels.
The main hypothesis of the study is ignoring the influ-

ence of body forces on the change in the haydrodynamic 
parameters of the flow.

Assumptions made in the work are that the viscous fluid 
flow is considered axisymmetric and that the pressure in 
each fixed section does not depend on the radius.

The study was carried out on the basis of the boundary 
layer equations, which are simplified forms of the Navi-
er-Stokes equations.

4. 2. Choosing a calculation scheme
Main symbols:
1. Vr(r, z, t)+Vz(r, z, t) – fluid flow velocity components by 

coordinates r, z, t.
2. r, z, t – position of a point.
3. p(z, t) – pressure.
4. R – pipe radius.
5. ν – kinetic coefficient of viscosity.
6. U0 – average velocity of flow section.
7. φ(r, t) – velocity function of the inlet cross-section.
8. y,x – dimensionless coordinates.
9. t  –non-dimensional time.
10. Vz(r, z, t) – dimensionless function of velocity.
11. p – dimensionless pressure.
12. Re – Reynolds number.

13.  0
2
0

p
U

α =
ρ

 – dimensionless coefficient.

14.  ( )p
f t

∂
−α =

ν
 – function for the pressure.

15. ψ(y) – dimensionless function of the initial velocity 
distribution.

The transition area at the entrance of the cylindrical pipe 
with a round cross-section is considered for laminar viscous 
fluid flow. The origin of the Z axis is the center of the inlet 
section (Fig. 1) and the direction of flow is infinitely long.

The flow in a round pipe will be considered in cylindrical 
coordinates, starting from the zero point (Fig. 1).

It is assumed that in the entrance sections of the pipe 
at z=1, the velocity changes according to an arbitrary law. It 
is necessary to find patterns of change in the hydrodynamic 
parameters of a viscous fluid in the transition area, consider-
ing it to be axisymmetric and non-stationary.

4. 3. Statement of the problem and formulation of the 
system of differential equations for the study

Lets suppose there is a viscous fluid laminar non-station-
ary flow in an infinitely long cylindrical pipe with R radius. 
In the initial section of the tube, where the starting point of 
the oz axis is located, the distribution of velocities is given 

by an arbitrary law, that is u=φ(r, t), when z=0. Under these 
conditions, an axisymmetric isothermal viscous flow occurs. 
At the pipe entrance section with u=φ(r, t), fluid velocity 
diagram on the pipe wall becomes zero. A deformation of the 
velocity diagram occurs, which extends over a certain dis-
tance along the pipe’s length. A boundary layer occurs near 
the pipe walls, where the velocity gradient, du/dn, becomes 
very large, due to which the friction forces assume very large 
values regardless of the μ viscosity coefficient. The bound-
ary layer gradually extends from the pipe walls to cover the 
entire pipe. Therefore, it is necessary to perform the studies 
in the transition area with the boundary layer equations. 
For the boundary layer, Prandtl [1] suggests using the 
Nave-Stokes equations, which simplify the equations for the 
boundary layer. Since the main forces in the boundary layer 
are the viscous forces, Prandtl ignored the parameters that 
were small compared to the viscous forces and got simplified 
equations for the boundary layer during the simplification of 
the Nave-Stokes equations.

To study the transition area of a cylindrical pipe of cir-
cular section, let’s use the equations of the boundary layer, 
which in the cylindrical coordinate system have the follow-
ing form [1]:

2

2

1 1
,z z z z z

r z

V V V V VP
V V

t r z z r r r

 ∂ ∂ ∂ ∂ ∂∂
+ + = − +ν + 

∂ ∂ ∂ ρ ∂ ∂ ∂ 
 	 (1)

( )1
0.rz

V rV
z r r

∂ ⋅∂
+ =

∂ ∂
				     (2)

To simplify equation (1), let’s accept the conclusion made 
in the work [2, 3], according to which, therefore, there is:

2

2

1 1
.z z z z

z

V V V VP
V

t z z r r r

 ∂ ∂ ∂ ∂∂
+ = − +ν + 

∂ ∂ ρ ∂ ∂ ∂ 
		  (3)

To integrate the resulting non-linear inhomogeneous dif-
ferential equation [3], let’s make an assumption, according to 
which let’s replace the coefficient of the member ∂Vz/∂z with 
the average rate vz of flow section:

( )0 2
0 0

2
, d d .

R T

zV U r t r r t
R

= = φ ⋅ ⋅ ⋅∫ ∫ 			   (4)

After this assumption , the study of the transition area is 
brought to by integrating the equation [5, 6]:

0

2

2

1 1
,

z z

z z

V V
U

t z

V VP
z r r r

∂ ∂
+ =

∂ ∂
 ∂ ∂∂

= − + ν + 
ρ ∂ ∂ ∂ 

	 (5)

( )1
0.rz

V rV
z r r

∂ ⋅∂
+ =

∂ ∂
		  (6)

for the following initial and boundary 
conditions [7–9]:

0,zV =  0,rV =  when r=R, z>0, t>0,	  	 (7)

( ), ,zV r t= φ  when z=0, 0≤r≤R,		   	 (8)

,zV V ′→  when z→∞, t>0, 0≤r≤R.	 		  (9)

Fig. 1. On the study of a viscous incompressible fluid flow in the entrance region of a 
round cylindrical pipe
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Here V ’ is the fluid flow velocity in the pipe stabilized 
section, which is determined by the following equation [10]:

2

2

1 1
.zV P V V

t z r r r

 ′ ′ ∂ ∂ ∂ ∂
+ = ν + ∂ ρ ∂ ∂ ∂ 

			    (10)

Let’s insert dimensionless variables:

,
r

y
R

= ,
z

x
R

= 0 ,
U t

t
R
⋅

=

( ) ( )
0

, ,
, , ,z

z

V r z t
V y x t

U
=

0

.
P

P
P

=  			   (11)

The equation system (5), (6) will take the following form:

( ) ( )

( ) ( )2

2

, , , ,

, , , ,1 1
,

Re

z z

z z

V y x t V y x t

t x

V y x t V y x tP
x y y y

∂ ∂
+ =

∂ ∂
 ∂ ∂∂

= −α + +  ∂ ∂ ∂ 
	 (12)

( )1
0,

rz
V yV

x y y

∂ ⋅∂
+ =

∂ ∂
 		  (13)

where 0
2
0

,
P
U

α =
ρ

0Re ,
RU

=
υ

( ).P
f t

x
∂

−α =
∂

To solve systems of equations (12), (13) it is necessary to 
formulate the boundary conditions of the problem.

4. 4. Choice of boundary conditions
The boundary conditions for the integration of (12), (13) 

will be:

( )1, , 0,zV x t = ( ) ( ),0,0 ,zV y y=ψ 0,zV
x

∂
→

∂
 

when

,x →∞ 0,zV = ( ) ( ), , , ,zV y t V y t′∞ → 		  (14)

where ( ),V y t′  is: 

( ) ( ) ( )2

2

, , , ,1 1
,

Re
z zz

V y x t V y x tV
f t

t y y y

 ′ ′∂ ∂′∂
= + +  ∂ ∂ ∂ 

	 (15)

the general solution of the inhomogeneous equation:

( )1, , 0,zV x t′ =  ( ),0,0 0,zV y′ = 	 	 (16)

in the case of homogeneous boundary conditions.

5. Results of research to identify patterns of changes in 
hydrodynamic parameters

5. 1. Integration of the boundary value problem to 
identify patterns of change in axial velocities and pressure

Let’s find the solution to (12):

( ) ( ) ( ), , , , , ,zV y x t U y x t y t= +ϕ  		   (17)

in the form of a sum [4], where ( ), , :U y x t

( ) ( )

( ) ( )2

2

, , , ,

, , , ,1 1
.

Re

U y x t U y x t

t x

U y x t U y x t

y y y

∂ ∂
+ =

∂ ∂
 ∂ ∂

= +  ∂ ∂ 
		  (18)

The solution of the homogeneous equation, in the case of 
inhomogeneous boundary conditions:

( )1, , 0,U x t =

( ) ( ) ( ),0,0 ,U y yR y= φ =ψ  		  (19)

( ),y tϕ  is the partial solution of the inhomogeneous (15). 
(18) let’s search for the solution to the equation in the form 
of a sum [4]:

( ) ( ) ( )0
1

, , , ,k k
k

U y x t C x t J y
∞

=

= λ∑  		   (20)

with this substitution in equation (18), let’s obtain: 

( ) ( ) ( )

( ) ( )

0
1

2

0
1

, ,

, ,
Re

k k
k

k

k
k k

k

C x t C x t
J y

t x

C x t J y

∞

=

∞

=

 ∂ ∂
+ λ = 

∂ ∂  
λ

= − λ

∑

∑
 

from where 

( ) ( ) ( )
2, ,

, 0.
Re

k k k
k

C x t C x t
C x t

t x

∂ ∂ λ
+ + =

∂ ∂
	  (21)

The solution to equation (21) will be:

( )
2

, exp .
Re

k
k k

x
C x t C

 λ
= − 

 
 		   (22)

Considering the values of the ( ),kC x t  coefficient, let’s 
obtain the function ( ), , :zV y x t

( ) ( ) ( )
2

0
1

, , exp , .
Re

k
z k k

k

x
V y x t C J y x t

∞

=

 λ
= − λ +ϕ 

 
∑ 	 (23)

To determine the function ( ),y tϕ , using 

( )1

0

, ,   
d 0zV y x t

y x
x

∂
=

∂∫

there is:

( )

( )

1 2 2

0
1 0

1

0

exp d
Re Re

,
d 0,

k k
k k

k

C J y y y

y t
y y

x

∞

=

 λ λ
− − λ + 

 
∂ϕ

+ =
∂

∑∫

∫

from where:

( ) ( ) ( )
2

1 0
1

, 2 exp .
Re

k k
k

k k

C x
x t J C t

∞

=

 λ
ϕ = − λ − + 

λ  
∑ 	 (24)

Considering equation (24) for the function ( ), ,zV y x t  
there is:
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( )

( ) ( ) ( )
2

1
0 0

1

, ,

2
exp .

Re

z

kk
k k

k k

V y x t

Jx
C J y C t

∞

=

=

 λ λ
= − λ − +   λ   
∑

	 (25)

The value of the function ( )0C t  is determined from the 
boundary condition (14) when x→∞, ( )0C t → ( ), .zV y t′  

The ( ),zV y t′  function is determined from (15), the solu-
tion of which is found as a sum:

( ) ( ) ( )1 2, , , ,zV y t U y t U y t′ = + 		   (26)

where ( )1 ,U y t  function is the solution of the inhomoge-
neous differential equation (27):

( )

( ) ( )

1

2
1 1

2

,

, ,1 1
,

Re

U y t

t

U y t U y tP
x y y y

∂
=

∂
 ∂ ∂∂

= −α + +  ∂ ∂ ∂ 
 		  (27)

with homogeneous boundary conditions:

( )
( )

1

1

, 0, when 1, 0,

, 0, when 0 1, 0,

U y t y t

U y t y t

 = = >


= ≤ ≤ =
 	  (28)

but the function ( )2 ,U y t  is the solution of the homogeneous 
differential equation (29):

( ) ( )2
2 22

2

, ,( , ) 1 1
,

Re

U y t U y tU y t
t y y y

 ∂ ∂∂
= +  ∂ ∂ ∂ 

 	 (29)

with inhomogeneous boundary conditions:

( )
( ) ( )

2

2

, 0, when 1, 0,

, , when 0 1, 0.

U y t y t

U y t y y t

 = = >


= ψ ≤ ≤ =
		  (30)

Let’s find the solution of equation (29) in the following 
form:

( ) ( )
2

2 0
1

, exp .
Re

k
k k

k

t
U y t b J q y

∞

=

 λ
= − 

 
∑  	  	 (31)

It follows from the first boundary condition (30) that qk 
is the positive roots of the J0(qk=0) equation, and from the 
second condition:

( ) ( )0
1

.k k
k

y b J q y
∞

=

ψ =∑ 		   (32)

From equation (32) let’s obtain the value of the coefficient bk:

( )2
1

,k
k

k

I
b

J q
=

where 

( ) ( )
1

0
0

d .k kI y J q y y y= ψ∫ 		  (33)

Inserting the value of the coefficient bk, let’s obtain:

( ) ( ) ( )
2

2 02
1 1

, exp ,
Re

k k
k

k k

I t
U y t J q y

J q

∞

=

 λ
= − 

 
∑  		  (34)

let’s search the solution to equation (27) in form:

( ) ( )1 0
1

, ( ) ,k k
k

U y t A t J q y
∞

=

=∑  	  	 (35)

let’s represent the function ( )f t  as a Fourier-Dalembert 
series:

( ) ( )
( ) ( )0

1 1

2
.k

k k k

f t
f t J q y

q J q

∞

=

=∑ 	  	  (36)

Inserting expressions (35), (36) into equation (27), let’s 
obtain:

( ) ( ) ( )
( )

2

1

2
.

Re
k k

k
k k

A t f tq
A t

t q J q

∂
+ =

∂
 	  	  (37)

The solution to equation (37) will be [4]:

( )
( )

2

1

2 exp
Re

,
( )

k
k

k
k k

q t
L t

A t
q J q

 
− 
 =  

where 

( ) ( ) ( )
2

1

0

exp d .
Re

t
k
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q
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= ξ ξ 
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∫  		   (38) 

Considering equation (38):
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k k k
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Substituting equations (34), (39) let’s obtain equa-
tion (26):
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From equations (25), (40) let’s obtain the general solu-
tion to the problem:
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The obtained equation must satisfy the (14) initial con-
dition ( ) ( ),0,0 ,zV y y=ψ :

( ) ( ) ( ) ( )0 0 0
1 1

.k k k k k
k k

y b J q y C J y J
∞ ∞

= =

 ψ = + λ − λ ∑ ∑  	 (42)
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It is possible to multiply both parts of the equation (42) 
with an expression [ J0(λny)–J0(λn)]ydy and integrate over the 
interval (0;1).

Considering that λn is the positive roots of the equation 
J2(λn)=0:

( ) ( ) ( ) ( )
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0
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d

0,
,1

,
2

k k n n

k n

n k n

J y J J y J y y

J

   λ − λ λ − λ =   
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λ λ = λ
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 	 (43)

let’s obtain:
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Considering that:
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∫

let’s obtain the values of coefficient Cn:
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where:

( ) ( ) ( ) ( )
1

2
0 0

0

d .n n nL J y J y y y = λ − λ ψ ∫ 		  (46)

The resulting solutions refer to the general boundary and 
initial conditions of the problem. Using general solutions, it 
is possible to obtain solutions that are adequate to the given 
conditions for each private case. Let’s consider two private 
cases:

5. 2. Integrating a boundary value problem to identify 
patterns of changes in axial velocities and pressure at a 
constant distribution of initial velocities

Let’s assume that the velocity of the entering fluid is con-
stant at all points, therefore: ( ) *

0 const,r uϕ = =  0≤r<R from 
where ψ(y)=A0. In the case of constant values of velocity dis-
tribution and pressures in the inlet section, in order to obtain 
the patterns of velocity distribution in the transition area, let’s 
determine the values of the functions in formula (41):
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Inserting these values of the functions into equation (41):
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Taking into account, that 
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 	 (48)

Based on the velosity change equation (48), let’s obtain 
the pressure change pattern from equation (12). Accepting 
that the pressures at any point of the fixed cross-section 
are equal, from equation (12) let’s get the pressure change 
function in the pipe axis, where x=0. It will depend on the 
variables of (x, t ), so there is:

( ) ( ) ( ),0, ,0, ,
.z zV y t V y t P x t

t x x

∂ ∂ ∂
+ = −α

∂ ∂ ∂
		  (49)

By inserting the value of the function from equation (48) 
into equation (49), determining the function:
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∑ 	 (50)

The obtained regularities enable one to determine the 
patterns of changes in axial velocities and pressures along 
the entire length of the transition area of the cylindrical pipe 
inlet section at any time.

5. 3. Integrating of a boundary value problem to iden-
tify patterns of changes in axial velocities and pressure 
with parabolic distributions of initial velocities

let’s assume the distribution of the velocity of the 
fluid entering the cylindrical pipe is parabolic, therefore 
ψ(y)=A0(1–y2), 0≤r<R, corresponding to which there 
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is ψ(y)=A0(1–y2). In the case of constant values of parabolic 
velocity and pressure distribution in the inlet section, in 
order to obtain the patterns of velocity distribution in the 
transition area, let’s determine the values of the functions in 
formula (41):
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Inserting these function values into equation (41), let’s 
obtain:
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Having determined the regularity of the change in the 
axial velocity according to the formula (52), let’s similarly 
calculate the regularity of the change in pressure and get:
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The obtained solutions enable the measurement of axial 
velocities and pressure changes along the entire length of 
the transition area at any point in the transition section at 
any moment.

5. 4. Graphs of changes in the hydrodynamic param-
eters of a viscous fluid at the inlet region of a round 
pipe

Based on the solutions obtained, let’s investigate the 
nature of the flow features in the transition area of the 
round pipe inlet section. Based on the integration results of 
differential equations for viscous fluid flow, regularities of 
change in the distribution of axial velocities ( ), ,zV y x t  were 
obtained.

To visualize the patterns of changes in the axial velocity 
( ), ,zV y x t  along the transverse section and along the length 

of the transitional section depending on the initial distribu-
tion of velocities ( ) ( ),0,0zV y y=ψ  and the Reynolds number 
Re=20, 40, 60, 80, 100 their graphs of change were constructed. 
Fig. 2‒7 show the indicated graphs for cases ( ) 0,0,0 1zV y A= =  
at Re=40 and ( ) ( ) ( )2 2

0,0,0 1 1zV y A y y= − = −  at Re=100.

Fig. 2. Graphs of changes in axial velocities ( ), ,zV y x t along the 
transition point of the round pipe inlet section at A0=1, B0=10, 

Reynolds numbers of Re=40 and x=0.01, x=0.05, x=0.1, 
x=1.0, x=2.0

Fig. 3. Graphs of changes in axial velocities ( ), ,zV y x t , at 
A0=1, B0=10, x=1.0, Reynolds numbers Re=40 and y=0.2, 

y=0.3, y=0.5, y=0.7, y=0.9
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The deviation of the axial velocities in the transition 
section at y=0 should not exceed 1 % of the non-sta-
tionary velocity of the stabilized section. Based on this 
condition, a calculation formula was obtained to deter-
mine the length of the transition section and the graph 
is shown in (Fig. 8), which has an important practical 
application in the design of various hydraulic automation 
systems [2, 3, 10].

An analysis of the numerical calculations results and 
the resulting graphs determined the dynamics of changes 
in axial velocities and the length of the transition section 
depending on the Reynolds number. It can be seen that 
at the start of the process, the length of the transition 
point is equal to Z=0.00345R∙Re (Fig. 8). In the process 
of non-stationary development, the length of the transition 

point practically does not change, at 5,t =  Z=0.0035R∙Re. 
Therefore, with practical accuracy, the length of the transi-
tion point can be taken to be equal to Z=0.0035R∙Re.

6. Discussion of the results on the development of a 
viscous fluid non-stationary flow at the round pipe 

inlet section

Formulas for the axial velocities and pressure distribu-
tion along the round cylindrical pipe inlet section length 
with non-stationary laminar flow of a viscous, incom-
pressible fluid are obtained from solving a boundary value 
problem. The studies were carried out with a uniform and 
parabolic distribution of velocities in the entrance section 
of a round pipe, which corresponds to the processes taking 
place in reality. Therefore, the calculated results correspond 
to the natural data with practical accuracy.

The graphs constructed by computer calculations us-
ing the formulas (48) and (52) demonstrate the develop-
ment of the process in the round pipe entrance section. An 
analysis of the results of the numerical calculation and the 
obtained graphs (Fig. 2–7) showed that the process de-
gree of development depends on the pressure gradient, the 
initial distribution of velocities in the entrance cross-sec-
tion, and the Reynolds number. The viscous fluid flow 
at the entrance transition section during non-stationary 
flow is unstable. The shapes of the velocity distribution 
diagrams in each fixed section and in the transition sec-
tion change over time (Fig. 2–7) due to the deformation of 
the distribution diagrams and the impact of the pressure 

Fig. 4. Graphs of changes in axial velocities ( ), ,zV y x t along 
the transition point of the round pipe inlet section at y=0, 
A0=1, B0=10, Reynolds numbers of Re=40 and 0.01,t =

0.02,t = 0.03t = 0.05t =

Fig. 5. Graphs of changes in axial velocities ( ), , ,zV y x t  along 
the cross-section at the transition point of the round pipe 

inlet section at A0(1+y2)=1+y2, B0=50, Reynolds numbers of 
Re=100 and x=0.01, x=0.02, x=0.05, x=1.0, x=2.0

Fig. 6. Graphs of changes in the axial velocities ( ), ,zV y x t of 
the inlet section of a round pipe at x=0.02, B0=50, Reynolds 

numbers of Re=100

Fig. 7. Graphs of changes in axial velocities ( ), ,zV y x t along 

the transition point of the inlet section of a round pipe at 
y=0; A0(1+y2)=1+y2, B0=50, Reynolds numbers of Re=100, 

and 0.1,t = 0.3t = 0.5t = 1.0t =

Fig. 8. Graph of the change in the length of the transition 
point at the Reynolds number of Re=1000
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gradient. The velocity distribution diagrams change out-
side the transition section because of the pressure gradi-
ent. With an increase in the Reynolds number, the length 
of the transition section decreases, which is explained by 
the intense dissipation of the flow energy. The study of 
the viscous fluid flow development process in the entrance 
region of a round pipe was performed using simplified 
Navier-Stokes equations. Based on the integration results, 
approximate results were obtained. However, the integra-
tion accuracy results in engineering calculations are quite 
appropriate. The results of this study can contribute to 
the improvement of constructive changes in the transition 
sections of the hydraulic systems of various mechanisms 
and machines, which will lead to an increase in their reli-
able operation.

Based on the problem of relevance, further, develop-
ment is associated with the specification of the initial sec-
tion length and the design changes in the entrance region of 
the cylindrical channel. Analysis of the numerical calcula-
tion results and the resulting graphs determined the length 
of the entrance region depending on the Reynolds number. 
The condition of the entrance region is the coincidence of 
the numerical values of the velocities at each fixed point of 
the cross-section.

7. Conclusions

1. On the basis of the approximating Navier-Stokes 
equations, a boundary value problem is formulated to study 
non-stationary laminar motion at the inlet section of a 
round pipe. The boundary conditions of the problem were 
formulated as closely as possible to the processes occurring 
in the transition sections of hydraulic systems. This ensures 
that the calculation results can be effectively used in the 
construction of these areas. 

2. A universal method for integrating a boundary value 
problem has been developed, which makes it possible to ob-
tain patterns of change in hydrodynamic parameters along 
the length of the inlet section for an arbitrary initial velocity 

distribution. The results obtained suggest that hydraulic 
automatic devices can be designed based on the condition of 
reliable operation.

3. Graphs of the change in the dimensionless hydrody-
namic flow parameters for uniform and parabolic distribu-
tions of the initial velocities at the pipe inlet, depending on 
the Reynolds number for different values of the dimension-
less time, are plotted. The results obtained make it possible 
to reveal the influence of the pipe and liquid parameters on 
the change in the parameters of the initial section. Due to 
the universality of the obtained graphs, it is possible to con-
clude the nature of the non-stationary flow and its impact 
on the length.

4. Conditions have been established for determining the 
length of the initial section depending on the dimensionless 
time, with uniform and parabolic distributions of initial 
velocities, which is important information in the design of 
various mechanisms and machines of hydropneumoautomat-
ics.The correct design of the pressure hydraulic system tran-
sition sections depends on the nature of the non-stationary 
flow. Depending on the geometric dimensions, a controlled 
mode can be obtained.
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