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The Fr net trihedron, known in differential geo­
metry, is accompanying for a spatial and, as a spe­
cial case, for a flat curve. Its three mutually perpen­
dicular unit orts are defined uniquely for any point 
on the curve except for some special ones. Unlike the  
Fr net trihedron, the Darboux trihedron relates to the  
surface. Two of its unit orts are located in a plane tan­
gent to the surface, and the third is directed normal­
ly to the surface. It can also be accompanying for the 
curve, which is located on the surface. To this end, one 
of the orts in the plane tangent to the surface must be 
tangent to the curve. 

Trihedra are movable and, with respect to a fixed 
coordinate system, change their position due to move­
ment and rotation. The object of research is the process 
of formation of curves and surfaces, as a result of the 
geometric sum of the bulk motion of the Darboux trihe­
dron and the relative motion of the point in its system 
under given conditions. In the study of the geometric 
characteristics of curves and surfaces, it is necessary 
to have formulas for the transition from the position of 
the elements of these objects in the system of a moving 
trihedron to the position in a fixed Cartesian coordi­
nate system. This is exactly what needs to be solved. 
The results obtained are parametric equations of cur­
ves and surfaces that are tied to the initial surface.  
Nine guide cosines were found, three for each ort.

A distinctive feature of this approach in compari­
son with the traditional one is the use of two systems: 
fixed and mobile, which is the Darboux trihedron. This 
approach allows us to consider in a new way the prob­
lem of the construction of curves and surfaces. The 
scope of practical application can be the construction 
of geometric shapes on a given surface. An example of 
such a construction is the laying of a pipeline along  
a given line on the surface. In addition, the sum of the 
relative motion of a point in a trihedron and the bulk 
motion of the trihedron itself over the surface gives an 
absolute trajectory of motion. Its sequential differen­
tiation produces absolute speed and absolute accele­
ration without finding individual components, includ­
ing the Coriolis acceleration. This could be used in 
point dynamics problems
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1. Introduction 

In differential geometry, the Fr net trihedron is widely 
known, which is accompanying for a spatial and, as a special 
case, for a flat curve. Its three mutually perpendicular unit 
orts are defined uniquely for any point on the curve except 
for some special ones. For example, for the inflection point of 
a flat curve or for the straightening point of a spatial curve, 

the direction of the principal normal becomes undefined. The 
Darboux trihedron relates to the surface. Its two single orts 
are located in a plane tangent to the surface, and the third is 
directed normally to the surface. It can also be accompanying 
for a curve that is located on the surface. To this end, one of 
the orts in the plane tangent to the surface must be tangent to 
the curve. Then these two trihedra have a common ort tangent 
to the curve, and there is a certain angle between the other 
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two orts. However, the direction of the ort, which is directed 
normally to the surface, can be chosen in one or the opposite 
direction. Thus, unlike the Fr net trihedron, a Darboux trihe-
dron at a point on a curve on a surface can have two positions.

The Fr net and Darboux trihedra are movable and, with 
respect to a fixed coordinate system, change their position 
due to movement and rotation. For a Fr net trihedron, the 
guide cosines of its orts are determined in terms of the dif-
ferential characteristics of the curve in which the first and 
second derivatives of this curve are involved. At a point on  
a curve with a curvature equal to zero, the position of the 
orts of the main normal and binormal becomes undefined. For  
a Darboux trihedron, one of the orts points normally towards 
the surface, that is, its direction is determined in terms of 
differential surface characteristics and is definite for a regular 
surface. The ort of the tangent is also definite, hence the third 
ort, perpendicular to the first two, will also be defined. When 
studying the geometric characteristics of curves and surfaces 
using accompanying trihedra, it is necessary to have formulas 
for the transition from the position of the elements of these 
objects in the system of a moving trihedron to the position 
in a fixed Cartesian coordinate system. To this end, there are 
nine guide cosines, three for each ort. For a Fr net trihedron, 
they are completely defined in terms of the first and second 
derivatives of the parametric equations of the guide curve. For 
a Darboux trihedron – through parametric surface equations.

The use of two coordinate systems – fixed and moving – 
is used in mechanics to find the absolute motion of a point. 
The motion of a point with respect to a moving coordinate 
system is relative, and the motion of a moving system with 
respect to a fixed system is portable. The coordination of 
these movements in space occurs in a function of time. The 
geometric sum of these movements gives the absolute tra-
jectory of a point with respect to a fixed coordinate system.

This principle can be transferred to the construction of 
curves and surfaces when the moving coordinate system is  
a Darboux trihedron that moves along a given line on the surface. 
If a curve is fixed in its system, then its trace in space forms  
a surface when the trihedron moves. If such a curve is a circle, 
then a tubular surface will form, for example, a pipeline that 
lies on the surface. The coordination of the motion of a trihe-
dron on a surface with a fixed coordinate system occurs not in  
a function of time but in a function of an independent variable 
describing a curve on the surface along which the trihedron 
moves. Such studies are important because they allow expand-
ing the shaping of curves and surfaces under given conditions. 
The practical application of such studies, for example, in the 
design of a pipeline on the surface, determines their relevance. 
In addition, the proposed description of the complex motion 
of a point makes it possible to simply find its absolute velocity 
and acceleration by differentiating the equations of absolute 
trajectory, which could be used in point dynamics problems.

2. Literature review and problem statement

First of all, it is necessary to dwell on a scientific task that 
does not lose its relevance for a long time: increasing the dura-
bility and wear resistance of parts. In work [1], technological 
support for the protection of contact surfaces of press joints 
against wear is substantiated. Often, it is proposed to solve 
such a problem by improving the coatings of parts. In [2], 
the evaluation of the quality parameters of the aluminized 
coating obtained by electro spark doping was given. In [3], 

the defective structure of nitride coatings under the action 
of ion irradiation was investigated. In [4], the technological 
parameters of the manufacture of combined electric spark 
coatings are given. However, with this approach, objective 
difficulties arise associated with the cost of the developed 
methods, the necessary tools, and materials. An option to 
overcome these difficulties may be the use of geometric mo
deling of objects and processes. This makes it possible, to  
a certain extent, to solve urgent issues by geometric methods, 
namely providing a geometric shape according to predeter-
mined conditions at the design stage.

Geometric modeling can be performed in various ways. 
Thus, in [5], the solid-state modeling of geometric objects in 
point calculus is considered. This provides an expansion of the 
instrumental capabilities of computer graphics. The principles 
and advantages of the proposed methodology are described 
in detail in [6]. Geometric modeling of torso surfaces in the 
Baluba-Nadish calculus is described in [7]. Work [8] is more 
applied and highlights numerical modeling in heat and fluid 
dynamics. Simulation of aerodynamic flow is considered in [9]. 

Often, process modeling requires an analytical descrip-
tion of the movement of a material point on the surface. This 
situation arises in the study of the movement of mixtures 
consisting of a set of elements that can be mistaken for a ma-
terial particle. For example, when dispersing seed [10]. For 
an analytical description of the motion of a material point 
on a surface under the action of applied forces, a Darboux 
trihedron can be used. Its movement in the vicinity of an in-
finitesimal area of the surface can be considered as movement 
along the tangent to the surface of the plane corresponding to 
this area. A special case of such motion in the plane, when the 
Fr net and Darboux trihedra coincide, is considered in [11].

The problem of finding the trajectory of motion of a par-
ticle under the action of forces applied to it is not easy and is 
generally reduced to solving systems of nonlinear differential 
equations of the second order [1, 2]. The use of the Darboux 
trihedron enables an alternative approach to solving such 
problems. If the curve along which the trihedron moves on 
the surface is described in the function of the length of its own 
arc, then Fr net formulas can be applied. Constructing such 
curves is considered in monograph [13], in which the issues 
of modeling plane and spatial curves and surfaces in natural 
parametrization are addressed. For this purpose, various laws 
of distribution of curvature and twist (for spatial lines) and 
distribution of curvature along the main directions of the sur-
face are applied. In addition, the monograph provides exam-
ples of application of the proposed methods of geometric mo
deling in transport and energy industries. The curve is a guide 
for the accompanying trihedra. The construction of curves 
under given conditions is considered in [14]. It outlines the 
modeling of one-dimensional contours with the provision of 
a given accuracy of interpolation. All this suggests that it is 
advisable to conduct research on the expansion of the shaping 
of curves and surfaces under the predefined conditions.

3. The aim and objectives of the study

The aim of this study is to determine the patterns of 
shaping curves and surfaces using the guide cosines of the 
Darboux trihedron with respect to a fixed coordinate system. 
This will make it possible to construct curves and surfaces as 
a result of the interaction of two coordinate systems: fixed 
and moving, which is the Darboux trihedron. 
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To accomplish the aim, the following tasks have been set:
– to analytically substantiate the position of the Darboux 

trihedron in a fixed coordinate system through the parame-
ters of the surface and the curve on it;

– to show the convergence of expressions for guide co-
sines of a Darboux trihedron with respect to a fixed coordi-
nate system using a specific example;

– to consider the practical application of the obtained 
dependences for the construction of curves and surfaces.

4. The study materials and methods

Based on the object of our study, which is the process of 
shaping curves and surfaces using the Darboux trihedron, an 
algorithm for constructing these objects is formulated. It is 
assumed that the use of two coordinate systems – fixed and 
mobile – will make it possible to obtain curves and surfaces 
with predetermined properties.

At each point of the spatial curve, one can construct the 
accompanying Fr net trihedron. Figure 1a shows the arc AB 
as a flat curve belonging to a conical surface. At point A, the 
Fr net τ, ,n b  and Darboux T P N, ,  trihedra are constructed. 
They have a common ort τ ≡ T  and a certain angle j between 
the other two orts. The difference between them is the fact 
that the Fr net trihedron is built without taking into account 
the surface on which the curve is located. Its ort τ  is tangent 
to the curve, the principal normal ort n is directed towards 
the center of curvature and the binormal ort b is directed so 
that it forms the right-hand system of three mutually ortho
gonal vectors. Their direction is completely determined by 
the differential characteristics of the curve. In this regard, the 
position of the Fr net trihedron at some special points of the 
curve becomes undefined. For example, at point B (Fig. 1, a), 
which is the inflection point and at which the Darboux tri-
hedron is constructed, the position of the Fr net trihedron is 
undefined since at this point the curvature of the curve is zero 
and the center of its curvature is absent. In the Darboux tri-
hedron, the ort N  is normalized towards the surface, the ort P  
is defined from the vector product provided that the orts form 
the right-hand coordinate system. As a result of the fact that 
the orts T  and P  are perpendicular to the ort N , they form  
a tangent plane to the surface at a given point. For an expanded 
surface, the direction of the ort P  may coincide with the rec-
tilinear generatrix (as, for example, for the cone in Fig. 1, a).

    

Т

Р
N

Nb

t  T nР

B

A

jj

a b

Fig. 1. Graphic illustrations to construct the accompanying 
Darboux trihedron of a curve on the surface: a – Fr net and 

Darboux trihedra of a flat curve belonging to a conic surface; 
b – separate positions of the Darboux trihedron 	

of the curve on the transfer surface

For a Darboux trihedron, one must choose the direction 
of the ort N  since the normal vector to the surface can be di-
rected both in one direction and in the opposite direction. For 
example, at point A (Fig. 1, a), it is directed inside the cone.  

When moving to point B, its direction is also directed inward 
into the cone, that is, the Darboux trihedron at point B is 
defined, unlike the Fr net trihedron. If the direction of the  
ort N  is changed to the opposite, then the direction of the  
ort P  will also change to the opposite.

The calculations were carried out in the computer alge-
bra system Wolfram Mathematica [15]. Figures were drawn  
in the environment of the commercial computer algebra sys-
tem Maple [16].

5. Results of constructing curves and surfaces using  
the Darboux trihedron

5. 1. Analytical substantiation of the position of the 
Darboux trihedron through the parameters of the surface 
and the curve on it

Let the surface be given by the parametric equations 
X = X(u, v), Y = Y(u, v), Z = Z(u, v), where u, v are independent 
variables of the surface. To set a line on it, you need to make 
variables u and v dependent on each other. This can be done 
in different ways: assign the dependence v = v(u) or u = u(v) 
or relate them through the third variable t: v = v(t), u = u(t). 
On the surface then there is a description a line in a function 
of one of these variables: u, v, or t. If the dependence v = v(u) 
is assigned, then the parametric equations of the line are 
written as x = x(u, v(u)), y = y(u, v(u)), z = z(u, v(u)). To find 
the ort of the tangent T , it is necessary to differentiate the 
obtained equations by the variable u and, via normalization, 
reduce to the unit vector. After such normalization, the nu-
merical value of each of the three expressions at a specific val-
ue of u = const will be equal to the corresponding directional 
cosine of ort T . The normal N  to the surface is the vector 
product of vectors tangent to the coordinate lines that assign 
partial derivatives: 

N

X Y Z

X Y Z

X Y Z

Y Z Y Z X Z X Z X Y X Y

u u u

v v v

u v v u u v v u u v v u

= =

= − − + −{ }; ; .	 (1)

A variable with an index at the bottom means a par-
tial derivative of the corresponding variable, for example, 
Xu = ∂X/∂u. If you swap the last two lines in determinant (1), 
the vector N  will change its direction to the opposite one. 
For a vector N  to become a unit vector, it needs to be nor-
malized. The resulting three projections of the unit vector N   
will be its guide cosines. It should be borne in mind that the 
three expressions obtained as a result of the disclosure of 
determinant (1) can be functions of two variables u and v. 
Substituting specific numerical values of these curved coor-
dinates will give the direction of the ort at the corresponding 
point on the surface. It is necessary to have an ort at a point 
of the curve on the surface, so you need to go to one variable, 
substituting the relationship between the variables u and v 
into the projection expressions.

The third ort P  is found from the vector product of 
the orts N  and T . There is a condition that the ort P  has 
the desired direction (the trihedron is right-hand). In the 
bottom two lines of determinant (1), the expressions of the 
ort N  projections must be higher, and the expressions of the 
ort projections T  must be lower. It is convenient to open 
such determinants with the help of symbolic mathematics 
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software products. If the orts N  and T  were single, then the 
resulting ort P  would also be single, that is, it does not need 
to be normalized. 

5. 2. Demonstration of determining the guide cosines of  
a Darboux trihedron with respect to a fixed coordinate system

For example, take the transfer surface formed by moving 
a sine wave by a sine wave in two mutually perpendicular 
planes. This will not narrow the overall solution, but it will 
somewhat simplify the expressions. Parametric surface equa-
tions are:

X u= ;

Y v= ;

Z a v u= +( )sin cos ,	 (2)

where a is a constant value.
Find the guide cosines of the ort N . The partial deriva-

tives of equation (2) are written: 

Xu = 1; Yu = 0; Z a uu = − sin ;

Xv = 0; Yv = 1; Z a vv = cos .	 (3)

We open the determinant (1) when substituting partial 
derivatives (3) into it:

a u a vsin cos .−{ }1 	 (4)

Dividing the projections of vector (4) by its module, we 
obtain the guide cosines l, m, n of the ort N :

l
a u

a v u
N =

+ +( )
sin

cos sin
;

1 2 2 2

m
a v

a v u
N = −

+ +( )
cos

cos sin
;

1 2 2 2

n
a v u

N =
+ +( )

1

1 2 2 2cos sin
.	 (5)

If the dependence v = v(u) is established, the vector of the 
tangent to the curve on the surface (1) is found by differen-
tiating these equations (that is, already the equations of the 
curve) by the variable u:

′ =x 1;

′ = ′y v ;

′ = ′ −( )z a v v ucos sin .	 (6)

The guide cosines of the ort T  are found by normalizing 
its projections (6): 

l
v a v v u

T =
+ ′ + ′ −( )

1

1 2 2 2
cos sin

;

m
v

v a v v u
T = ′

+ ′ + ′ −( )1 2 2 2
cos sin

;

n
a v v u

v a v v u
T =

′ −( )
+ ′ + ′ −( )

cos sin

cos sin
.

1 2 2 2
	 (7)

The guide cosines of the ort P  are found by vector multi-
plication of the orts N  (5) and T  (7):

l
v a v v v u

a v u v a v
P = −

′ + ′ −( )
+ +( )  + ′ + ′

2

2 2 2 2 21 1

cos cos sin

cos sin coos sin
;

v u−( )





2

m
a u v v u

a v u v a v
P =

− ′ −( )
+ +( )  + ′ + ′

1

1 1

2

2 2 2 2 2

sin cos sin

cos sin cos vv u−( )



sin

;
2

n
a v v u

a v u v a v v u
P =

+ ′( )
+ +( )  + ′ + ′ −(

cos sin

cos sin cos sin1 12 2 2 2 2 ))





2
.	(8)

Guide cosines (5), (7), (8) of orts N , T , P  are represented 
in general form with an unknown dependence v = v(u), that 
is, for an unspecified curve on the surface (2). Let such  
a dependence be the simplest: v = u. So, v′ = 1. Substitution 
v = u in equation of the surface (2) will give a line on its 
surface that passes diagonally through the cells of the 
coordinate grid (Fig. 1, b). The substitution v = u and v′ = 1 
in the expressions of guide cosines (5), (7), (8) makes them 
dependent on only one variable – u, the numerical value of 
which specifies a point on the curve. For example, the guide 
cosines of ort N  after substitution will be recorded:

l
a u

a
N =

+
sin

;
1 2

m
a u

a
N = −

+
cos

;
1 2

n
a

N =
+
1

1 2
.	 (9)

The projection nN of the ort onto the OZ axis is positive, 
indicating that the ort of the normal points upwards to-
wards the surface. In Fig. 1, b, surface (2) is constructed at 
a = 0.3 and changing independent variables within u = 0...3π, 
v = 0...3π. The orts of the Darboux trihedron are constructed 
at different values of the variable u.

5. 3. Practical application of the obtained dependences 
for the construction of curves and surfaces 

Fig. 1, b shows three positions of the Darboux trihedron 
on a given line. Such positions can be constructed as much as 
you like at a given interval ∆u. If the parameter u changes con-
tinuously, the Darboux trihedron will move along the curve.  
In the Darboux trihedron system, you can specify a point C 
with its coordinates: С{TC, РС, NС}. When a Darboux trihe-
dron moves along a curve, a fixed point C in its system will 
describe a certain line with respect to the fixed coordinate 
system OXYZ. There are formulas for the transition from the 
coordinates in the trihedron system to the coordinates of the 
main (fixed) system using guide cosines. They take the form:

x T l P l N lC C T C P C N= + + ;

y T m P m N mC C T C P C N= + + ;

z T n P n N nC C T C P C N= + + .	 (10)

Relations (10) establish the correspondence between  
a point in a Darboux trihedron and a fixed coordinate system 
with their vertices combined. To obtain the coordinates of 
point C at a given point of the curve in a fixed coordinate  
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system, you need to carry out a parallel transfer by the value 
of the coordinates of the point of the curve in the fixed sys-
tem OXYZ. Taking into account the above at v = u the fixed 
point in the trihedron system with coordinates С{TC, РС, NС} 
describes the trajectory in a fixed coordinate system accord-
ing to parametric equations:

x T
a a u

P
a u v u

a a a

C C

C

=
+ −

+

+
+ −( )
+( ) + −

1

2 2

1

1 2 2

2 2

2

2 2 2

sin

cos cos sin

sin uu
N

a u

a
uC( )

+
+

+
sin

;
1 2

y T
a a u

P
a u u u

a a a

C C

C

=
+ −

+

+
− −( )
+( ) + −

1

2 2

1

1 2 2

2 2

2

2 2 2

sin

sin cos sin

sin uu
N

a u

a
uC( )

−
+

+
cos

;
1 2

z T
a u u

a a u

P
a v u

a a a

C C

C

=
−( )

+ −
+

+
+( )

+( ) + −

cos sin

sin
cos sin

2 2

1 2

2 2

2 2 2 ssin

sin cos .

2

1

1 2

u

N
a

a u uC

( )
+

+
+

+ +( ) 	 (11)

Point C can be mobile in the Darboux trihedron system. 
Let it describe the circle of radius r in the plane of the trihe-
dron formed by the orts T  and N  with the center shifted by 
the distance r along the ort N . The rotation of the point of  
a circle in the plane and the motion of the Darboux trihedron 
are consistent with each other and depend on the variable u. 
The parametric equations of a circle in the trihedron system 
are written:

T r uC = cos ;ω

PC = 0;

N r r uC = − sin ,ω 	 (12)

where ω is a constant that affects the speed of rotation of a point.
Substitution (12) in (11) will give parametric equations 

of the curve, which is the result of adding two movements: 
the bulk motion of the trihedron along the curve and the 
rotational motion of a point in the trihedron system. In 
Fig. 2, a, the curve is constructed at r = 0.5 and ω = 3. The 
constant ω is chosen in such a way that the curve resembles 
a cycloid when a circle rolls in a straight line. Our rolling oc-
curs along a curve and the curve itself is not flat, but spatial.

You can specify the rotational motion of point C in the 
plane of the trihedron formed by the orts P  and N . Then the 
parametric equations of the circle in the trihedron system 
are written: 

TC = 0;

P r uC = cos ;ω

N r uC = sin .ω 	 (13)

In this case, the rotation of the point occurs in the normal 
plane of the trihedron around the origin. The result is a curve 
similar to a helix with a curved axis, which is the given curve on 
the surface. In Fig. 2, b, a curve is constructed at r = 1 and ω = 15.

 
 
 

 

a

 
 
 

 
b

Fig. 2. Spatial curves as a result of adding the motion 	
of a Darboux trihedron along the predefined curve on the 

surface and the rotational motion of a point in the trihedron 
system: a – the rotation of a point occurs in the plane 

formed by the orts T  and N ; b – the rotation of the point 
occurs in the plane formed by the orts P  and N

The constructed curves are absolute trajectories of ad-
dition of two movements – the bulk motion of the Darboux 
trihedron on the surface and the relative motion of a point 
in the system of the trihedron itself. In this case, if necessary, 
one can easily find expressions of absolute velocity and ac-
celeration by sequential differentiation of absolute trajectory 
equations. A more difficult way is to find the acceleration of 
the bulk motion, relative motion, and Coriolis acceleration 
followed by their vector addition.

Using the Darboux trihedron, surfaces can also be built. 
To this end, you need to place a certain curve in its system. 
When the Darboux trihedron moves, the set of curve posi-
tions will form a surface. In the parametric equations of the 
surface there are two independent variables. In our case, one 
of them is the variable u, which specifies the displacement and 
orientation of the Darboux trihedron. As the second variable, 
we take t, with which we describe the generatrix curve in 
the trihedron system. Let it be a circle of radius r located in 
the normal plane of a Darboux trihedron with center shifted 
by the value of radius r in the direction of the normal N .  
Its parametric equations will be written as:

TC = 0;

P r tC = cos ;

N r r tC = + sin .	 (14)

To close curve (14), the variable t must vary within 
t = 0...2π. By substituting equations (14) into (11), para-
metric equations of the tubular surface can be obtained.  
In Fig. 3, a, it is built at r = 0.5. The axis of the tubular surface 
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is raised above the transfer surface by the value of radius r, so 
it touches the transfer surface along the line set on it by the 
internal equation v = u. You can specify a different line on the 
transfer surface. For example, assign a line using a trigono-
metric function and find its derivative:

v b u c= +sin ,

′ =v b ucos .	 (15)

Substituting the expression v from (15) into (2) forms  
a new line on the transfer surface. When substituting expres-
sions (15) in (5), (7), and (8), we obtain the guide cosines of 
the Darboux trihedron for the new curve. After that, you can 
build both lines and surfaces using a trihedron. In Fig. 3, b, 
we constructed a tubular surface that touches the line on the 
transfer surface given by equation (15). To this end, equa-
tion (14) was substituted into the updated guide cosines and 
the subsequent surface equation.

 
 
 

 

a
 

 
 

 
b

Fig. 3. Tubular surfaces that touch the transfer surface along 
the given lines on it: a – the line on the transfer surface 

is given by the equation v = u; b – the line on the transfer 
surface is given by the equation v = bsinu+c

The approach devised allows us to build other surfaces 
with a generating curve of variable shape. For example, in 
equation (14) one can specify the generating circle of vari-
able radius with dependence r = r(u).

6. Discussion of results of the construction of curves  
and surfaces using the Darboux trihedron

Our results on the construction of curves and surfaces 
using the Darboux trihedron with the predefined trajecto-
ry of its motion can be explained by using two coordinate 
systems. One of them is a fixed system, and the second is  
a mobile one, the role of which belongs to the Darboux  

trihedron. The fixed system is known. A feature of the for-
mation of a moving system, the role of which belongs to 
the Darboux trihedron, is the definition of orts so that this 
system is right-hand. This is an important condition since 
the transition from a moving system of a Darboux trihedron 
to a fixed one via guide cosines requires that both systems be 
right-hand. In this respect, the position of the Darboux tri-
hedron can be determined in two ways: the ort of the normal 
to the surface, which is determined by the disclosure of deter-
minant (1), can be directed in one or the opposite direction 
of the surface. The peculiarity of our study is that its original 
author makes a decision regarding the direction of the nor-
mal in each case, based on the conditions of the problem set. 
The direction of the ort is changed by changing the last two 
lines in the determinant (1). For example, when constructing 
curves (Fig. 2) and surfaces (Fig. 3), the direction of the nor-
mal to the surface was chosen positive. When changing the 
direction of the normal vector, the tubular surfaces in Fig. 3 
would be built not above the surface, but below it.

The proposed approach allows obtaining curves and sur-
faces based on the physical essence of the problem. Typically, 
lines and surfaces are described by parametric equations in  
a fixed coordinate system, for example, in [13, 14]. The ad-
vantage of the proposed approach makes it possible not only 
to expand the possibilities of shaping lines and surfaces but 
also to carry out their analytical description for specific tasks, 
for example, for laying a pipeline on the predefined surface. 

The possibilities of the proposed approach are greatly 
expanded if the guide line of the Darboux trihedron on the 
surface is described in the eigen arc length function. This 
fact is a limitation to the wider use of the Darboux trihedron 
since among the variety of curves on the surface, only a small 
part can be described as a function of the length of the na
tural arc. If the trajectory of the bulk motion of a trihedron 
is described in a function of the length of its eigen arc, then 
the derivatives of the trajectory equations are a unit vector 
that does not need to be normalized. In addition, you can 
apply formulas of differential geometry, similar to Fr net 
formulas for the Fr net trihedron. The disadvantages of the 
method include cumbersome expressions of the guide cosines 
of the Darboux trihedron for some surfaces. However, this is 
not an insurmountable obstacle to improving the proposed 
approach. In the future, further research can be directed to 
numerical methods of calculation.

7. Conclusions 

1. At each point of the curve that lies on the surface, you can 
construct a Darboux trihedron. One of its orts is the unit vector, 
pointing normally towards the surface. However, the normal it-
self can be directed in one or the opposite direction from a point 
on the surface. It has been justified how to find three orts of  
a Darboux trihedron so that its system is right-hand. 

2. Analytic expressions for guide cosines of each ort of 
the Darboux trihedron have been found. These expressions 
are represented in terms of the parameters of the surface and 
the curve on it. The curve on the surface is given by a  cer-
tain relationship between independent surface variables. 
The type of this dependence is due to the shape of the curve 
on the surface. When establishing such a dependence, the 
position of the Darboux trihedron on the surface, which is 
accompanying the curve, depends only on the value of one 
independent variable. 
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3. Our theoretical results of the analytical description of 
the motion of a point or line in the system of a moving tri-
hedron were used to construct curves and surfaces using the 
accompanying Darboux trihedron of a curve on the surface. 
The transfer surface and the line on it were given, which 
runs diagonally through the cells of the curved coordinate 
grid of the surface. When a Darboux trihedron moved along 
this line in its system in one of the coordinate planes, the 
point described a circle. As a result, the absolute trajectory of  
a point in projections onto a fixed coordinate system was ob-
tained. In one case, it is analogous to a cycloid for a straight 
line on a plane, in the other – a helix with a curved axis. If a 
Darboux trihedron is moved with a fixed circle in its normal 
plane, a tubular surface is formed. In the work, we built such 
surfaces in the form of a pipeline with a curved axis, which 
lies on the surface.
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