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Deep learning algorithms rely on digital pathol-
ogy to classify tissue tumors, where the whole tis-
sue slides are digitized and imaged. The produced 
multi-resolution whole slide images (MWSIs) are 
with high resolution that may range from about 
100,000 to 200,000 pixels. MWSIs are often stored 
in a multi-resolution configuration to simplify the 
processing of images, navigation, and efficient 
exposition. This work develops a network for clas-
sifying MWSIs that require high memory employ-
ing a deep neural Inception-v3 architecture. This 
work employs the MWSIs from Camelyon16, which 
is around 451 GB in size of Challenge dataset from 
two independent sources including 400 MWSIs 
as a total of lymph nodes. The training dataset 
contains 111 MWSIs of tumor tissue and lymph 
nodes and 159 WSIs of normal lymph nodes. The 
developed model uses sample-based processing to 
train extensive MWSIs employing the MATLAB 
platform. The model introduces transfer learning 
techniques with an Inception-v3-based architec-
ture to categorize separate samples as a tumor or 
normal. Therefore, the main aim here is to achieve 
two-classes binary segmentation containing nor-
mal and tumor. This includes creating a new fully 
connected layer for the Inception-v3 architecture 
with two classes and compensating new layers 
instead of the original final fully-connected lay-
ers. The results obtained demonstrated that the 
heatmap visualization can recognize the bound-
ary coordinates of ground truth as sketchy Region 
Of Interest (ROI), where the green boundary rep-
resents the normal regions and the tumor area 
with red boundaries. The proposed Inception v3 
Convolutional Neural Network (CNN) architec-
ture can achieve more than 92.8 % accuracy for 
such MWSIs dataset to categorize brain tumors 
into normal and tumor tissue
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1. Introduction

After cardiovascular disorders, cancer is the second big-
gest cause of death. Brain cancer has the lowest survival rate 
of any type of cancer. Several forms of brain tumors exist 
depending on the location, shape, and texture of the tumor. 
A precise tumor-type diagnosis enables the doctor to select 
the best course of action and even save the patient’s life. A 
Computer Aided Diagnosis (CAD) system to aid physicians 
and radiologists in the detection and classification of cancers 
is desperately needed in the field of artificial intelligence. 
Deep learning has demonstrated promising performance in 
computer vision systems in recent years [1, 2]. A dangerous 
condition, brain tumors are responsible for a rising number 
of fatalities. Magnetic resonance imaging (MRI)-based 

manual tumor diagnosis takes a lot of time and is ineffec-
tive for precisely identifying, locating, and classifying the 
type of tumor [3]. There are several complexities in the 
categorization of brain tumors by magnetic resonance imag-
ing (MRIs); first, the high-density nature of the brain makes 
some difficulties to classify brain tumors; and second, the 
intertwining of tissues in brain structure and the difficulty 
of it [4]. Developed differential deep-CNN architecture has 
the advantage of analyzing the image pattern and pixel di-
rection by means of contrast computations and its capability 
to categorize a huge dataset without technical problems and 
with high accuracy [4, 5].

Patients’ chances of survival can be increased by early 
detection and treatment of liver cancer. The most compre-
hensive information for the differential diagnosis of liver 
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cancers comes from dynamic contrast-enhanced MRI. Yet, 
as MRI diagnosis is influenced by personal experience, deep 
learning might offer a fresh approach to diagnosis [6]. In the 
past several years, academics have focused a lot of attention 
on Deep Learning, the newest and most popular trend in the 
field of machine learning. Deep learning has been widely 
employed in multiple applications as a powerful machine 
learning method for handling various complicated problems 
that call for exceptionally high accuracy and sensitivity, par-
ticularly in the medical industry. In general, brain tumors 
are among the most prevalent and severe malignant tumor 
disorders, and if they are identified at a higher stage, they 
might result in a very short predicted life. Thus, grading a 
brain tumor is a very important step to take after finding 
the tumor in order to develop a successful treatment strat-
egy [7].

In the area of medical image analysis, classifying brain 
tumors is a challenging task. Radiologists may quickly and 
readily identify the tumor without requiring surgery thanks 
to evolving algorithms and machine learning technology [4]. 
Deep learning algorithms have made great strides in the 
processing and analysis of medical images in recent years. 
However, there are numerous challenges associated with 
identifying brain cancers using magnetic resonance imag-
ing, including the complexity of the brain’s structure and 
the interconnection of its tissues, as well as the challenge of 
diagnosing brain tumors given the great density of the brain. 
Therefore, research is devoted to the development of an 
effective deep learning model for classifying such high-reso-
lution images of tumors and that is relevant.

2. Literature review and problem statement

Several studies compared a number of deep learning 
methods and classical machine learning methods for classi-
fying tumor images of lymph nodes. The study [8] covered 
four traditional machine-learning techniques: random for-
ests, support vector machines, adaptive boosting, and arti-
ficial neural networks. 1,397 lymph nodes taken from 168 
individuals’ PET/CT scans were used to evaluate the meth-
odologies, and the findings of the accompanying pathology 
examination served as the gold standard. The assessment 
was conducted by means of 10 times cross-validation ac-
cording to Area Under the Curve (AUC), accuracy (ACC), 
specificity, and the criterion of sensitivity. The convolutional 
Neural Network (CNN), human doctors from our institute, 
and conventional approaches were contrasted using the best 
feature set. The findings showed that the diagnostic char-
acteristics produced considerably higher AUC and ACC 
values (0.870.92 and 8,185 %, respectively) than texture 
features. Specificity, sensitivity, AUC, and ACC for CNN 
were 0.91, 86, 88, and 84, respectively. However, tumor 
identification from magnetic resonance images (MRIs) be-
comes a time intense method and is inadequate for precisely 
classifying, localizing, and detecting tumor type. 

The paper [3] also addressed brain tumor classification 
localization and detection with a multi-model two-phase 
automatic analysis. The model contained preprocessing, 
feature classification by the support vector machine (SVM) 
with an error-correcting output codes approach, and fea-
ture extraction by a CNN. The paper classified the MRIs 
into abnormal and normal images to detect brain tumors 
using region-based CNN (VGG-19, Visual Geometry 

Group (VGG)-16, and AlexNet). Although the results of this 
work demonstrated that 99.55 % was achieved for 349 imag-
es as maximum detection accuracy, the dataset of the study 
was with a limited image resolution of lymph nodes tumor.

The study [9] proposed a CNN model that included two 
parts: learning algorithms and architecture to optimize the 
network training parameters. The authors reported accuracy 
results for the enhancing regions, core, and complete as 0.84, 
0.85, and 0.90 respectively for the dataset (BRATS 2016 
brain tumor). Although all the pixels of an MR image are 
classified and attained a good performance, the segmenta-
tion accuracy was not sufficient to be generalized on other 
larger datasets. CNN deep learning architecture to classify 
the brain tumors of a weighted contrast-enhanced brain MR 
dataset of 3,064 T1 images into Pituitary Tumor, Meningi-
oma, and Glioma was proposed by the study [7]. The study 
obtained a sensitivity of 98.18 % and an accuracy of 98.93 % 
for the picked lesions, 98.52 % sensitivity, and 99 % accuracy 
for the uncropped lesions. However, the obtained application 
was not valid over a larger dataset. 

Based on CNN classification for the histologic patterns 
on surgical resection slides, a lung adenocarcinoma classifier 
was proposed by [10]. The CNN model identifies regions of 
neoplastic cells, then collects the classifier to minor histo-
logic patterns and infers predominant and for every specified 
image from 143 whole-slide datasets. The study’s approach 
may be valid for any whole-slide image classifications, but 
the classification accuracy was limited. This limitation also 
includes the Artificial Intelligence (AI-based) method pro-
posed by [11]. In the same context, the study [6] developed a 
CNN model of a deep learning system for classifying liver tu-
mor images according to laboratory test results and clinical 
data including text, unenhanced MR images, and enhanced 
MR images. The results demonstrated that deep learning 
CNN can achieve high-performance accuracy. This approach 
required very clean images for the processed dataset. A good 
evaluation model has been presented in the study [1], where 
the proposed model is performed over a dataset including 
3 brain tumor types (Pituitary tumors, Gliomas, and Me-
ningiomas) of 3,064 MRI images. However, this architecture 
was very complicated and requires long time and parameter 
settings.

All aforementioned literature allows us to assert that it 
is expedient to conduct a study on the use of a deep learning 
network to classify normal and tumor tissues by creating a 
new fully connected layer with two classes and compensat-
ing new layers instead of the original final fully-connected 
layers to help early detection of brain tumors.

3. The aim and objectives of the study

The aim of the study is to achieve two-classes binary 
segmentation containing normal and tumor. This includes 
creating a new fully connected layer for the Inception-v3 
architecture with two classes and compensating new layers 
instead of the original final fully-connected layers. This will 
make it possible to process the MWSIs dataset and help ear-
ly detection of brain tumors.

To achieve this aim, the following objectives are accom-
plished:

− to calculate and visualize the heatmap for the test 
images for indicating the ROI boundary coordinates (tumor 
and normal regions) of ground truth;
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ing and 130 for testing. The MWSIs are saved in an 11-lev-
el pyramid structure of a stripped format and TIF files. 
The training dataset contains 111 WSIs of tumor tissue 
and lymph nodes and 159 WSIs of normal lymph nodes. 
The tumor images are accompanied by ground truth co-
ordinates of the lesion boundaries. The data set is around 
451 GB in size.

4. 3. Training Inception�v3 Network
This work employs deep Inception V3 network [14], 

which is a convolutional neural network architecture in 
transfer learning trained with an Image-Net dataset [15]. 
The network includes 48 deep layers for classifying more 
than a million images into 1,000 object categories such as 
animals, trees, buildings, etc. The deep Inception V3 net-
work has learned a wide range of rich feature representations 
of images of input size 299×299. The image features are ex-
tracted by the network convolutional layers, while the final 
classification layer and the last learnable layer classify input 
images based on image features. The two final layers provide 

class information probabili-
ties by combining the image 
features, predicted labels, 
and loss values. The names 
of these two final layers are 
“ClassificationLayer_ pre-
dictions” and “predictions”. 
This work retrains a pre-
trained architecture for 
classifying new images by 
replacing these two final 
layers with layers modified 
to agree on the tumor med-
ical images. The flowchart 
demonstrating preparing of 
data, setting up the Incep-
tion V3 architecture, and 
identifying training op-
tions is shown in Fig. 2.

− to obtain a confusion matrix and consequently get the 
accuracy of classification;

− to compare the classification results with the ground 
truth ROI boundary coordinates;

− to quantify the developed architecture estimation.

4. Method and materials

4. 1. Object and research hypothesis
The main objective is to classify multi-resolution whole 

slide images (MWSIs) that require high memory by using a 
deep neural Inception-v3 architecture. The developed model 
uses sample-based processing to train extensive MWSIs 
employing the MATLAB platform and its function of the 
deep learning tools. The model introduces transfer learning 
techniques with an Inception-v3-based architecture to cat-
egorize separate samples as a tumor or normal. The model 
architecture of the developed deep learning Inception-v3 is 
shown in Fig. 1.

Therefore, two classes of binary segmentation contain-
ing normal and tumor must be achieved ultimately. This 
includes creating a new fully 
connected layer for the In-
ception-v3 architecture with 
two classes and compensat-
ing new layers instead of the 
original final fully-connect-
ed layers.

4. 2. Dataset
This work employs the 

multi-resolution whole slide 
images (MWSIs) from 
Camelyon16 [13], which is 
around 451 GB in size of 
Challenge dataset from two 
independent sources includ-
ing 400 WSIs as a total of 
lymph nodes. The Camely-
on16 test image dataset con-
tains 130 MWSIs including 
both tumor and normal tis-
sue with approximately 2 GB 
size each. This data divides 
the images into 270 for train-

Fig. 1. Inception v3 architecture [12]

predictions
ClassificationLayer_pred
ictions

RMSProp

RMSProp

Fig. 2. Preparing data, setting up the Inception V3 architecture, and identifying training options
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As described in the 
flowchart, the Inception 
V3 architecture was mod-
ified by creating the re-
quired classification layer 
of the two categories and 
replacing the last catego-
rization layer with a new 
layer to fit the input image 
features. The hyperparam-
eter optimization settings 
of root mean squared prop-
agation (RMSProp) [16] 
have been used to train 
the developed network. 
The maximum epochs 
have been reduced to a 
small value since the large 
training data facilitates to 
achieve convergence fast-
er. The minimum batch 
size is set according to 
GPU memory availabili-
ty, where a large min. patch size enables us to accomplish 
the training earlier. However, larger min. patch size can 
decrease the capability of the architecture to cover gener-
al modes. A false is set to the (ResetInputNormalization) 
parameter for preventing the normalization stats compu-
tation when a full read of the training data is performed. 
This work also used a modified pre-trained network to 
suit the input images to save the time of network training.

4. 4. Pre�processing data
The pre-processing data includes downloading the 

test dataset, specifying a directory for the test images, 
and creating blocked Image Objects for Managing the 
Test Image dataset. Every blocked Image object refers 
to its correspondence file on memory. Then, the spatial 
referencing from the TIF file metadata is set for the whole 
training dataset. In this stage, it is possible to produce 
tissue masks. To process the MWSI dataset proficiently, a 
tissue mask is created for every test image. This method is 
identical to the one applied in the training preprocessing 
of normal images. This work set the normal Mask-Level to 
8 and 512*512 block sizes. Each tissue mask has only one 
level and is small sufficient to fit in a disk. In this stage, 
we show samples of tissue masks, Fig. 3.

The second stage of this diagram is the Image pre-pro-
cessing Ground Truth of Tumor data, where specifying 
the level of image resolution for the tumor mask data is 
performed with a tumor Mask-Level equal to (8). For 
each tumor image ground truth, we create a tumor mask 
following the steps:

– for every region of interest (ROI), we read the 
boundary (x, y) coordinates in the interpreted XML 
folder;

– for normal and tumor tissue ROI images, we divide 
the boundary coordinates into disconnected cell arrays;

– exchanging to a binary blocked image for the bound-
ary coordinate cell arrays, where the background refers to 
normal tissue pixels and the ROI of binary images refers 
to tumor pixels. ROIs Pixels that are within both normal 
and tumor tissue are categorized as background.

4. 5. Heatmaps Prediction for Tumor Possibility
The heatmap can give a probability indication for every 

block whether there is a tumor category. To calculate the heat-
map for every test image, this work uses the trained categori-
zation architecture. We perform the following functions over 
every test image to obtain the heatmap:

– selecting all blocks that include one tissue pixel minimum 
through computing an argument called (theta), which rep-
resents the Inclusion Threshold;

– processing blocks’ batches by applying a (predict-Block) 
function, which returns the probable score of there is a tumor in 
the block after contacts each prediction block of data;

– writing the heatmap files to a TIF folder, where the last 
outcome after handling the whole blocks is a heatmap demon-
strating the potential of encountering tumors through the full 
MWSI;

– heatmap Visualization.

4. 6. Classifying of testing images 
In order to classify the blocks of testing images into normal 

and tumor, an application of specific thresholding is performed 
over all the heatmap probability scores. The blocks are catego-
rized as a tumor when the value of tumor probability is above 
the threshold (0.8). In an ideal world, the calculation of this 
level of threshold depends on the precision-recall curves or the 
ROC (Receiver Operating Characteristic) over the validation 
dataset. A flowchart demonstrates the processing stages of 
heatmaps prediction of tumor probability, classifying test im-
ages at a particular threshold, classification results, and quanti-
fying the network prediction is shown in Fig. 4. 

The classification of the blocks for all test images and 
calculation of the confusion matrix are performed using the 
following processes on every heatmap image:

– applying a threshold on each heatmap image;
– to match the heatmap size, we perform resizing and 

refining the ground truth mask;
– for the entire blocks, we compute the confusion matrix 

at the optimum resolution point;
– saving the confusion matrix components (FN, TN, FP, 

and TP) in a blocked image as a structure;

blocked-Image
x y

Fig. 3. Flowchart showing the preprocessing of test data and preprocessing of tumor ground 

truth images
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– saving the classification predictions as numerically la-
beled images in blocked images, where FN, TN, FP, and TP 
results are represented by the values 0, 1, 2, and 3, respectively;

– over the entire test image, we compute the global con-
fusion matrix;

– confusion matrix visualization;
– classification Result Visualizing is implemented by 

comparing the classification results with the ROI boundary 
coordinates of ground truth;

– based on computing the area under the curve AUC-
ROC curve, we quantify the network prediction at various 
threshold values [1 0.9 0.99:.1:‒.1 0 0.05];

– using the trapezoidal concept, we also compute the 
AUC metric, which is in the range of (0‒1).

5. Results of classifying tumor images using Inception v3

5. 1. The Heatmap Visualization
This work set the normal Mask-Level to 8 and 

512×512 block sizes. Each tissue mask has only one level and 
is small sufficient to fit in a disk. Fig. 5 shows samples of the 
created tissue masks from the dataset.

These samples indicate that the stage for preprocessing of 
test data and preprocessing of tumor ground truth images is 
ready. To calculate the heatmap for every test image, this work 
uses the trained categorization architecture. The last outcome 
after handling the whole blocks is a heatmap demonstrating 
the potential of encountering tumors through the full MWSI, 
one sample from the dataset is shown in Fig. 6.

The Heatmap Visualization includes selecting test im-
ages to put on view. The left-hand side part displays the 
boundary coordinates of ground truth as sketchy ROI. The 
green boundary, which represents the normal regions, can 
take place within tumor areas that are demonstrated by red 
boundaries. The right part of the figure shows the test image 
heatmap, where the ROI is extracted and zoomed in.

5. 2. Confusion matrix
The confusion matrix visualization is depicted in Fig. 7.

Fig. 7. The confusion matrix for the tested data

The confusion matrix lists the number of classifica-
tion predictions that were false negative (FN), true nega-

Fig. 4. The processing stages of heatmaps prediction of tumor probability, classifying test 

images at a particular threshold, classification results, and quantifying the network prediction

Fig. 5. Samples of the created tissue masks from the dataset

a

Fig. 6. Heatmap visualization 

of one sample from the 

dataset: a – ground truth; 

b – prediction heatmap

b
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tive (TN), false positive (FP), and true positive (TP). From 
the normalized global confusion matrix’s confusion chart, it 
is found that because the normal tissue makes up the major-
ity of the blocks in the MWSI images, there are many true 
negative predictions.

5. 3. Comparing the classification results with the 
ground truth Region Of Interest boundary coordinates 

The comparison results of the classification obtained 
from the fusion matrix analysis with the ground truth ROI 
boundary coordinates for the same tumor sample are shown 
in Fig. 8. 

     The result shows the border 
coordinates ground truth as sketchy 
ROIs on the left-hand side, while 
the right-hand side depicts the test 
image. In addition, an application of 
block-based coloring is performed 
on the confusion matrix.

5. 4. Quantifying Network estimation
According to computing the area under the curve (AUC) 

curve, we quantify the network prediction at various thresh-
old values [1 0.9 0.99:.1:‒.1 0 0.05]. Using the trapezoidal 
concept, we also compute the AUC metric, which is in the 
range (0‒1). The AUC for the true positive rate with respect 
to the false positive rate is shown in Fig. 9.  

A comparison with recent studies discussing tumor clas-
sification in different areas using machine learning architec-
tures can be listed in a comparison table (Table 1).

It is found that the AUC is around 1 for this dataset, 
which represents the approaching to ideal performance for 

the developed network. For best results, the AUC can be 
employed to control the tuning in the training stage.

6. Discussion of the results of classifying tumor images 
using Inception v3

A sample of the created tissue masks from the dataset 
was shown in Fig. 5, which indicates that the stage for pre-
processing of test data and preprocessing of tumor ground 
truth images is ready for further analysis. We use the trained 
categorization architecture to calculate the heatmap for 
every test image. The last outcome after handling the whole 
blocks is a heatmap demonstrating the potential of encoun-
tering tumors through the full MWSI, one sample from 
the dataset was shown in Fig. 6. The left-hand side part of 

Table 1

Comparison between the developed method and recent studies discussing tumor 

classification in different areas using machine learning architectures

References Image type
Developed 

network
Application Dataset

Achieved 
accuracy 

[17] Cystoscopicimages U-Net CNN
Tumor blad-
der lesions

PubMed-MED-
LINE database

90 %

[4] 25,000 MRIs
differential 
deep-CNN

Brain tumors Not clear 90.25 %

[18]
Automated Breast 

Ultrasound 
(ABUS) images

Shared 
Extracting 

Feature 
Network 

(SEF-Net)

Breast tumor Not clear 92.86 %

[19] MRI
transfer 

deep‐learning
Brain tumors Not clear 90.75 %

[20]
Mammographic 

Image
U-Net CNN Brain tumors

322 raw (MIAS) 
and 580 from 

Private datasets
91.7 %

[21] MRI

Xception, 
CNN with 

ADAM 
optimizer

Brain tumors Not clear 91.67 %

[22] MRI U-Net CNN Brain tumor 
MICCAI BraTS 

2017
Not clear

This MWSIs
Inception v3 

CNN
Brain tumor Camelyon16 92.8 %

Fig. 9. Area under the curve for the true positive rate with 

respect to the false positive rate

a

b

Fig. 8. The comparison between 

the classifications of fusion 

matrix analysis with the ground 

truth Region Of Interest boundary 

coordinates: a – ground truth; 

b – classified blocks
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heatmap visualization displays the boundary coordinates of 
ground truth as sketchy ROI. The green boundary, which 
represents the normal regions, can take place within tumor 
areas that are demonstrated by red boundaries. The right 
part of Fig. 6 shows the test image heatmap, where the ROI 
is extracted and zoomed in. The classification predictions 
have been saved as numerically labeled images in blocked 
images, where FN, TN, FP, and TP results are represented 
by the values 0, 1, 2, and 3, respectively. Over the entire test 
image, we computed the global confusion matrix. The clas-
sification result was implemented by comparing the classifi-
cation results with the ROI boundary coordinates of ground 
truth. From the normalized global confusion matrix’s con-
fusion chart, it is found that because the normal tissue 
makes up the majority of the blocks in the MWSI images, 
there are many true negative predictions. Fig. 8 compared 
between the classifications of fusion matrix analysis with the 
ground truth ROI boundary coordinates. The result shows 
the border coordinates ground truth as sketchy ROIs on 
the left-hand side, while the right-hand side depicts the test 
image. In addition, an application of block-based coloring is 
performed on the confusion matrix.

False positives and false negatives occur at the borders 
of the tumor area, which indicates that the architecture has 
difficulty identifying blocks with fractional classes. The 
result shows true negatives with no color, false negatives as 
yellow, false positives as cyan and true positives as red. To 
decrease the error of classification in the area surrounding 
the tumor ROI, less homogenous blocks were used to retrain 
the network as shown in Fig. 9.

From a comparison between the developed method and 
recent studies such as the studies [17, 22] that used Cysto-
scopic images with U-Net CNN, and the study [19] that used 
MRI images with transfer deep learning, the developed In-
ception-v3 architecture achieved better accuracy. Further-
more, it is found that the AUC for the true positive rate with 
respect to the false positive rate is around 1 for the dataset 
considered in this study (Table 1). This represents the ap-
proaching to ideal performance for the developed network. 

The proposed algorithm has been applied to this type 
of dataset, which may be considered as an applicability 
limitation, which can be improved to obtain the best results 
by employing the AUC to control the tuning in the training 

stage. A potential development might be considered when 
applying another type of dataset to expand the applicability 
of the proposed method.

The limitation of this approach is that it has been only 
applied to the Camelyon16 dataset, which is multi-resolution 
whole slide images (MWSIs). This can be taken into account 
as future work when expanding the application to more 
types of MWSI datasets.

7. Conclusions

1. The heatmap for the test images to indicate the ROI 
boundary coordinates (tumor and normal regions) of ground 
truth has been calculated and visualized to recognize be-
tween the tumor and normal tissue.

2. The achieved accuracy of tumor classification ob-
tained from the confusion matrix was more than 92.8 % for 
such a huge MWSIs dataset.

3. The comparison of the classification results with the 
ground truth ROI boundary coordinates successfully cate-
gorizes between normal and tumor regions.

4. It is found that the AUC is around 1 for this dataset, 
which represents the approaching to ideal performance for 
the developed network.
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