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1. Introduction

Reducing the cost of production, provided it is of high 
quality, is one of the main factors in the functioning of 
enterprises, which affects their competitiveness. This is es-
pecially important under conditions of high competition of 
enterprises in the agro-industrial complex. The solution to 
the problem is related to the development of new technolo-
gies and devices and the improvement of existing ones [1].

It should be noted that reducing the cost of production 
is especially important for technological processes that 
are used for large volumes of raw materials. One of these 
processes is the separation of grain mixtures. During the 
collection, storage, and processing of grain mixtures, hun-

dreds of thousands of tons of raw materials are subject to 
separation, which leads to significant effects in energy and 
resource efficiency, provided that technologies and equip-
ment for this process are improved [2].

Separation of grain mixtures in a vibro-pneumatic 
fluidized bed is one of the main techniques of separating 
impurities from the seeds of the main crop or separating 
different crops. According to this technique, the mixture 
is divided into grain fractions according to a set of phys-
ical and mechanical properties: geometric dimensions, 
shape, density, aerodynamic parameters, and particle 
elasticity [3]. At the same time, scientifically based man-
agement of the separation of grain mixtures by applying 
physical-mathematical modeling of the process under var-
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A physical-mathematical model of oscillations of unbal-
anced vibrators of a pneumatic sorting table as non-sta-
tionary oscillations of an impulse-loaded round plate with 
various options for fixing its contour has been built. The 
axisymmetric non-stationary oscillations of a round plate 
supported by a one-sided round base were considered in 
two ways of fixing its contour, namely, when it is tight-
ly clamped and freely supported. It was assumed that the 
linearly elastic base resists only compression and does 
not perceive stretching. It is shown that for certain dura-
tions of the transverse force pulse in time, the amplitude of 
the deflection of the middle of the plate in the direction of 
action of the external pulse can be smaller than the ampli-
tude of the deflection in the opposite direction. At the same 
time, in the second case, there is no contact of the plate 
with the base. It has been proven that this dynamic effect 
of the asymmetry of the elastic characteristic of the system 
also applies to bending moments and is more clearly man-
ifested when the contour is freely supported than when it 
is tightly clamped. For rectangular and sinusoidal pulses, 
closed-loop solutions of the equations of motion of the plate 
during its contact with the base and after separation from 
the base were constructed. Compact formulas were derived 
for calculating the amplitudes of positive and negative 
deflections in both directions from the zero position of stat-
ic equilibrium. Formulas have been obtained for calculating 
the time it takes for the plate to obtain extreme deflection 
values, which is achieved due to the selection of a spe-
cial axisymmetric distribution of dynamic pressure on the 
plate. Under such a load, the plate simultaneously detach-
es from the base at all points, except for the contour points, 
which reduces the nonlinear boundary value problem to a 
sequence of two linear problems. Numerical integration of 
the differential equation was carried out to check the reli-
ability of the constructed analytical solutions. Adequacy 
of the model was proven for the following values of initial 
parameters: modulus of elasticity, 2.1·1011 Pa; the Poisson 
ratio of the plate material, 0.25; plate thickness, 7...10 mm; 
the maximum pressure on the plate, 4·103 Pa; the bending 
stiffness of the plate, 6402.6667 N·m
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ious factors that affect its energy and resource efficiency 
remains relevant.

2. Literature review and problem statement

There are a number of technical solutions for ensuring the 
process of separation of grain mixtures in a vibro-pneumoflu-
idized bed, which differ in the shape of the working surfaces, 
the scheme of movement of the grain mixture, the technique of 
creating the fluidity of the raw material layer, etc. [4].

Among the technical implementations of equipment for 
the separation of grain mixtures, pneumatic sorting tables 
should be singled out, on which the separation of grain mix-
tures containing seed material is carried out. The separation 
of seed material from the grain mixture imposes certain re-
quirements on the functioning of the separation equipment. 
During the selection of this fraction, its particles are subject-
ed to repeated mechanical impact from the working surfaces, 
which leads to injury of the particles. As a result, damage to 
seed particles can reach critical values, which significantly 
reduces the biological activity of the final product [5]. Ways 
to solve this problem should obviously be sought in the jus-
tified management of mechanical impact on raw material 
particles. Such control can be carried out by developing and 
applying physical-mathematical models of oscillation of the 
working bodies of the separation equipment.

The process of stratification of the grain mixture into 
fractions and their further transportation along the work-
ing surface of the pneumatic sorting table to the unloading 
devices takes place under the influence of vibrations of the 
working surface and the flow of air through the layer of raw 
materials. At the same time, the frequency of oscillations 
is determined by the operation of frequency converters, 
and the amplitude is varied by unbalanced vibrators [6]. It 
should be noted that the stability of vibrations of the work-
ing surface and, as a result, the quality of separation of the 
grain mixture, are determined by the stability of the devices 
that create these vibrations.

Unbalanced vibrators are mechanical devices with fixed 
positions. Their form changes according to the set require-
ments from circle to sector [7]. The research examines one of 
the limit fixed positions of unbalanced vibrators – a round 
shape. At the same time, for the construction of a mathemati-
cal model, an assumption was made: the unbalanced vibrator 
is considered as a circular plate.

Round-shaped plates are common structural elements. 
These are the bottoms of liquid storage tanks, foundation 
slabs of silos and other buildings with a round shape in plan, 
hatch covers, glazing of portholes, etc. In applied mechanics, 
considerable attention is paid to calculations of their strength, 
both under the action of static and dynamic loads [8].

Unsteady oscillations of a circular plate on an elastic 
base are considered in [9], where the classical equation of 
the plate theory is not used, but its refined version of the 
first approximation. The problem of impulse deformation is 
solved by numerical methods, using the method of dipping 
or expanding the shape of the area to the canonical one. The 
circular area expands to a square one. The results obtained 
in [9] concern only the continuous movement of the plate 
from the base, which is provided for in the statement of the 
problem. Article [10] considered the possibility of using the 
theory of plates with continuous contact from the base to 
calculate the strength of hard asphalt concrete road surfaces. 

Oscillations of rectangular plates under the action of moving 
loads arising during the movement of transport were stud-
ied. In them, in addition to direct problems of mechanics, 
several inverse problems of identification of external dynam-
ic loads based on the results of experimental measurement 
of deflections or deformations of the hard surface are solved. 
The problems are reduced to the numerical solution of inte-
gral equations, with separate regularization, but study [10] 
does not concern round plates.

The statics of layered plates of a symmetrical rectangular 
structure is described in [11]. In the work, only the static de-
formation of plates on an elastic base is considered, without 
analyzing their dynamics. The authors of paper [12] suggest 
using an elastic base as a means of passively influencing 
plate oscillations, since the base significantly changes the 
first natural frequencies at which resonances are possible. 
The work does not provide for the calculation of plates 
for the action of impulse loads. Harmonic oscillations of 
round three-layer plates, without separation from the base, 
are discussed in article [13]. An analytical solution of the 
boundary value problem was constructed in cylindrical 
functions, but it, as in [12], is not suitable for calculating the 
impulse deformation of the plate. Such deformation is not 
foreseen in articles [14, 15], where only static deformation 
of layered orthotropic plates is considered. Static bending of 
a three-layer plate on a two-parametric basis is considered 
in [16]. Analytical calculation formulas were obtained, but 
the study is less general compared to [14, 15], where the 
plates are multilayered.

It is necessary to single out papers [17, 18], where static 
bending of plates on a two-parameter basis is also performed. 
They consider special variants of external load that arise in 
certain environments, as well as non-traditional theories of 
plates, which take into account the porosity and heteroge-
neity of the material, the presence of piezoelectric elements, 
etc. However, there are no dynamics problems in the works.

The analysis of the latest publications reveals that they as-
sume a two-sided connection of the plates with the base. Such 
an assumption simplifies the statement of the problem and its 
solution but does not correspond to the research task, where 
the connections are one-sided [19, 20]. Dynamic problems of 
deformation of a plate with a one-sided bond with the base 
belong to nonlinear problems since in the general case they 
have unknown areas of separation and contact that change 
during movement. These problems are of scientific and prac-
tical interest because they correspond to more adequate the-
oretical models of plate deformation in practice. Under such 
conditions, effects are observed that cannot be described by 
traditional models of plates on a two-sided elastic base. This 
predetermines the purpose of the current research.

3. The aim and objectives of the study

The purpose of this study is to build a physical-math-
ematical model of oscillations of unbalanced vibrators as 
non-stationary oscillations of an impulse-loaded round plate 
with various options for fixing its contour in one-sided 
contact with an elastic base. The application of the model 
built will make it possible to obtain a reasonable approach to 
managing the resource efficiency of the process of separating 
grain mixtures using a pneumatic sorting table, provided it 
is used in the general physical-mathematical model of this 
process.
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To achieve the goal, the following tasks were set:
– to obtain an analytical solution in cylindrical func-

tions with further calculations of the boundary value prob-
lem of plate dynamics with rigid clamping of the contour;

– to obtain an analytical solution in cylindrical func-
tions with further calculations of the boundary value prob-
lem of plate dynamics with a hinged contour;

– to check the adequacy of the physical and mathemati-
cal model of the dynamics of a circular plate, both under the 
condition of rigid clamping of the contour, and under the 
condition of hinged contour.

4. The study materials and methods

The object of research is the oscillations of unbalanced 
vibrators, a physical-mathematical model of non-stationary 
oscillations of a plate separated from the base.

The schematic view of the unbalanced vibrator, which is 
used to vary the amplitude of oscillations of the pneumatic 
sorting table and for which a physical-mathematical model is 
constructed, is shown in Fig. 1.

In order to obtain accurate analytical solutions to the 
problems posed in the study for two options for changing 
the force pulse over time (step and sinusoidal), a special 
distribution of the external load along the radial coordinate 
is adopted. This makes it possible to move from a continuous 
nonlinear system to a system with one degree of freedom.

5. Building a physical-mathematical model of the 
dynamics of a circular plate on a one-sided elastic base 

caused by a force impulse

5. 1. Physical-mathematical model of the dynamics of 
a plate with rigid contour clamping

The oscillatory motion of the plate upon contact with its 
base can be described by the differential equation:

( ) ( ) ( ) ( )
2

2 2
* 12

.
z

D z cz q f r t H t H t t
t
∂

 ∇ ∇ + +ρ = ϕ − − ∂
 (1)

It contains a differential operator 
2

2
2

1
;

r r r
∂ ∂

∇ = +
∂ ∂

  

( )
3

212 1

Eh
D

v
=

−
 – bending stiffness of the plate with thick-

ness h; z=z(r, t) is the transverse deflection of the plate as a 
function of the radial coordinate r and time t; c is the coef-

ficient of the elastic base; E, ν – modulus of elasticity and 
Poisson’s ratio of the plate material; ρ* is the total mass of 
a unit area of the system, taking into account the attached 
mass of the base; q – maximum pressure on the plate; f(r) is 
the pressure distribution function along the radius; φ(t) is 
a function of the change in momentum over time; t1 – pulse 
duration; H(t), H(t–t1) are unit step functions.

It is assumed that the plate contour r=R is tightly 
clamped, i.e.:

( ) ( ),
, 0; 0.

r R

z r t
z R t

r
=

∂
= =

∂
   (2)

The solution of equation (1) can be represented by the 
product:

( ) ( ),z A t f r= ⋅     (3)

in which A(t) is an unknown time function, and the second 
factor f(r) is:

( ) 1 0 2 0 ,
r r

f r C J C I
R R

   = β + β   
   

   (4)

where C1, C2, β – unknown constants; J0(x), I0(x) – cylindri-
cal zero index functions. 

Considering the derivatives [21]:

( ) ( )0
1 ,

dJ x
J x

dx
= −  

( ) ( )0
1 ,

dI x
I x

dx
= −

and expressions (2)–(4), one can obtain a system of equations:

C1J0(β)+C2I0(β)=0;

C1J1(β)+C2I1(β)=0,      (5)

in which J1(x), I1(x) – cylindrical functions of index one. 
The equality to zero of the determinant of this system 

gives the transcendental equation:

( ) ( ) ( ) ( )0 1 1 0 0,J I J Iβ β + β β =    (6)

to determine the constant β.
The smallest positive root of equation (6) is:

β≈3.1962206.

To find unknown C1 and C2, we introduce restrictions:

f(0)=C1+C2=1.

Then, according to (5):

( )
( ) ( )

0
1

0 0

0.9472274;
I

C
I J

β
= ≈

β − β

( )
( ) ( )

0
2

0 0

0.0527726.
J

C
I J

β
= − ≈

β − β
   (7)

The chart of function f(r) is plotted as a solid line 
in Fig. 2.

The greatest pressure is present in the center of the plate, 
and on its contour it is zero.

Fig.	1.	Schematic	view	of	an	unbalanced	vibrator:		
1	–	balanced	mass;	2	–	axis
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By substituting (3) in (1), we can obtain the equation:

( ) ( ) ( )
2

2
12

*

.
d A q

A t H t H t t
dt

 +Ω = ϕ − − ρ
,  (8)

in which 
( )( )4 4

*

/D R cβ +
Ω =

ρ
 is the frequency of free oscil-

lations of axisymmetric oscillations of a plate supported by a 
two-sided elastic base.

The solution of equation (8) is constructed under zero 
initial conditions:

( )0 0;A =

0

0.
t

dA
dt =

=

It was believed that before the impulse was applied, the 
plate was at rest and had zero deflection. Under the follow-
ing initial conditions:

( ) ( ) ( )
*

0

sin d ,
u

q
A t u t u u= ϕ Ω −

ρΩ ∫    (9)

and 1
*

1 1

with

with

,

.

t t t
u

t t t

≤
=  >

Expression (9) makes it possible to consider different 
momentum scans in time.

First you need to consider the action of a rectangular 
pulse when φ(t)=1=const. In this case, calculating inte-
gral (9) yields:

( )
( )( ) 1

1 1
1

1 cos ,

2 sin sin .
2 2

with

with

c

c

z t t t

A t t t
z t t t

 − Ω ≤


=   Ω   Ω − >     
    

 (10)

Here, 
( )4 4/

c

q
z

D R c
=

β +
 – static deflection of the center  

of the plate, on an elastic base, caused by pressure q(r)=q·f(r).
Here, we limited ourselves to considering the action of a 

pulse of short duration when t1<2π/Ω. With such a variant 
of the load, the solution (10) will be integral on the interval 
t∈(0;t*), where:

1
* .

2
t

t
π

= +
Ω

At t*=t1, according to (10): 

( )* 0,A t = 1
0 2 sin .

2c

tdA
z

dt
Ω = −υ = − Ω  

 
 (11)

The amplitude of the deflection of the center of the plate 
in the direction of action of the pulse, in accordance with (3), 
(4) and (10), is:

( )
( )

[ ]

1
1

0 1

1

2 sin 0; / ,
2

2

wit

/ ; 2 /w .

h

ith

c

c

t
z t

a t

z t

 Ω  ∈ π Ω  =  
 ∈ π Ω π Ω

  (12)

It takes into account that J0(x)=I0(x)=1.
This extreme occurs when:

( )

[ ]

1
1

1

0; /with ,
2 2

/ ; .w 2th /i
c

t
t

t t
t

π + ∈ π Ω Ω= = 
π ∈ π Ω π Ω

Ω

From the moment of time t=t*>t1, the movement of the 
plate starts opposite to the direction of the pulse. The un-
loaded plate loses contact with the base, so its bending is 
described by the differential equation:

2
2 2

2
0.

z
D z

t
∂

∇ ∇ +ρ =
∂

    (13)

Here ρ is the mass per unit area of the plate.
Substituting the expression (3) into (13), we obtained 

the differential equation:

2
2

2
0.

d A
A

dt
+ω =     (14)

Here, 
2

2
.

D
R
β

ω=
ρ

The solution to equation (14), under initial condi-
tions (11), is:

( ) ( )( )1
*2 sin sin .

2c

t
A t z t t

ΩΩ  = − ω − ω  

It follows from it that the amplitude deviation of the 
center of the plate from the base is:

( ) 1
1 1 2 sin ,

2c

t
a t z

ΩΩ  =  ω  
.   (15)

And the time of its achievement is determined by the 
expression:

*.
2mt t t
π

= = +
ω

Thus, the ratio of the amplitudes of the deflections of the 
center of the plate according to (12), (15), is equal to:

( )
( )

( )

[ ]

1
1 1

10 1
1

0; / ,

si

wi

n / ; 2

th

/wi
2

th .

t
a t

ta t t

Ω ∈ π Ωω=  ΩΩ   ∈ π Ω π Ω ω  

If Ω>ω, then a1(t1)>a0(t1), that is, there is a dynamic ef-
fect of asymmetry of the elastic characteristic of the system, 

Fig.	2.	Chart	of	function	f(r):		
1	–	rigid	clamping,	2	–	hinged	support
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which was discussed in [22]. When t1>π/Ω, it appears only 
for pulse durations t1∈(Ω>ω; tG), where:

2
arcsin .Gt

ω = π− Ω Ω 
 

At the next stage of the research, it is necessary to 
consider the action of a sinusoidal pulse on the plate, when 
φ(t)=sin(λt), λ≥Ω, t1=π/λ.

In this case, after calculating the integral in (9), we ob-
tained, for λ≥Ω:

( ) ( )
( ) ( )

( ) ( )( )

2 2
*

1

1 1

sin ,

sin si

with

n with .

q
A t

t t t t

t t t t t

λ
= ⋅ ×
ρ Ω λ −Ω

Ω Ω − λ ≤ λ× Ω Ω + Ω − >
 λ

  (16)

If λ=Ω, then the disclosure of uncertainty in (16) gives:

( )
( ) ( )

( )
1

1

witsin cos / ,

2 cos

h

w /ith .
c

t t t t tz
A t

t t t

 Ω −Ω ⋅ Ω ≤ = π Ω= 
−π Ω > = π Ω

 (17)

Taking the derivative t from expression (16), at t>t1, we 
obtained:

( ) ( ) ( )( )12 2
*

cos cos .
dA t q

t t t
dt

λ  = ⋅ Ω + Ω − ρ λ −Ω
 (18)

The time when this derivative is zero corresponds to the 
stop of the plate upon contact with the main one and is de-
termined by the transcendental equation:

( ) ( )( )1cos cos 0.t t tΩ + Ω − =

It has the root:

1 .
2 2e

t
t t

π
= = +

Ω
    (19)

The amplitude of the positive deflection of the center 
of the plate in the direction of the acting pulse was deter-
mined by substituting (19) into (16) and (17). As a result, 
you can get:

( ) ( )

( )

0 1

1
2 2

*

1

with
2

cos ,
2

0. w5 sin .
2

ith

e

c

a t A t

tq

t
z

= =

 Ωλ  ⋅ λ >Ω  ρ Ω λ −Ω  = 
Ω  π λ =Ω   

  (20)

According to (16), the unloaded plate will return to po-
sition z(r, t)=0 when:

( ) ( )( )1sin sin 0.t t tΩ + Ω − =

This equation has a solution:

1
* .

2
t

t t
π

= = +
Ω

    (21)

By substituting (21) in (18), you can get the formula for the 
speed of movement of the center of the plate when z(r, t)=0. It 
takes the form:

*

1
2 2

0
*

c with

wi

os ,
2 2

.
4

tht t

t
dA q
dt =

 Ωλ   λ >Ω  λ −Ω  = υ = − 
ρ π λ =Ω Ω

To obtain negative deflections of the plates when it is de-
tached from the base, equation (14) was solved under initial 
conditions:

( )* 0;A t =  
*

0 .
t t

dA
dt =

= υ

The resulting solution is:

( ) ( )( )0
*sin .A t t t

υ
= ω −
ω

It follows from it that the amplitude of the negative de-
flection of the center of the plate is achieved when:

*,
2mt t t
π

= = +
ω

and is equal to:

( ) ( ) 0
1 1 .ma t A t

υ
= =

ω
   (22)

So, in accordance with (20) and (22), the following ratio 
of the amplitudes of the negative and positive deflections of 
the center of the plate is obtained:

( )
( )

1 1

0 1

const.
a t

a t
Ω

= =
ω

In the considered case, it does not depend on the duration 
of the pulse and is equal to the ratio of the frequencies of free 
oscillations of the plate supported and not supported by an elas-
tic base, when t1∈(0;π/λ), λ≥Ω. When Ω>ω, the dynamic effect 
of the asymmetry of the elastic characteristics of the system, 
which also had the effect of a rectangular pulse, is manifested.

At the next stage of the research, it was necessary to find 
out whether the dynamic effect of asymmetry applies only to 
deflections or to other characteristics. In particular, this applies 
to the bending moments that determine the stressed state of 
the plate. To this end, in the expression of the bending moment:

( )
( ) ( ) ( )2

2

,

, , ,1 1
,

M r t

z r t z r t z r t
D

r r r r r

=

 ∂ ∂ ∂−ν
= − + ⋅ − ⋅  ∂ ∂ ∂ 

we substituted the solution (3). Considering that [23]:

1 1

0 0

J
lim lim ,

2r r

r r
R R
r r R→ →

β β   Ι    β   = =

and expressions derived from cylindrical functions, in the 
center of the plate we obtained:
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( ) ( ) ( ) ( )
2

1 22

1
0, .

2

D
M t C C A t

R

+ν β
= ⋅ −

So, the ratio:

( )
( )

( ) ( )
2

1 22

0, 1
const,

0, 2

M t D
C C

z t R

+ν β
= ⋅ − =

does not depend on time. Therefore, the mentioned dynamic 
effect concerns not only deflections, but also bending mo-
ments, which in the center of the plate can be greater when 
the plate is detached from the base at moments when the 
plate comes into contact with the base.

5. 2. Physical-mathematical model of plate dynamics 
with hinged contour

When constructing a physical and mathematical model 
of the dynamics of a plate with a hinged loop, differential 
equation (1) was solved under boundary conditions:

( ), 0,z R t =  ( ), 0.M R t =   (23)

As above, the solution was sought in the form (3), and the 
function f(r) was given by expression (4). By substituting (3) 
into (23), we obtained the system of equations:

( ) ( )1 0 2 0 0,C J C Iβ + β =

( ) ( ) ( ) ( )1 1 0 2 0 1

1 1
0.C J J C I I

   −ν −ν
β − β + β − β =   β β   

The equality of the determinant of this system to zero 
leads to the transcendental equation:

( )
( )

( )
( )

1 1

0 0

2
.

1

I J

I J

β β β
+ =

β β −ν
   (24)

In contrast to the previous case of fixing the contour of 
the plate, the roots of equation (24) depend on the values of 
the coefficient of transverse deformations v.

After determining β, constants C1 and C2 were found 
using formulas (7).

In order to simplify the calculations, Table 1 gives the 
values of constants β, C1 for different values.

As can be seen from Table 1, the value of v affects the 
constants β, C1, C2 by no more than 5 %.

Since the form of the solution of the dynamic boundary 
value problem does not change when the boundary condi-
tions are changed, the formulas obtained above remain valid 
for the case of hinged abutment of the plate edges. For their 
application, it is only necessary to use the corresponding 
values of the constants β, C1, C2.

Table	1

Values	of	constants	β,	C1,	C2	at	different	v

v β C1 C2

0.20 2.1869110 1.0473143 –0.0473143

0.25 2.2045701 1.0426163 –0.0426163

0.30 2.2215195 1.0382659 –0.0382659

0.35 2.2378079 1.0342274 –0.0342274

0.40 2.2534790 1.0304698 –0.0304698

0.45 2.2685723 1.0269661 –0.0269661

5. 3. Checking the adequacy of the physical and math-
ematical model of round plate dynamics

To check the adequacy of the developed physical-math-
ematical model using the derived formulas, three cases can 
be considered. The first case corresponds to non-stationary 
oscillations of a plate with a clamped contour when it is 
loaded with a rectangular pulse. The second case corre-
sponds to the dynamic response of a plate with a closed 
contour to the action of a sinusoidal pulse. The third is the 
dynamic deflection of a plate with a hinged contour caused 
by a rectangular pulse.

In the first case, which corresponds to the non-station-
ary oscillations of a plate with a clamped contour when it 
is loaded with a rectangular pulse, by using formulas (12), 
(15), the calculation of the oscillation parameters was carried 
out at: E1=2.1·1011 Pa; ν=0.25, h=0.007 m; ρ=54.6 kg/m2; 
ρ*=100 kg/m2; с=106 N/m3; q=4·103 Pa; R=1.5 m. For 
these initial data: D=6402.6667 N·m; zc=3.5336·10-3 m; 
Ω=106.3950 s-1; ω=49.1672 s-1; tG=0.0500 s. The calculated 
plots for a0(t1) and a1(t1) are shown in Fig. 3.

For the second case, which corresponds to the dynamic 
response of a plate with a closed contour to the action of a 
sinusoidal pulse, it is possible to calculate the extrema of 
the function A(t) for the initial data from the first case. In 
this case, the values of the parameter λ will be equal to λ=Ω, 
λ=2Ω, λ=3Ω. The results of calculations according to formu-
las (20), (22) are given in Table 2. The extreme deflections 
of the plate and the time of their achievement when t1=π/λ 
are given.

Table	2

Deflection	amplitudes	and	time	to	achieve	them	at	λ=jΩ,	
j=1,	2,	3	

j a0(t1)/zc a1(t1)/zc te, s tm, s

1 1.5708 3.3991 0.0295 0.0762

2 0.9428 2.0402 0.0221 0.0689

3 0.6495 1.4055 0.0197 0.0664

For the third case, which corresponds to the dynamic 
deflections of the plate with a hinged contour caused by 
a rectangular pulse, the initial parameters are chosen the 
same as in the first case. These initial parameters accord-
ing to Table 1 correspond to the constants: β=2.2045701; 
C1=1.0426163; C2=–0.0426163. The plot of the function 
f(r) is shown by a dotted line in Fig. 2. From the performed 

Fig.	3.	Plots	aj(t1)	for:	1	–	j=0;	2	–	j=1
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calculation, the following was obtained: zc=3.884·10-3 m; 
Ω=101.4827 s-1; ω=23.3910 s-1; tG=0.05733 s. The calculated 
amplitudes of deflections of the center of the plate according 
to formulas (12), (15) and the time of their achievement for 
three pulse durations are given in Table 3.

In order to check the plausibility of the constructed 
analytical solutions, for the numerical data of the third case, 
equations (8) and (14) were integrated. The resulting plots 
of plate center movements at t1=0.03; 0.05733; 0.06 s are 
shown in Fig. 4.

Table	3

Deflection	amplitudes	and	time	to	achieve	them	at	λ=jΩ,	
j=1,	2,	3

t1, s a0(t1)/zc a1(t1)/zc te, s tm, s

0.0300 1.9976 8.6668 0.0305 0.1131

0.05733 2.0000 2.0000 0.0310 0.1268

0.0600 2.0000 0.8413 0.0310 0.1281

Extreme values in Table 3 are found on these plots, that 
is, there is convergence of the calculation results by two 
techniques. 

It should be noted that the discrepancy between the 
obtained theoretical results and the results of experimental 
studies does not exceed 3...5 %. This proves the possibility 
of using a physical-mathematical model of the dynamics of 
a round plate to calculate the amplitude of its oscillations 
under the action of rectangular or sinusoidal pulses under 
the conditions of experimental studies.

6. Discussion of results of modeling the dynamics of a 
circular plate on a one-sided elastic base caused by a 

force impulse

During the verification of the adequacy of the developed 
physical-mathematical model using the derived formulas, 
three cases were considered. At the first stage, the case of 
non-stationary oscillations of a plate with a clamped contour 
when it is loaded with a rectangular pulse is considered. At 
the second stage, there is a dynamic response of the plate 
with a closed contour to the action of a sinusoidal pulse. 
At the third stage, the dynamic deflection of a plate with a 
hinged contour caused by a rectangular pulse is considered.

As for the first case, the calculations prove that at 
t1∈(0;tG) the inequality a1(t1)>a0(t1) holds, that is, the dy-
namic effect of the asymmetry of the force characteristic of 
the system is manifested (Fig. 3).

In the second case, the numerical analysis shows that 
when the parameter λ increases, the ratios a0(t1)/zc and 
a1(t1)/zc decrease, but a1(t1)/a0(t1) remains constant, and 
a1(t1)>a0(t1) (Table 2). That is, the dynamic effect of the 
asymmetry of the elastic characteristics of the system is also 
manifested.

In the third case, for the first pulse duration a1(t1)>a0(t1), 
for the second – a1(t1)=a0(t1), and for the third – a1(t1)<a0(t1). 
Only in the first version of the load is the dynamic effect of 
the asymmetry of the elastic characteristics of the system 
observed, while the ratio of the amplitudes of the deflec-
tions is 4.3386 (Table 3). Its calculation for deflections 
of the plate clamped along the contour at t1=0.03 s gives: 
a1(t1)=a0(t1)=2.1633. Therefore, the mentioned dynamic 
effect is manifested to a greater extent when the contour of 
the plate is hinged against, than when it is clamped.

Listed in Tables 2, 3, the numerical results confirm the 
suitability of derived formulas for calculations. They show 
a fundamental difference between the dynamic behavior of 
a circular plate having one-sided contact with the base and 
the behavior of a plate with two-sided contact with an elastic 
base when a1(t1)≤a0(t1).

Thus, thanks to the use of the fitting method and the 
selection of a special distribution of the load along the radius 
of the plate, accurate analytical solutions of dynamic bound-
ary value problems for two options for fixing the contours 
of the plate have been constructed. This distinguishes our 
results from the results obtained in works [17, 18], where 
only a static problem is considered, which cannot be applied 
to the dynamics of oscillations of unbalanced vibrators. The 
solutions obtained in the study are expressed in terms of 
cylindrical functions of real and imaginary arguments. The 
nonlinear boundary value problem is reduced to a sequence 
of two linear problems, as a result of which compact formulas 
are derived for calculating the amplitudes of deflections and 
bending moments and the time of their achievement. It was 
established that for certain durations of the external pulse, 
the dynamic effect of the asymmetry of the elastic character-
istic of the system can be manifested. At the same time, the 
amplitude of the deflection of the plate, after its separation 
from the base, is greater than the amplitude of the deflection 
of the supported plate in the direction of its impulse. This is 
the fundamental difference between the dynamic behavior of 
a plate with a one-sided bond and the behavior of a plate on 
a two-sided basis [19, 20]. In the case of two-sided contact of 
the plate with the elastic base, which is traditionally consid-
ered in the scientific literature, the mentioned effect cannot 
be manifested. The reliability of the obtained analytical 
solutions is confirmed by the consistency of the numerical 
results they lead to with the results of the numerical solution 
of the differential equation.

It should be noted that the physical-mathematical model 
of the dynamics of a round plate can be used to calculate the 
strength of common structural elements of a round shape, 
both under static and dynamic loads. At the same time, the 
adequacy of the model was proven for the following values 
of the initial parameters: modulus of elasticity, 2.1·1011 Pa; 
the Poisson ratio of the plate material, 0.25; plate thick-
ness,  7...10 mm; the maximum pressure on the plate, 4·103 Pa; 
the bending stiffness of the plate, i6402.6667 N·m. At the 
same time, it is possible to simulate cases: oscillation of a 
plate with a clamped contour when it is loaded with a rect-
angular or sinusoidal pulse; oscillations of a plate with a 
hinged contour under the action of a rectangular pulse. The 

Fig.	4.	Plots	of	movement	of	the	center	of	the	plate:		
1	–	t1=0.03	s;	2	–	t1=0.05733	s;	3	–	t1=0.06	s
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possibility of theoretical modeling of the amplitude of oscil-
lations of a round plate for these cases is proven by the low 
discrepancy between the theoretical results and the results 
obtained experimentally, which is no more than 5 %.

The shortcoming of the study is the lack of examples of 
connection with the physical-mathematical model of the pro-
cess of separation of grain mixtures on a pneumatic sorting 
table. This is explained, firstly, by the possibility of applying 
the obtained model in processes other than the separation 
process. Secondly, the results reported in the study are in-
termediate and, accordingly, represent a part of the general 
physical and mathematical model of the process of separation 
of grain mixtures. Obviously, from this point of view, estab-
lishing a correlation between the vibration parameters of un-
balanced vibrators and the quality of the obtained products 
will not be correct.

The future study is to extend the developed physi-
cal-mathematical model to a more general case, when the 
plate is not solid, but ring-shaped, that is, it has a central 
concentric hole.

7. Conclusions 

1. Unsteady oscillations of a uniform round plate sup-
ported by a one-sided elastic base under impulse loading 
were theoretically investigated. For two variants of the 
boundary conditions and two cases of change of momen-
tum in time, closed analytical solutions of the equations 
of motion of the plate when it is in contact with the base 
and when it is separated from the base were constructed. 
Solutions are expressed in cylindrical functions of real 
and imaginary arguments. It was established that as a 
result of separation of the plate from the base, with pulse 
durations from 0 to 0.05 s, there is a dynamic effect of 
asymmetry of the elastic characteristics of the system, 
which is absent when the plate is in continuous contact 
with the two-sided base.

2. An analytical solution in cylindrical functions of the 
boundary value problem of the dynamics of a plate with a 
hinged contour has been obtained. It is noted that the ob-
tained analytical solutions for non-stationary oscillations 
of a uniform circular plate supported by a one-sided elastic 
base remain valid for the case of hinged abutment of the 
plate edges. For their application, it is necessary to use the 
corresponding values of the constants β, C1, C2. It was noted 

that the effect of asymmetry is manifested to a greater extent 
when the contour of the plate is hinged against, than when it 
is rigidly clamped under equivalent other conditions. It was 
established that this applies not only to deflections of the 
plate but also to bending moments that are proportional to 
the deflections for the accepted distribution of the external 
load along the radius of the plate.

3. The adequacy of the developed physical-mathematical 
model of the dynamics of a circular plate has been proven by 
obtaining numerical solutions that confirm the suitability 
of the derived formulas for calculations. The fundamental 
difference between the dynamic behavior of a round plate 
having one-sided contact with the base and the behavior of 
a plate with two-sided contact with an elastic base is shown. 
The possibility of theoretical modeling of the amplitude of 
oscillations of a round plate with a clamped contour when 
it is loaded with a rectangular or sinusoidal pulse, as well 
as oscillations of a plate with a hinged contour under the 
action of a rectangular pulse, has been proven. In this case, 
the values of the initial parameters are equal to: modu-
lus of elasticity, 2.1·1011 Pa; the Poisson ratio of the plate 
material, 0.25; plate thickness, 7...10 mm; the maximum 
pressure on the plate, 4·103 Pa; the bending stiffness of the 
plate, 6402.6667 N·m.
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