
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

34

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license

DEVELOPMENT OF A MODEL
FOR DETERMINING

THE NECESSARY FPGA
COMPUTING RESOURCE FOR

PLACING A MULTILAYER
NEURAL NETWORK ON IT

B e k b o l a t M e d e t o v
PhD*

T a n s a u l e S e r i k o v
PhD*

A r a i T o l e g e n o v a
Candidate of Technical Sciences*

D a u r e n Z h e x e b a y
Corresponding author

PhD, Senior Lecturer**
E-mail: zhexebay92@gmail.com

A s s e t Y s k a k
Master

Department of Computer Science
Nazarbayev University

Kabanbay batyr ave., 53, 	
Astana, Republic of Kazakhstan, 010000

T i m u r N a m a z b a y e v
Master, Senior Lecturer**

N u r t a y A l b a n b a y
Master

Department of Cybersecurity, Information 	
Processing and Storage

Satbayev University
Satbaev str., 22, Almaty, Republic of Kazakhstan, 050013

*Department of Radio Engineering, 	
Electronics and Telecommunications

S. Seifullin Kazakh Agro Technical Research University
Zhenis ave., 62, Astana, Republic of Kazakhstan, 010011

**Department of Solid State Physics and Nonlinear Physics
Al-Farabi Kazakh National University

Al-Farabi ave.,71, Almaty, Republic of Kazakhstan, 050040

In this paper, the object of the research
is the implementation of artificial neural net-
works (ANN) on FPGA. The problem to be
solved is the construction of a mathematical
model used to determine the compliance of
FPGA computing resources with the require-
ments of neural networks, depending on their
type, structure, and size. The number of its
LUT (Look-up table – the basic FPGA struc-
ture that performs logical operations) is con-
sidered as a computing resource of the FPGA.

The search for the required mathemati-
cal model was carried out using experimental
measurements of the required number of LUTs
for the implementation on the FPGA of the fol-
lowing types of ANNs:

– MLP (Multilayer Perceptron);
– LSTM (Long Short-Term Memory);
– CNN (Convolutional Neural Network);
– SNN (Spiking Neural Network);
– GAN (Generative Adversarial Network).
Experimental studies were carried out on

the FPGA model HAPS-80 S52, during which
the required number of LUTs was measured
depending on the number of layers and the
number of neurons on each layer for the
above types of ANNs. As a result of the
research, specific types of functions depend-
ing on the required number of LUTs on the
type, number of layers, and neurons for the
most commonly used types of ANNs in prac-
tice were determined.

A feature of the results obtained is the fact
that with a sufficiently high accuracy, it was
possible to determine the analytical form of the
functions that describe the dependence of the
required number of LUT FPGA for the imple-
mentation of various ANNs on it. According
to calculations, GAN uses 17 times less LUT
compared to CNN. And SNN and MLP use
80 and 14 times less LUT compared to LSTM.
The results obtained can be used for prac-
tical purposes when it is necessary to make
a choice of any FPGA for the implementation
of an ANN of a certain type and structure on it

Keywords: FPGA, MLP, LSTM, CNN,
SNN, GAN

UDC 004.032.26
DOI: 10.15587/1729-4061.2023.281731

How to Cite: Medetov, B., Serikov, T., Tolegenova, A., Zhexebay, D., Yskak, A., Namazbayev, T., Albanbay, N. (2023). Develop­

ment of a model for determining the necessary FPGA computing resource for placing a multilayer neural network on it. Eastern-

European Journal of Enterprise Technologies, 4 (4 (124)), 34–45. doi: https://doi.org/10.15587/1729-4061.2023.281731

Received date 12.05.2023

Accepted date 14.07.2023

Published date 31.08.2023

1. Introduction

Modern research in the field of artificial neural net-
works (ANNs) shows that they are very good at solving
many problems related to the classification and processing
of big data, such as images, audio, and video data. It is
known that when solving such problems, it turns out that
the dimensionality of data and the computational complexi

ty of neural calculations turn out to be significantly large,
that even multi-core, accelerated, powerful general-purpose
processors CPUs do not cope well with calculations. For
comfortable and efficient work with modern ANNs, as
a rule, powerful and rather expensive GPUs are used. This
is especially true for processing a large data stream, for
example, video information in real-time. Recently, as an
alternative to the GPU for the implementation of ANNs,

Mathematics and Cybernetics – applied aspects

35

FPGAs are often paid attention to. This is due to the fol-
lowing factors:

– FPGA consumes much less energy, and this is impor
tant when using ANN in devices where there are difficulties
in providing external power (for example, spacecraft);

– dimensions and weight of the device;
– requirements for special cooling systems of the device;
– price.
Since the need for equipment for working with artificial

neural networks is constantly growing, the task arises to
determine all possible technical requirements for FPGAs for
the implementation of ANNs of various types and structures
with their help. One of these requirements is to determine
the sufficiency of FPGA computing resources depending on
the type and parameters of the ANN (for example, the num-
ber of layers and neurons on the layers).

However, due to the peculiarities of the operation of
FPGAs, when implementing ANNs on them, one problem
arises related to determining the correspondence between
the computing resources of the device and the computa-
tional requirements of neural networks. Without knowing
this correspondence, it is very difficult to select an FPGA
for implementing an ANN of one structure or another on it.
In this regard, in this paper, the task was set to build a certain
model, with the help of which it would be possible to predict
the required computing resources of the FPGA, depending
on the type, structure, and size of a particular ANN.

Therefore, studies designed to predict the calculations of
FPGA resources for the implementation of ANNs are relevant.

2. Literature review and problem statement

The current deep learning trend has sparked interest in
implementing artificial neural networks on FPGAs in order
to improve performance. The work [1] presents the results
of studies on the influence of the choice of representation of
numbers (floating point vs. fixed point) and the choice of the
number system both on the use of hardware resources and on
the performance of a neural network. The FPGA is shown to
be energy efficient, and the data learning rate is slightly slower
than that of a desktop computer when using fixed-point data.
But questions remained unresolved related to the large-scale
assessment of the used FPGA resources for different structures
of multilayer neural networks. The reason for this may be the
costly part in terms of training each neural network model
depending on the number of layers and neurons in the layers.

In [2], the results of studies on the implementation of
multilayer neural networks with an accuracy of 24, 20, 16, 12,
and 8 bits are presented. The neural network model with 16-
bit fixed-point data accuracy is shown to be the most efficient
MLP design in terms of classification accuracy, latency, po
wer consumption, and resource usage. Also, issues related to
a large-scale assessment of the used FPGA resources are not
considered in this paper. The reason for this may be the use
of FPGA as an accelerator for the task of classifying human
activity in real-time, and not the implementation of different
structures of multilayer neural networks in order to deter-
mine the optimal FPGA resources for their implementation.

In [3], the results of a study of the acceleration of a multi
layer perceptron on an FPGA for the classification of hand-
written digits are presented. It is shown that MLP with one
hidden layer of 12 neurons, implemented on FPGA, provides
a classification accuracy of 93 % and a 10-fold acceleration

compared to existing works. But questions remained unre-
solved related to the assessment of the required amount of
FPGA resources for different numbers of layers and neurons
in layers. The reason is also the use of FPGAs to accelerate
the MLP model, not their resource estimate.

Convolutional Neural Networks (CNNs) are widely used
in computer vision and pattern recognition due to their high
accuracy. There are various CNN models for pattern recogni-
tion such as VGG, ResNet, GoogLeNet, MobileNet, R-CNN,
SSD, and YOLO. The paper [4] presents the results of stu
dies of the implementation of MobileNetV2 on the FPGA
Arria 10 SoC. The results of these studies show that this ac-
celerator can classify each image from ImageNet in 3.75 ms,
which is about 266.6 frames per second. The FPGA design is
shown to provide a 20x speedup compared to the processor.
The paper [5] presents the results of studies of the hard-
ware implementation of the YOLOv2 model on the Xilinx
ZYNQ xc7z035 FPGA for object detection. The design is
shown to provide a total throughput of 111.5 GOP/s and
a power efficiency of 18.71 GOP/s/W at 200 MHz FPGA ope
rating frequency. Compared to the central processor, the pro-
posed accelerator increases energy efficiency by 33.4 times.
But questions remained unresolved related to the assessment
of the used FPGA resources for CNN models with different
structures. Nevertheless, this paper does not provide an esti-
mate of the required amount of FPGA resources for imple-
menting CNN-type networks on it.

One of the most commonly used artificial neural net-
work architectures in practice is Long Short-Term Memo-
ry (LSTM), which belongs to the type of recurrent neural
network (RNN). LSTM is characterized by the presence of
feedback, which limits the high degree of parallelism of general-
purpose processors such as CPUs and GPUs. Also, in terms of
the energy efficiency of data center applications, the high con-
sumption of GPU and CPU computing cannot be ignored. An
ideal alternative to solve the above problems is the FPGA. The
paper [6] presents the results of studies on the implementation
of the FPGA-based LSTM network acceleration mechanism.
It is shown that compared to CPU and GPU, the FPGA-based
acceleration mechanism can provide 8.8 and 2.2 times perfor-
mance improvement and 16.9 and 9.6 times energy efficiency
improvement, respectively, within the framework of Caffe.
However, in this work, the exactingness of LSTM-type net-
works to FPGA resources is not evaluated.

In recent years, there has been significant interest in «gene
rative adversarial networks» (GANs) due to their ability to
generate data with high accuracy. Many GAN models have
been proposed for a variety of areas, from natural language
processing to image processing [7]. For image processing,
convolution and deconvolution operations are used. Much of
the work has focused on accelerating deconvolutional neural
networks (DCNNs) on FPGAs [8]. Because accelerators de-
signed for convolution operations do not play well with the
deconvolution operation. Obviously, specialized accelerators
are needed to achieve high performance with GANs. The
paper [7] provides an overview of GAN acceleration methods
and architectures, including those based on FPGA. But in
these works, questions are only considered regarding the ac-
celeration of calculations for GAN-type networks on FPGAs,
without affecting the problem of choosing an FPGA depend-
ing on the computational requirement of a neural network.

Spiking Neural Networks (SNNs) are the most accurate
mimics of biological neural networks. In [9], the results of
a study of the hardware implementation of SNN on FPGA

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

36

are presented. The design has been shown to support up
to 16,384 neurons and 16.8 million synapses, but requires
minimal hardware resources and provides a very low power
consumption of 0.477 W. The evaluation results show an
accuracy of 97.06 % and a frame rate of 161 fps. In this pa-
per, there is some attempt to estimate the FPGA hardware
resources required to implement an SNN on it. But these
results are limited to a particular case and do not have a gene
ral character. The paper [10] presents the results of studies
of the influence of various coding methods on the accuracy
of SNNs and implementation in the Xilinx Zynq ZCU102
hardware architecture. It is shown that the experimental
results of the MNIST dataset can achieve an accuracy of
98.94 % with eight-bit quantized weights. In addition, it
reaches 164 frames per second (FPS) at 150 MHz and gets
41x faster than the CPU implementation and 22x less power
than the GPU implementation. This paper touches upon
issues related only to the study of accuracy and acceleration
of calculations for SNNs on FPGAs. Also, no attention has
been paid to determining the necessary FPGA resource for
implementing SNN-type networks on it.

The review of the literature shows that the use of FPGAs
for neural computing is highly efficient in terms of provid-
ing maximum performance and low power consumption.
At present, it is already known that all known types of arti-
ficial neural networks with various activation functions can
be successfully implemented on FPGAs. It should be noted
that FPGAs are used not only to implement neural networks,
but also to implement many other tasks, for example, in
cryptographic data encryption [11]. However, one problem
remains poorly understood, related to the determination of
the technical characteristics of an FPGA for the implemen-
tation of a certain neural network structure on it. It is known
that the main technical characteristic of an FPGA, which
describes its computing resource, is LUT (Look-up table –
the basic FPGA structure that performs logical operations).
The LUT is the basic building block of an FPGA and is ca
pable of implementing any kind of logic.

An analysis of the available scientific papers has shown
that there are no detailed studies to determine the com
pliance of FPGA resources with the computational needs of
various neural networks.

3. The aim and objectives of the study

The aim of the study is to build a mathematical model
that allows you to estimate approximately the required com-
puting resources of the FPGA to place on them an ANN of
a certain type and structure.

To achieve this aim, the following objectives are accom-
plished:

– to conduct experimental measurements of the calcula-
tion of the number of LUTs required to implement various
types of ANNs (SNN, MLP, LSTM, CNN, GAN);

– to carry out a comparative analysis of the computatio
nal resource intensity of ANN types to determine the effi-
ciency of using FPGAs in their implementation.

4. Materials and methods

The object of study in this work is the implementation of
ANN on FPGA. At the same time, the main issue of the study

is to determine the compliance of FPGA resources with the
computational needs of ANN. It is assumed that there is
a close relationship between the required amount of FPGA
computing resources and the main ANN parameters such
as the number of neurons and the number of layers. Thus,
the main hypothesis of the study is the assumption that the
required amount of FPGA resources can be represented as
a function depending on two arguments – the number of
layers and the number of neurons for each type of ANN.
The form and numerical characteristics of these functional
dependencies can only be obtained experimentally, in which
case the result of the research will have to be formalized in
the form of empirical formulas. For this reason, experimen-
tal studies are required in the context of each type of ANN.

During the experimental measurements of the required
number of LUTs, depending on the parameters of the neural
network, the following agreements were accepted:

– arithmetic calculations are performed only with the
help of LUT;

– data transferred from one layer to another is stored in
FF blocks, and weights are stored in LUT;

– data for all types of networks are presented in 24-bit size;
– to ensure maximum performance, neural calculations for

each layer of the network are performed strictly in parallel.
The use of only LUT in the calculation is due to the small

number of DSP blocks in the FPGA. Using them together
with LUT does not result in a significant increase in the
productivity of calculations. Because the number of DSPs is
directly proportional to the number of multiplication opera-
tions, of which there are a huge number of neural networks.

To automatically generate Verilog code that implements
a neural network of a certain type and structure, a special
Python library was developed. The correctness of the ope
ration of neural networks generated in the Verilog language
was verified using the functions of the PyTorch library of the
Python language. The check was carried out as follows:

– a certain neural network was designed using the Py-
Torch library of the Python language (source network);

– the parameters of the original network are transferred
to the corresponding functions of a special library written
in the Python language, which at the output generates a code
in the Verilog language that implements the neural network
for its placement on the FPGA;

– the same data is given to the input of the original net-
work on the computer and the version of the same network
on the FPGA;

– at the end, the results of the output of these networks
are compared, and if they match, it is considered that the
neural network implementation code on Verilog was gene
rated correctly.

In our work, we analyzed the correctness of the following
types of neural networks generated for FPGAs:

– MLP (Multilayer Perceptron);
– LSTM (Long Short-Term Memory);
– CNN (Convolutional Neural Network);
– SNN (Spiking Neural Network);
– GAN (Generative Adversarial Network).
The measurements performed showed that all the ana-

lyzed neural networks at the output gave virtually the same
results both in the computer version and in the version on
the FPGA. However, there are small deviations, within less
than 1 %, between these results. These deviations are not
related to the fact that our library incorrectly generates the
Verilog code of the neural network, but to the fact that in the

Mathematics and Cybernetics – applied aspects

37

computer version of the neural network, the data is presented
in floating-point format, while in the FPGA version, the data
is presented in fixed-point format.

In this work, for experimental measurements, the Xilinx
Virtex UltraScale XCVU440 FLGA2892 FPGA based on the
HAPS-80 S52 system from Synopsys was used, which has the
following characteristics:

– CLB LUTs – 2,532,960;
– CLB Flip-Flops – 5,065,920;
– Block RAM – 2,520;
– DSP Slices – 2,880;
– Clock frequency – 300 MHz.
The required number of LUTs to accommodate a neural

network of a certain type and structure was calculated from
the results of compiling its Verilog code using the HAPS (R)
ProtoCompiler S Version T-2022.12 software.

Below are the results of experimental measurements and
processing of the obtained measurements.

5. Results of research on the estimation of resources
of a field-programmable gate array in the implementation

of neural networks

5. 1. Experimental results for different types of artifi­
cial neural networks

5. 1. 1. Experiments for Spiking Neural Networks
Spiking Neural Networks (SNN) are designed to take ad-

vantage of time-varying data. SNN inputs are encoded in a se-
quence of spikes and continue for a certain amount of time. The
input data is presented as a sequence of zeros and ones, where
one corresponds to the appearance of a spike. Fig. 1 shows the
block diagram of the SNN that was used in our experiments.

When conducting experiments, the SNN model is first crea
ted in Python using the PyTorch and snnTorch libraries. As
you can see from Fig. 1, PyTorch is used to form connections
between neurons, and snnTorch is used to create neurons. The
snnTorch library supports the following Leaky Integrate-and-
Fire Neuron Models (the neuron model used in SNN):

– Lapicque – Lapicque’s RC model;
– Leaky – 1st-order model;
– Synaptic – Synaptic Conductance-based neuron model.
Leaky Integrate-and-Fire Neuron Model, like a classical

neural network, weights the input data, and unlike it, inte-
grates the weighted input data and compares it with a thresh-
old value. If the values exceed the threshold value, then a spike
appears at the output.

Fig. 1. Spiking neural network structure for experiments

In our experiments, the Leaky neuron model was used,
which is more optimal in terms of the number of parameters
compared to other models. Since the structure of an SNN is
determined by the number of layers and the number of neu-
rons in each layer, experimental measurements of the required
number of LUTs were carried out following these rules:

– each layer has the same number of neurons;
– the number of neurons varies from 10 to 50 with

a step of 5;
– the number of neurons is fixed, and the number of layers

varies in the range from 10 to 100 with a step of 10.
Table 1 shows the data obtained from the results of

compiling different SNN structures, where the values of the
required LUTs are stored in the cells of the table.

As we can see from Table 1, the required number of LUTs
is a function of two variables (the number of layers and the
number of neurons in each layer):

z f x y= (), ,	 (1)

where x is the number of neurons, y is the number of layers,
and z is the number of LUTs required to place the neural
network on the FPGA. The main task of our research is to
determine the type of function (1). To do this, we analyze the
data from Table 1.

Table 1
SNN compilation results with different numbers of layers and neurons

layers
neurons

10 layers 20 layers 30 layers 40 layers 50 layers 60 layers 70 layers 80 layers 90 layers 100 layers

10 neurons 25118 51302 76570 101862 127191 151170 176348 202298 227176 255466

15 neurons 44738 88937 133745 176700 221221 266135 314091 358620 403370 448590

20 neurons 69627 138759 206847 276912 347281 416027 486703 555701 624385 694587

25 neurons 97844 194185 291209 389911 486178 583131 681876 779402 875148 972850

30 neurons 128950 257451 386045 517365 646827 774725 904698 1033669 1163449 1292394

35 neurons 168196 335302 503302 669622 835913 1004848 1171850 1340464 1506208 1673294

40 neurons 209249 417478 625162 835820 1043744 1253409 1460297 1672145 1880339 2088556

45 neurons 254833 506657 762163 1016108 1270655 1524748 1780616 2033327 2286523 –

50 neurons 303876 606803 910207 1213746 1517665 1819097 2124285 2426886 – –

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

38

Fig. 2 shows the dependence of the required number of
LUTs on the number of layers for a fixed value of neurons on
the layers, obtained on the basis of experimental data (Table 1).

Fig. 2. Dependence of the required number of look-up tables

on the number of layers of the neural network for various
fixed values of the number of neurons

Fig. 2 shows that the dependence of the required number
of LUTs on the number of layers of the neural network at
a fixed value of the number of neurons is a linear function,
and can be described by a group of the following functions:

z y k x yi i() = ()⋅ , i n= 1 2, ,... ,	 (2)

where n is the number of options for the number of neurons (in
this case, n = 9), xi is the number of neurons (takes a fixed va
lue), y is the number of layers (it changes from 10 to 100 with
a step of 10), zi(y) is the number of required LUT depending on
the number of layers at a fixed value of the number of neurons.

The set of coefficients k(xi) in formula (2) can be deter-
mined using the least squares method as follows:

k x

y z

y
i

j j
j

m

j
j

m() =
⋅

=

=

∑

∑
1

2

1

,	 (3)

where m is the number of options for the number of layers.
Table 1 shows that for the number of neurons 50, m = 8, and
for the number of neurons 45, m = 9, and in all other ca
ses m = 10. The limitation of the number of layers is due to
the limitation of the LUT resources of the XCVU440 FPGA
used in our experiments. Fig. 3 shows the dependence of the
coefficient k(xi) on the number of neurons.

Fig. 3 shows that the dependence of the coefficient k(xi)
on the number of neurons is non-linear. This dependence can
be approximated by a power function of the following form:

k x c x() = ⋅ α ,	 (4)

where c and α are some positive real numbers.
To find the parameters c and α, we can again use the least

squares method. For this, equation (4) can be translated into
a logarithmic form:

ln ln ln .k c x() = () + ⋅ ()α 	 (5)

Fig. 3. Dependence of the coefficient k(xi) 	

on the number of neurons

If we take Y = ln(k), A = ln(c), B = α and X = ln(x), then
equation (5) can be rewritten as follows:

Y A B X= + ⋅ .	 (6)

According to the least squares method, the coefficients A
and B in equation (6) are calculated by the formulas:

B
X X Y

X X

i i
i

i
i

=
−()⋅ 

−()
∑

∑ 2 ,	 (7)

A Y B X= − ⋅ ,	 (8)

where X and Y are the averages of the argument and func-
tions (6).

Fig. 4 shows a graph of the dependence of the coeffi-
cient k on the number of neurons on a logarithmic scale.

Fig. 4. Dependence of the coefficient k(xi) on the number 	
of neurons on a logarithmic scale

In Fig. 4, the dots indicate the logarithmic data taken
from Fig. 3, and the red line corresponds to the graph of the
approximating function according to formula (8). As can be
seen from Fig. 4, the dependence of the coefficient k(xi) on
the number of neurons on a logarithmic scale is indeed linear.

Mathematics and Cybernetics – applied aspects

39

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

Knowing the coefficients, A and B, we can easily find the va
lues of the parameters c and α included in equation (4). Our
calculations show that c ≈ 68.29 and α ≈ 1.55. In this case, the
desired function given in equation (1), taking into account
formula (2), takes the following form:

z x y y x, . ..() = ⋅ ⋅68 29 1 55 	 (9)

The correctness of function (9), which makes it possible
to predict the required number of LUTs when implementing
an SNN on an FPGA, can be checked using the data from the
same Table 1. This time, we will plot the dependence of the
number of required LUTs on the number of neurons for fixed
values of the number of layers. Fig. 5 shows the graphics data.

Fig. 5. Dependence of the required number of look-up tables
on the number of neurons in the neural network for various

fixed values of the number of layers

In Fig. 5, the dots indicate the data taken from Table 1,
and the lines are the graphs of the approximating functions.
These graphs show that the found empirical dependence of
the required number of LUTs on the number of layers and
neurons for SNN is quite accurately described by the func-
tion presented in (9). Thus, knowing this dependence, it is
possible to estimate how many LUT resources are required to
place an SNN of a certain structure on an FPGA. An example
of using this rating is shown in Fig. 6, where this rating is
applied to the FPGA resource capabilities of the HAPS-80
S52 system. In Fig. 6, the assessment is carried out as follows:

– set the number of layers and neurons SNN;
– the required number of LUTs is calculated by the for-

mula (9);

– the calculated value of the required number of LUTs is
compared with the maximum number of LUTs available in
the considered FPGA;

– if the calculated value of the required number of LUTs
is less than the maximum number of LUTs available in this
FPGA model, then we consider that this SNN structure can
be placed on this FPGA, otherwise – no.

Fig. 6. Distribution of the number of look-up tables 	

on the plane of the number of neurons and the number 	
of layers for the field-programmable gate array 	

of the HAPS-80 S52 system when placing a spiking 	
neural network on it

The light area of the two-dimensional plane in Fig. 6
corresponds to the SNN structures that can be placed on
the FPGA of the HAPS-80 S52 system, and the dark area
corresponds to the inaccessible SNN structure for this
type of FPGA.

5. 1. 2. Experiments for Multilayer Perceptron
During the experimental measurements for a multilayer

fully connected perceptron (MLP), the ReLU activation
function was chosen. As you know, the structure of this net-
work is determined by the number of layers and the number
of neurons on the layers. In this regard, experimental mea-
surements of the required number of LUTs were carried out
by the following rules:

– each layer has the same number of neurons;
– the number of neurons varies from 3 to 24 with a step of 3;
– the number of neurons is fixed, and the number of

layers varies in the range from 5 to 50 with a step of 5.
Table 2 shows the data obtained from the results of com-

piling different MLP structures.

Table 2
MLP compilation results with different numbers of layers and neurons

layers
neurons

5 layers 10 layers 15 layers 20 layers 25 layers 30 layers 35 layers 40 layers 45 layers 50 layers

3 neurons 6545 12963 19854 27457 34335 40707 46605 54619 59833 67967

6 neurons 24252 48045 74257 95344 121064 143614 170100 192827 219079 243834

9 neurons 51586 107084 159014 213663 268356 321457 378265 431294 481581 537312

12 neurons 91207 183578 275396 368140 459211 553262 642267 735192 831347 921994

15 neurons 141069 285657 426817 570035 715282 861666 1002101 1147448 1291019 1437629

18 neurons 201395 403522 605566 813908 1013488 1219525 1423056 1626500 1821259 2029374

21 neurons 272300 550049 823817 1095390 1381356 1655055 1926840 2203047 2491536 –

24 neurons 347767 703136 1063951 1413983 1768049 2131086 2487761 – – –

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

40

Obviously, the dependence of the required number of
LUTs on the MLP parameters, as in the case of SNN, is
a function of two arguments. Fig. 7 shows the dependence
of the required number of LUTs for MLP on the number
of layers for a fixed value of neurons on the layers. Fig. 7
shows that, just as in the case of SNN, the dependence of the
required number of LUTs on the number of layers is a linear
function. Calculations show that in this case, the coefficient k
also depends non-linearly on the number of neurons (Fig. 8).

Fig. 7. Distribution of the required number of look-up tables
on the number of layers for multilayer perceptron at various

fixed values of the number of neurons

Fig. 8. Dependence of the coefficient k(xi) 	

on the number of neurons

We represent the dependence in Fig. 8 in the form (4).
Further, Fig. 9 shows a graph of the dependence of the coef
ficient k on the number of neurons on a logarithmic scale.

As we can see from Fig. 9, the dependence of the coefficient
k(xi) on the number of neurons on a logarithmic scale for MLP
is indeed linear. The final calculations lead us to the fact that
the dependence of the required number of LUTs on the num-
ber of layers and neurons for MLP obeys the following pattern:

z x y y x, . ..() = ⋅ ⋅161 67 1 91 	 (10)

Fig. 10 shows graphs of the number of required LUTs versus
the number of neurons for fixed values of the number of layers.

An example of using the empirical dependence (10) to
assess the resource capability of the FPGA of the HAPS-80
S52 system is shown in Fig. 11.

Fig. 9. Dependence of the coefficient k(xi) on the number 	

of neurons on a logarithmic scale for multilayer perceptron

Fig. 10. Dependence of the required number of look-up tables

on the number of neurons for multilayer perceptron 	
at various fixed values of the number of layers

Fig. 11. Distribution of the required number of look-up

tables on the plane of the number of neurons and the number
of layers for the FPGA of the HAPS-80 S52 system when

placing a multilayer perceptron on it

Mathematics and Cybernetics – applied aspects

41

Just as in the case of SNNs, Fig. 11 shows the areas of
acceptable and inaccessible values for the parameters of
an MLP-type network. For example, on the FPGA model
HAPS-80 S52, it is impossible to place an MLP network
that has 40 layers and 50 neurons on each layer. But there
an MLP-type neural network can be placed if it has 20 layers
and 30 neurons on each layer.

5. 1. 3. Experiments for Long Short-Term Memory net­
works

During experimental measurements in networks with
Long Short-Term Memory (LSTM), we considered the case
when the number of inputs, the number of cells in the layer,
and the number of outputs of the network are equal. The
sequence input layer injects sequence or time series data into
a neural network that can learn long-term relationships bet
ween the time steps of the sequence data.

In our LSTM cells, we used four non-linear activation
functions, of which, three sigmoid functions to activate the
node output and one hyperbolic tangent (tanh) function to
activate the cell state.

When carrying out experimental measurements of the
required number of LUTs for LSTM networks, the number of
layers changed from 2 to 14 with a step of 2, and the number
of cells changed from 2 to 10. The results of the calculated
numbers of LUTs depending on the number of layers and
cells of the LSTM network are shown in Table 3.

The structure of the LSTM, as in the cases of SNN
and MLP, is determined by two parameters, respectively,
the function of predicting the required number of LUTs
is determined in a similar way. Fig. 12 shows a graph of
the number of LUTs versus the number of layers of the
LSTM network.

From Fig. 12, we see that in the case of an LSTM net-
work, the dependence of the required number of LUTs on
the number of layers is also quite well described by a linear
function of the form (2). And Fig. 13, 14 show graphs of the
dependence of the coefficient k on the number of cells in nor-
mal and logarithmic scales.

Fig. 15 below shows the graphs of the required number
of LUTs versus the number of cells for LSTM networks.

In Fig. 15, the points are the experimental data, and the
solid curves are the graphs of the corresponding approxima-
tion functions. This figure shows that for small values of the
number of layers, there is a noticeable discrepancy between
the experimental data and the approximation function.
To predict the required number of LUTs, the most important
are the limit values for the number of layers, so we believe
that these discrepancies will not greatly affect the final func-
tion of the form (1) for LSTM networks.

The empirical form of the dependence of the required
number of LUTs on the number of cells and layers for LSTM
networks takes the following form:

z x y y x, . ..() = ⋅ ⋅8213 65 1 38 	 (11)

As in the previous cases, Fig. 16 shows an example of
using the prediction function (11) for LSTM networks to the
FPGA of the HAPS-80 S52 system.

Fig. 12. Dependence of the required number of look-up

tables on the number of layers for long short-term memory
networks at various fixed values of the number of cells

Fig. 13. Dependence of the coefficient k(xi) on the number 	

of cells for long short-term memory networks

Table 3
Results of compilation of LSTM networks with different numbers of layers and cells

layers
cells

2 layers 4 layers 6 layers 8 layers 10 layers 12 layers 14 layers

2 cells 38485 77316 115325 153555 192596 255622 326956

4 cells 91148 182306 297802 428826 578482 692407 807442

5 cells 123444 245416 430949 615704 768686 923438 1076829

6 cells 159652 342968 548528 780248 978601 1170438 1365135

7 cells 196452 421872 718463 957348 1199257 1439995 1674785

8 cells 238936 546626 868567 1155944 1443844 1735005 2021585

10 cells 331606 790870 1184062 1577875 1969138 2365579 –

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

42

Fig. 14. Dependence of the coefficient k(xi) on the number 	

of cells on a logarithmic scale for long short-term 	
memory networks

Fig. 15. Dependence of the required number of look-up tables
on the number of cells for long short-term memory networks

at various fixed values of the number of layers

Fig. 16. Distribution of the required number of look-up tables

on the plane of the number of neurons and the number of
layers for the FPGA of the HAPS-80 S52 system when a long

short-term memory networks is placed on it

Fig. 16 shows a graph showing the areas of acceptable and
inaccessible values for the parameters of the LSTM-type neu-
ral network when placed on the FPGA model HAPS-80 S52.

5. 1. 4. Experiments for Convolutional Neural Network
During the experimental measurements on CNN, it was

decided to use the padding = same parameter so that the
amount of output data is equal to the amount of input data.
Accordingly, at each stage of the experiment, the number of
a set of layers consisting of conv1d, relu and maxpooling1d
increases. A rectifier linear unit (ReLU) is used as the main
activation function. Thus, the number of required LUTs for
a CNN depends on only one parameter – the number of net-
work layers. Table 4 shows the data obtained from the results
of compiling different CNN structures.

Table 4

CNN compilation results with different numbers of layers

10
layers

20
layers

30
layers

40
layers

50
layers

60
layers

70
layers

39641 72910 104676 145457 177870 211614 239500

80
layers

90
layers

100
layers

200
layers

300
layers

400
layers

500
layers

288151 310735 333975 679556 1027971 1382391 1685905

Analysis of the data in Table 4 shows that the dependence
of the required number of LUTs on the number of CNN layers
is linear and can be described by the function:

z k x= ⋅ ,	 (12)

where z is the number of required LUTs, x is the number
of CNN layers.

The empirical coefficient k is calculated in the same way
as by formula (3). The value of the coefficient turned out
to be 3411.92, while the relative error of its determination
is 0.67 %. Fig. 17 shows a graph of the approximating func-
tion (12) and experimental data.

Fig. 17. Dependence of the required number of look-up tables

on the number of layers for convolutional neural network

Thus, the empirical form of the dependence of the re-
quired number of LUTs on the number of layers for CNN
takes the following form:

z x= ⋅3411 92. .	 (13)

According to the results of experimental measurements,
it was found that CNN consumes the least amount of

Mathematics and Cybernetics – applied aspects

43

LUT resources. Calculations using formula (13) show that
a CNN with a number of layers of about 750 can be placed on
the FPGA of the HAPS-80 S52 system.

5. 1. 5. Experiments for Generative Adversarial Network
It is known that GAN is a framework for learning

a DL (deep learning) model to collect a distribution of train-
ing data so that we can generate new data from the same
distribution. They consist of two different models: generator
and discriminator. The generator’s job is to create «fake»
images that look like training images. The job of the discri
minator is to look at the image and infer whether it is a real
training image or a fake image from the generator.

There are several different architectures for building
GAN networks:

– fully connected GAN (Fully connected GAN);
– convolutional GAN (Convolutional GAN);
– conditional GAN (Conditional GAN);
– GAN with inference models;
– adversarial autoencoders.
Early GAN architectures used fully connected neural

networks for both generator and discriminator. Moving from
fully connected to convolutional neural networks (CNN) is
a natural progression given that CNN is very well suited to
image data [12].

If we take the architecture of Fully connected GAN,
then the results of network scalability will be identical to the
results of MLP. Therefore, in this work, the architecture was
used – Convolutional GAN. Since the discriminator model is
similar to the CNN model, it will be enough for us to imple-
ment only the generator model.

The implementation of the GAN generator model corre-
sponded to the model built using the PyTorch library. The
network consisted of a ConvTranspose2d layer. ReLU was
used as an activation function. The parameters of the Con-
vTranspose2d layer are as follows: in_channels in the input
layer 5, in the rest 2, out_channels in the output layer 1,
in the rest 2, kernel_size = (3,1), stride = 1, padding = 0,
output_padding = 0, groups = 1, bias = False, dilation = 1,
padding_mode = ‘zeros’, device = None, dtype = None.

The scale of a GAN network is determined primarily by
the number of layers. In this regard, in the experiment to
create GAN networks of different structures, the number of
layers varied in the range from 5 to 40 with a step of 5.

Table 5 shows the data obtained from the results of com-
piling different GAN structures.

The required number of LUTs for GAN is a function of
one variable (the number of layers) and can be represented
as follows:

z f x= (),	 (14)

where x is the number of layers, z is the number of LUTs re-
quired to place the neural network on the FPGA.

Fig. 18 shows graphs of the required number of LUTs
versus the number of layers for GAN networks.

Fig. 18. Dependence of the required number of look-up tables

on the number of layers for generative adversarial 	
network networks

Fig. 18 shows that the dependence of the required num-
ber of LUTs on the number of layers of the GAN network is
non-linear.

This dependence can be approximated by a power func-
tion of the following form:

k x c x() = ⋅ α ,	 (15)

where c and α are some positive real numbers.
To find the parameters c and α, we can again use the least

squares method. For this, equation (15) can be translated
into the logarithmic form:

ln ln ln .z c x() = () + ⋅ ()α 	 (16)

If we take Y = ln(k), A = ln(c), B = α and X = ln(x), then
equation (16) can be rewritten as follows:

Y A B X= + ⋅ .	 (17)

The coefficients A and B are calculated by the least
squares method.

Fig. 19 shows a graph of the required number of LUTs
versus the number of GAN layers on a logarithmic scale.

In Fig. 19, the points correspond to the expe
rimental data, and the red line corresponds to the
graph of the approximating function according to
formula (17).

As can be seen from Fig. 19, the dependence
of the required number of LUTs on the number
of layers on a logarithmic scale is indeed linear.
Knowing the coefficients, A and B, we can
easily find the values of the parameters c and α
in (15). Our calculations show that c ≈ 1383.33
and α ≈ 2.02. In this case, the required number
of LUTs for GAN networks can be calculated
using the formula:

z x= ⋅1383 33 2 02. .. 	 (18)

Calculations using formula (18) show that GAN net-
works with a maximum number of layers equal to 42 can be
placed on the HAPS s-52 FPGA.

Table 5
Results of compiling GAN networks with 	

different numbers of layers

Layers 5 10 15 20 25 30 35 40

LUTs 35079 149041 328311 591727 923218 1310442 1819853 2387473

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

44

Fig. 19. Dependence of the required number of look-up tables
on the number of layers on a logarithmic scale for generative

adversarial networks

5. 2. Conducting a comparative analysis of the compu­
tational resource intensity of different types of artificial
neural networks

As our calculations show, LSTM networks turned out
to be the most demanding for FPGA computing resources.
Fig. 20 shows graphs showing the boundaries of the permis-
sible parameters of SNN, MLP, and LSTM networks when
they are placed on the FPGA of the HAPS-80 S52 system.
In Fig. 20, the area above the curves corresponds to the
values of the admissible parameters of the neural network.
From this figure, we see that the range of valid parameters for
the LSTM network has the narrowest width.

Fig. 20. Illustration of the allowable parameters 	
of spiking neural network, multilayer perceptron 	
and long short-term memory networks when they 	
are placed on the field-programmable gate array 	

of the HAPS-80 S52 system

From Fig. 20 we also see that the SNN turned out to
be the least demanding on the computing resources of
the FPGA. As stated above, in the case of GAN and CNN
networks, the required number of LUTs depends on only
one parameter – the number of network layers. And if we
compare these networks with each other, then CNN requires
fewer FPGA resources.

6. Discussion of the results of processing
experimental data

As a result of the research, we obtained an empirical de-
pendence of the required number of LUTs on the parameters
of neural networks. The parameters of neural networks in this
case are the number of layers and the number of neurons in
each layer. The form of the dependencies obtained turned out
to be different, for example, for networks of the CNN type, this
dependence is a linear function, the argument of which is only
one parameter – the number of layers. And for other types of
MLP, LSTM, SNN, and GAN networks, this dependence is
described by a non-linear function, the argument of which
are two parameters – the number of layers and the number of
neurons in the layer. And at the same time, the function that
describes the changes in the GAN network has only one pa-
rameter – the number of layers. All found nonlinear functions
have the same form – a power function.

Compared with the results of other works [1–10], this
work allows us to determine the number of LUTs from the
empirical dependence obtained as a result of an experiment on
the implementation of neural networks such as MLP, CNN,
LSTM, SNN, and GAN. Other works are intended to imple-
ment a neural network model for solving a specific problem,
and not to implement the entire neural network on an FPGA.

The development of this study lies in the fact that the
use of FPGAs for the implementation of ANNs can increase
performance and reduce energy consumption due to their
parallelism for computing and their structural features com-
pared to other digital devices. The study may encounter ex-
perimental difficulties, since large-scale calculations of LUT
resources will require more time to synthesize the recording
circuit in the FPGA.

When choosing an FPGA, the main issue is to determine
the sufficiency of its resources to perform a certain number of
calculations in parallel mode. We believe that the empirical
formulas obtained will help answer this question since they
provide an opportunity to make an approximate estimate
of the required number of LUTs for implementing a certain
neural network on an FPGA.

We should draw your attention to the fact that when car-
rying out experimental calculations, we adopted some restric-
tions, for example, the data has a size of 24 bits, and only LUT
resources are used to store data and perform operations. It is
known that in addition to the LUT, other FPGA resources can
be used for data processing, for example, DSP, but the amount
of these resources compared to the LUT resource is usually
very small. Accordingly, when choosing a different data size
and deciding to additionally use other FPGA resources, the
end result in the form of an estimate of the required number of
LUTs can be quite different. Nevertheless, we believe that the
empirical formulas (9)–(11), (13), (18) we propose can be used
to estimate, as a first approximation, the required number of
LUTs for implementing a certain neural network on an FPGA.

The disadvantage of this study may be the static value of
the data size. Changing them can affect the amount of LUT
resources. The choice of data bit depth depends on the specific
model, that is, on the weight coefficients of the network. How-
ever, by choosing this size, you can achieve excellent fixed-point
data accuracy for implementing a neural network on an FPGA.

It should be noted that these patterns are not universal.
For example, they naturally depend on the bit depth of the
representation of numbers in the FPGA and on the algorithm
for implementing neural calculations. Obviously, in the

Mathematics and Cybernetics – applied aspects

45

case of an increase in the number of operations performed
sequentially, the requirements for the number of LUTs can
be reduced. But in this case, there will definitely be a loss
in computing performance. In our work, we tried to achieve
maximum computing performance on the FPGA by using
parallel execution of operations as much as possible. Ac-
cordingly, the established empirical patterns to some extent
reflect the limiting case of the resource use of FPGAs for the
implementation of neural networks on them.

7. Conclusions

1. Based on the results of experimental measurements
and processing of experimental data, empirical patterns were
found that can be used to approximately estimate the number
of required LUTs needed to place ANNs (SNN, MLP, LSTM,
CNN, GAN) of different structures on the FPGA. These
patterns, presented in the form of specific analytical records
of functions, can be used to select an FPGA and plan the
structure of neural networks in such a way that the comput-
ing resources of the FPGA correspond to the computational
requirements of neural networks.

2. A comparative analysis of the computational resource
intensity of different types of ANNs showed that it is most
efficient to place neural networks of the SNN and CNN type
on the FPGA. The GAN neural network, whose function
depends on one parameter, uses almost 100 % of the FPGA
LUT with a size of 41 layers. And with a similar number
of layers, the CNN network uses only 5.52 % of the LUT.

And when comparing neural networks, the function of
which has two arguments, it was revealed that the LSTM
network with 11 layers and 11 neurons in each layer uses
almost 100 % of the FPGA LUT. Compared to LSTM, SNN,
and MLP networks use only 1.22 % and 6.85 % of LUTs in
a similar situation, respectively. Neural networks like GAN
and LSTM turned out to be very demanding on FPGA com-
puting resources.

Conflict of interest

The authors declare that they have no conflict of inte
rest in relation to this research, whether financial, personal,
authorship or otherwise, that could affect the research and its
results presented in this paper.

Financing

The work was carried out within the framework of the
project AP19677321 «Development of digital experimental
setups for studying physics phenomena in laboratory con-
ditions of educational institutions using modern computer
technologies».

Data availability

The manuscript has no associated data.

References

1.	 d m, N., Bal , A., Pietrikov , E., Chovancov , E., Feci ak, P. (2018). The Impact of Data Representationson Hardware Based MLP

Network Implementation. Acta Polytechnica Hungarica, 15 (2). doi: https://doi.org/10.12700/aph.15.1.2018.2.4

2.	 Gaikwad, N. B., Tiwari, V., Keskar, A., Shivaprakash, N. C. (2019). Efficient FPGA Implementation of Multilayer Perceptron for

Real-Time Human Activity Classification. IEEE Access, 7, 26696–26706. doi: https://doi.org/10.1109/access.2019.2900084

3.	 Westby, I., Yang, X., Liu, T., Xu, H. (2021). FPGA acceleration on a multi-layer perceptron neural network for digit recognition.

The Journal of Supercomputing, 77 (12), 14356–14373. doi: https://doi.org/10.1007/s11227-021-03849-7

4.	 Bai, L., Zhao, Y., Huang, X. (2018). A CNN Accelerator on FPGA Using Depthwise Separable Convolution. IEEE Transactions on

Circuits and Systems II: Express Briefs, 65 (10), 1415–1419. doi: https://doi.org/10.1109/tcsii.2018.2865896

5.	 Zhang, N., Wei, X., Chen, H., Liu, W. (2021). FPGA Implementation for CNN-Based Optical Remote Sensing Object Detection.

Electronics, 10 (3), 282. doi: https://doi.org/10.3390/electronics10030282

6.	 He, D., He, J., Liu, J., Yang, J., Yan, Q., Yang, Y. (2021). An FPGA-Based LSTM Acceleration Engine for Deep Learning Frameworks.

Electronics, 10 (6), 681. doi: https://doi.org/10.3390/electronics10060681

7.	 Shrivastava, N., Hanif, M. A., Mittal, S., Sarangi, S. R., Shafique, M. (2021). A survey of hardware architectures for generative ad-

versarial networks. Journal of Systems Architecture, 118, 102227. doi: https://doi.org/10.1016/j.sysarc.2021.102227

8.	 Wang, D., Shen, J., Wen, M., Zhang, C. (2019). Efficient Implementation of 2D and 3D Sparse Deconvolutional Neural Networks

with a Uniform Architecture on FPGAs. Electronics, 8 (7), 803. doi: https://doi.org/10.3390/electronics8070803

9.	 Han, J., Li, Z., Zheng, W., Zhang, Y. (2020). Hardware implementation of spiking neural networks on FPGA. Tsinghua Science and

Technology, 25 (4), 479–486. doi: https://doi.org/10.26599/tst.2019.9010019

10.	 Ju, X., Fang, B., Yan, R., Xu, X., Tang, H. (2020). An FPGA Implementation of Deep Spiking Neural Networks for Low-Power and

Fast Classification. Neural Computation, 32 (1), 182–204. doi: https://doi.org/10.1162/neco_a_01245

11.	 Medetov, B., Serikov, T., Tolegenova, A., Dauren, Z. (2022). Comparative analysis of the performance of generating cryptographic

ciphers on the CPU and FPGA. Journal of Theoretical and Applied Information Technology, 100 (15), 4813–4824. Available at:

http://www.jatit.org/volumes/Vol100No15/24Vol100No15.pdf

12.	 Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A. A. (2018). Generative Adversarial Networks:

An Overview. IEEE Signal Processing Magazine, 35 (1), 53–65. doi: https://doi.org/10.1109/msp.2017.2765202

