
Information technology

53

that these people have access to affordable or free medical care, 
especially preventative and emergency treatments in the field 
of optometry. However then, deep learning-based algorithms 
have taken center stage in the growing area of medical image 
analysis [9]. 

This is particularly so given that deep learning models 
have been shown to be effective in a wide range of appli-
cations, one of the most important is the classification of 
medical data and illness diagnosis [10]. To lessen the burden 
on an ophthalmologist, automated disease detection is essen-
tial [11]. While human intervention isn’t always necessary, 
illnesses can be spotted by computerized methods like deep 
learning and computer vision. While several of these studies 
have shown promising results, only a select few have provid-
ed a complete diagnosis of numerous ocular disorders [12]. 
Most studies on identifying and diagnosing eye conditions 
have used deep learning networks that make use of transfer 
learning. Deep learning networks, on the other hand, have 
been used in some studies that adhere to the single-network 
principle, concentrating on a single input and making a 
single disease diagnosis at a time. In fact, it is urgent to 
develop deep learning network architectures and produce new 
architecture models relying on simple, modified deep learning 
networks that are suitable for standalone or remote artificial 
intelligence applications. In the majority of the studies done 
in this field, this aspect has not been fully explored [13]. This 
paper’s research focuses on two main aspects aimed at creating 
an embedded system that can identify and diagnose multiple 
types of eye diseases concurrently. The principle of parallelism 
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1. Introduction

An increasing number of people around the world are af-
fected by eye diseases [1]. More importantly, some eye diseases 
cause irreversible blindness that cannot be cured, while some 
other diseases such as cataracts, glaucoma, high eye pressure, 
bulging vision, etc. lead to visual impairment [2]. In clinical 
settings, early detection of these diseases helps prevent visual 
damage. Despite this, there is still a huge gap between the num-
ber of ophthalmologists and the number of patients. Moreover, 
manual evaluation of the fundus takes time and relies heavily on 
ophthalmologists’ skills, which makes intensive fundus exam-
ination more difficult. As a result, computer-aided diagnostic 
procedures to identify robotic eye problems are critical [3]. Oc-
ular problems might manifest differently in various populations 
in both developed and underdeveloped nations [4]. Developing 
countries, particularly those in Asia, frequently have high rates 
of untreated and undertreated eye illnesses [5]. According to 
the World Health Organization, there will be a dramatic rise in 
the number of visually impaired people [6]; nearly two-thirds of 
these injuries are vision impairment caused by a combination of 
factors, the most common of which are uncorrected refraction, 
cataracts, age-related macular degeneration, glaucoma, diabet-
ic retinopathy, corneal opacity, trachoma, high blood pressure, 
etc. [5]. Research in this area has shown that early identifica-
tion and diagnosis can reduce the incidence of injuries by as 
much as half [7]. According to the Urban Health Survey con-
ducted in 2013 [8], many low-income people who live in slums 
are generally in poor health. Due to these factors, it is crucial 
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eye disease, without considering other potential ailments the 
patient might have.

Furthermore, the researchers introduced an intricate intel-
ligent system comprising four complex deep learning networks. 
The implementation and training of these networks aimed to 
achieve high accuracy. However, a thorough analysis of the 
network’s performance could have revealed the possibility of 
using a less complex deep network while still obtaining similar 
accuracy levels as demonstrated in our research.

A new deep learning model for Glaucoma detection was 
demonstrated in [16], relying on three openly accessible 
datasets: HRF, Origa, and Drishti GS1. The proposed archi-
tecture employed an Alexnet model trained with an SVM 
classifier and achieved a 91.21 % accuracy rate in correctly 
classifying images. Despite the researchers’ integration of 
both machine learning and deep learning approaches to 
enhance the outcome, the accuracy attained is considerably 
lower in comparison to using a network such as Alexnet. 
Further, the research required some preprocessing of the 
input images, which could potentially enhance the results.

The study in [17] employed pre-transformed learning mod-
els in combination with the U-Net architecture, based on the 
principles of deep learning, to identify the presence of glauco-
ma in an individual. The model utilized a DenseNet-201 deep 
convolutional neural network (DCNN) and achieved a 96.90 % 
accuracy rate during testing. The study utilized the sequential 
model approach, where the classification aspect was based on 
DenseNet-201 and dependent on the initial portion designed by 
the U-Net architecture. However, a more effective implemen-
tation of this research could have been achieved by adopting a 
parallelism principle, whereby normal cases are isolated inde-
pendently without relying on the classification of pathological 
cases. This would have resulted in an increase in the efficiency 
and speed of the model presented.

While in [18], ResNet-152, a deep learning model with 
an enhanced activation function, has been proposed for the 
detection of diabetic retinopathy (DR). To train and validate 
the model, DIARETDB0, DRIVE, CHASE, and Kaggle were 
used. On the Kaggle dataset, the model showed an excellent 
accuracy of 99.41 %, suggesting its potential as a useful tool 
for DR diagnosis. One obstacle of the proposed system is the 
utilization of a large deep learning network, such as ResNet-152 
of size 58.157 M, only for the detection of diabetic retinopathy. 
This choice overlooks the association of this disease with other 
eye conditions like glaucoma and elevated eye pressure.

Additionally, there is no analysis for the ResNet-152 
model to simplify it and decrease its complexity via dropping 
out or truncating the ineffective layers. Instead, the system 
utilizes the conventional sequential form of ResNet-152, re-
sulting in increased resource consumption, including memo-
ry and other storage capacities.

An automated approach for detecting Ocular Hyperten-
sion (OHT) using a deep learning model is presented in [19]. 
The model is built using ResNet-50 and trained on a dataset 
of 66,715 images. The proposed method has demonstrated 
high efficacy in diagnosing OHT, achieving a success rate of 
95 %. The study has identified multiple weaknesses that neces�-
sitate attention, specifically the lack of consideration given to 
the balance between normal and infected cases in the database 
utilized for model training. This lack of consideration resulted 
in biased and unfair decisions being made. Additionally, the 
database was not pre-processed, despite containing numer-
ous poor-quality images, leading to possible misclassification. 
Moreover, the issue of image scaling proved to be problematic 

in diagnosis is utilized in both approaches and various types 
of deep learning networks invested in both architectures. The 
two architecture models are both implemented using parallel 
approaches, which involve executing a single prediction com-
mand on multiple data sets simultaneously. The integration of 
parallel architectures into the development of deep learning 
systems has provided several benefits, rendering them supe-
rior to previous systems. These advantages include enhanced 
performance speed and increased flexibility in handling in-
puts. Additionally, deep learning systems can be deployed as 
independent embedded systems, providing the added benefit of 
mobility. Both proposed architectures have been implemented 
on the P3448-0000 model of the Jetson Nano Developer Kit. 
This paper utilized the ODIR dataset, which is the Ocular 
Disease Intelligent Identification database. This database is 
a well-organized collection of information on 5,000 patients, 
which includes demographic information such as age, fundus 
photographs of both eyes (10,000 images), and diagnostic 
keywords from ophthalmologists. The dataset was gathered 
by Shanggong Medical Technology Co., Ltd. to simulate a re-
alistic sample of patient records from various medical facilities 
in China. The fundus photos in these facilities were captured 
using a range of cameras, including Canon, Zeiss, and Kowa, 
each of which produces slightly different picture quality [14]. 
The dataset used in this study was severely skewed, making it 
unsuitable for categorizing any disorders. This mismatch cre-
ated considerable oscillations throughout training, which was 
troublesome. A balancing strategy was used to overcome this 
problem. In addition, instead of categorizing all diseases using 
the complete dataset, two classes were chosen for each disease: 
normal and eye disease x, where x is one of the eye disorders 
that the suggested design detects, where the classification pro-
cess is accomplished simultaneously.

Researchers were motivated by the remarkable achieve-
ments of deep learning networks in detecting and diagnosing eye 
diseases. This has prompted them to delve further into enhanc-
ing the effectiveness and capabilities of these networks, striving 
to create highly accurate systems. The urgency arises from the 
escalating prevalence of these diseases, surpassing the capacity 
of medical resources. Consequently, there is a pressing need 
for expanded support to cater to the growing number of cases.

Therefore, studies that are devoted to developing deep 
learning models for ocular disease diagnosis are of scientific 
relevance.

2. Literature review and problem statement

There have been numerous endeavors aimed at precise-
ly categorizing ocular disorders. Some of these efforts have 
focused on using fundus images to develop diagnostic sys-
tems, while others have utilized Optical Coherence Tomogra-
phy (OCT) for the same purpose. So in [15], a pipeline classifier 
based on transfer learning is recommended as a method to au-
tomatically classify the severity of Cataracts. The authors show 
that a combined model of AlexNet, InceptionV3, Xception, 
and InceptionResNetV2 with a weighted average algorithm 
can distinguish between a normal cataract and a cataract with 
99.20 % accuracy and between a normal cataract and a severe 
cataract with 97.76 % accuracy, and that is better compared 
with the independent models. The ensemble model also reduces 
the number of wrong classifications by an average of 2.17 %. 
One of the drawbacks of this study is that the proposed deep 
learning model focused solely on detecting and diagnosing one 
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as it led to the loss of crucial information, ultimately affecting 
the training outcomes of the suggested model. It was possible 
to take into account these points with the adoption of a less 
complex deep learning network and obtain better results.

In addition, a new classification algorithm based on 
Glaucoma Net is presented in [20] to automatically de-
tect Primary Open-Angle Glaucoma (POAG) cases. The 
algorithm achieves high accuracy for both the Ocular Hy-
pertension Treatment Study (OHTS) participants and the 
Large-scale Attention-based Glaucoma (LAG) dataset. The 
proposed design has a lower sensitivity compared to other 
related articles, as well as the imbalance in the dataset used 
for its training, the model. This makes its decision unfair.

In [21], the authors investigate the potential of deep 
learning (DL) algorithms for the automated classification 
of Macular Diseases on OCT images, using a two-step DL 
algorithm. The study employs RelayNet for automated seg-
mentation of the OCT images before classification, yielding 
sensitivity, specificity, and accuracy of 72.90 %, 96.20 %, 
and 93.92 %, respectively. However, a major drawback of the 
study is the use of the six-line scan, which results in bias and 
may lead to mislabeling some OCT scans as diseased when 
they appear normal. Additionally, the algorithm’s sensitivity 
is low. Furthermore, the DL models’ applicability to OCT 
images from other devices remains unknown as the study 
relied solely on a specific brand of OCT device.

The authors suggested a transfer learning model based 
on deep learning in [22] to automatically diagnose Dry 
Eye (DE) by classifying individual video frames, the dataset 
comprised 128 eyes of 128 patients with DE and 116 eyes of 
116 healthy subjects. They tried three different deep learn-
ing networks in their design, DenseNet121, ResNet50V2, 
and Inception V3. The best results have been obtained via 
ResNet50V2, which are 0.9, 0.84, 0.99, 0.91 for accuracy, 
recall, precision, and F1 score. The drawbacks of this study 
can be briefly the large numbers of the frame and augmented 
images and the high similarity of the extracted frame of the 
same video. Besides that, the proposed model was ungeneral-
ized because of its reliance on the selected dataset. Also, the 
model suffers from overfitting in its CNN.

A deep learning classification model based on transfer 
learning using VGG19 has been employed in [23]. Utiliz-
ing Optical Coherence Tomography (OCT) technique, the 
model has been trained to classify optical coherence tomog-
raphy (OCT) scans into one of four conditions that affect 
the retina, including choroidal neovascularization, drusen, 
diabetic macular edema, and normal. The results indicate 
that this proposed model has achieved outstanding perfor-
mance, with a remarkable classification accuracy of 99.17 %. 
The researchers emphasize the impressive level of accuracy 
attained by their proposed system. However, they pointed 
out that this accuracy is influenced by the settings of the 
devices and the methodology employed for capturing retinal 
images. They point up that the performance of their system 
is entirely dependent on these factors.

Furthermore, another factor that restricts the performance 
of the system presented in this study is the requirement for a 
substantial volume of data for training and testing purposes. 
It is highlighted that the achieved accuracy is contingent upon 
the availability of a significant amount of data. Conversely, if 
only a limited amount of data is available, the system fails to 
achieve a similar level of accuracy or even a close approximation.

A deep learning model was developed in [24] to diagnose 
pathological myopia automatically. Their proposed method 

involved transfer learning from four pre-trained convolutional 
neural networks: ResNet18, ResNet50, EfficientNet B0, and 
EfficientNet B4. The model was trained on a dataset of 367 
3D optical coherence tomography images, and the evaluation 
of the four networks showed that the EfficientNetB4 model 
had the highest accuracy of 95 %. Hence, the EfficientNetB4 
model is a suitable choice for diagnosing pathological myopia. 
Nonetheless, the project exhibits certain limitations. The study 
involved a sample size of 37 eyes, out of which 13 eyes with 
pathologic myopia were evaluated for performance using OCT. 
Furthermore, it is noteworthy that merely the en-face OCT 
image generated in the anterior segment of the retinal layer 
was utilized. It is worth mentioning that the majority of deep 
learning models that employ OCT data typically utilize B-scan, 
thereby providing a unique viewpoint. Furthermore, it should 
be noted that the study was conducted with only patient data 
from Korea. As a result, the efficacy of the proposed system may 
vary when tested on a database comprising individuals from di-
verse ethnic backgrounds. The prevalence of pathologic myopia 
varies among different races.

Upon reviewing a collection of works pertaining to the 
diagnosis and classification of eye diseases and conducting an 
analysis of their proposed systems and achieved results, it be-
came evident that there remain significant areas yet to be pro-
cessed, and overcoming numerous identified obstacles. Firstly, 
most studies commonly employ deep learning networks that 
follow the principle of a single consecutive network. However, 
this approach introduces considerable complexity to the com-
putational operations within the neural network. As a result, 
it becomes challenging to train and implement such networks, 
impacting their accuracy and operational flexibility.

Secondly, a recurring issue observed in most studies is 
the problem of database imbalance, which results in a lack of 
impartiality and accuracy in diagnostic decisions, as well as 
most of these studies did not utilize pre-processing of data 
images, which could improve performance and resolution 
correction within the system.

Furthermore, no innovation of any deep learning net-
work was presented with low complexity, easy training and 
implementation, and suitability for remote and self-powered 
applications, as most studies relied on well-known deep 
learning networks. 

All this allows us to assert that it is expedient to conduct 
a study to present systems that address all the above points 
through new and innovative deep learning networks based 
on parallel architectures in low-cost embedded systems.

3. The aim and objectives of the study

The aim of the study is to diagnose and classify various 
ocular diseases simultaneously using a low-cost, energy-effi-
cient multiclass classification system, with newly presented 
architectures models, that achieve high accuracy, low com-
putation complexity, and fast response.

To accomplish the aim, the following objectives have 
been set:

‒ to present a developed design and implementation of 
embedded models that are able to detect and classify eight 
ocular diseases concurrently via employing parallel architec-
ture approaches throughout the development of the proposed 
systems;

‒ to employ new proposed deep networks for implement-
ing those designs to increase the efficiency of the system and 
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provide the system with the capability to simultaneously di-
agnose and classify more than one eye disease for each entry.

4. Materials and methods 

The object of the study is to develop independent and 
mobile embedded systems for the detection and classifica-
tion of eye diseases.

The main hypothesis in the context of our study is to pro-
pose new deep learning networks and investment of parallel ar-
chitectures as the basis for the implementation of the proposed 
models to achieve high accuracy, superior performance speed, 
and obtain concurrent results, as well as reduce the complexity 
of calculations within the neural network.

The ODIR dataset was used to train both presented 
models, which are implemented on a parallelism support 
platform, Jetson Nano.

ODIR is a database of structured ophthalmic data compris-
ing 5,000 patients of both eyes. It includes information such as 
age, color fundus photographs from both left and right eyes, 
and diagnostic keywords provided by doctors. This dataset is 
intended to reflect real-world patient information col-
lected by Shanggong Medical Technology Co., Ltd. 
from multiple hospitals and medical centers through-
out China. The fundus images in this database were 
captured using different cameras available in the 
market, including Canon, Zeiss, and Kowa, resulting 
in varying image resolutions. This data set presents a 
variety of challenges. To begin with, the overwhelm-
ing number of photographs is poorly lit and unclear, 
necessitating preprocessing before they can be used as 
inputs in the proposed system. So, histogram equal-
ization was employed as a simplified image processing 
technique to enhance the quality of images that are 
used for training and testing of the deep learning 
networks. Furthermore, the dataset for particular 

ocular ailments exhibits significant class imbalance [25], as 
shown in Fig. 1. So, as a result of this significant imbalance 
within the datasets, the accuracy of both disease and normal 
image detection and classification is relatively low. Hence, 
attempting to classify any disease using this dataset is inad-
visable, as it results in significant fluctuation during training. 
To address this issue, one of the possible solutions suggested 
in this study is to balance the images between the two classes. 
Besides that, instead of processing all images and classifying 
all diseases at once, the suggested approach takes two classes 
at a time and balances them by taking the same number of 
images from both classes and feeding them into a pre-trained 
deep network. This dataset was divided into an 80:20 ratio, 
with 80 % of the data being used for training and 20 % for 
testing purposes.

The ocular diseases detected and classified in this paper 
research are Cataracts (C), moderate non-proliferative dia-
betic retinopathy (D), Myopia (M), Ocular hypertension (H), 
Glaucoma (G), dry age-related macular degeneration (A), and 
Others (O). Besides, the Normal case that represents a health 
condition that does not suffer from the above diseases Fig. 2 
clarifies the fundus image for each of those diseases. 

 
  

Fig. 1. Ocular diseases in ODIR dataset image distribution

    
a                                           b                                           c                                           d

e                                           f                                           g                                             h

Fig. 2. Fundus images from the ODIR dataset showing anatomical structures and abnormalities due to various 
ophthalmological diseases: a ‒ normal image; b ‒ glaucoma; c ‒ diabetic retinopathy: d ‒ AMD; e ‒ hypertension; f ‒ cataract; 

g ‒ myopia; h ‒ other abnormalities 
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So for those diseases, we can give a brief overview that 
includes the causes, symptoms, and warning signs of each of 
these conditions will be examined:

1. Cataracts (C).
The formation of protein aggregates on the eye’s lens 

leads to the development of cataracts, which manifest as a 
hazy, thick mass. This mass obstructs the normal passage of 
light to the retina, resulting in reduced night vision, fuzzy 
vision, dulled colors, and double vision [26]. Major risk fac-
tors for cataract development include smoking, being over-
weight, having high blood pressure, having a family history 
of cataracts, having diabetes, and being exposed to radiation 
from X-rays or cancer treatments. Cataracts are one of the 
most common eye ailments and are particularly prevalent in 
poor and middle-income countries [27].

2. Moderate non-proliferative diabetic retinopathy (D).
Non-proliferative diabetic retinopathy is an eye-relat-

ed complication that can occur in people with diabetes. 
Non-proliferative diabetic retinopathy is the initial stage of 
this condition and can be effectively managed with prompt 
identification and treatment. Over half of individuals with 
diabetes will eventually develop diabetic retinopathy, and 
the likelihood increases with the duration of the disease. The 
retina, a light-sensitive tissue located at the back of the eye, 
contains blood vessels that can be damaged over time due to 
high blood sugar levels. Early diabetic retinopathy causes 
these blood vessels to weaken and form microaneurysms, 
leading to fluid leakage and swelling in the retina’s center, 
known as the macula. Blood vessel closure can also result in 
macular ischemia. If left untreated, non-proliferative diabet-
ic retinopathy can progress to a more severe form in which 
fragile new blood vessels develop in the retina. These vessels 
can leak blood and fluid into the vitreous gel at the back of 
the eye, causing further damage and vision loss. Therefore, 
early detection and treatment of diabetic retinopathy are 
crucial to prevent additional harm to the eyes [28].

3. Myopia (M).
The highest prevalence rates of myopia, the most prev-

alent ocular condition in young children, are found in East 
Asian countries. When myopia is severe and causes excessive 
axial elongation of the eye, it can stretch the outer coats of 
the eyeball, leading to various pathologic changes such as 
staphyloma, chorio-retinal atrophic lesions, lacquer cracks, 
and choroidal neovascularization. The “META analysis for 
Pathologic Myopia (META-PM)” study group has catego-
rized myopic maculopathy signs into five categories: Cate-
gory 0 for eyes with no macular lesions, Category 1 for those 
with a tessellated fundus, Category 2 for those with diffuse 
chorio-retinal atrophy, Category 3 for those with patchy 
chorio-retinal atrophy, and Category 4 for those with macu-
lar atrophy. An eye is considered to have pathologic myopia 
only when the fundus photography signs are consistent with 
category 2 and above [29].

4. Ocular hypertension (H).
When the drainage of fluid inside the eye, called aqueous 

humor, is inadequate, it leads to a condition known as ocular 
hypertension (H). People who are over the age of 40 or have 
a family history of ocular hypertension, glaucoma, or diabe-
tes are at a higher risk of developing H. Uncontrolled high 
blood pressure or diabetes can also increase the vulnerability 
of patients to ocular hypertension. Those who have these 
risk factors should undergo regular eye check-ups to keep an 
eye on their ocular health and identify any possible problems 
at an early stage [30].

5. Glaucoma (G).
Glaucoma, a group of disorders that affect the eyes, can 

lead to progressive optic neuropathy and vision loss due to 
degeneration of the optic nerves. The cells of the optic nerve 
play a crucial role in transforming optical impulses into elec-
trical impulses that the brain requires for visual processing. 
The primary causes of glaucoma include elevated intraocular 
pressure caused by aqueous fluid, genetic predisposition, 
and diabetes. Regardless of the level of intraocular pressure 
(high, normal, or low), glaucoma can cause damage that re-
sults in a loss of peripheral vision [31]. Certain types of glau-
coma may have a sudden onset, and early diagnosis is crucial 
for preserving eyesight. One significant change in glaucoma 
is the increased ratio of cup area to disc area. Diagnosis of 
glaucoma involves measuring this ratio using color fundus 
pictures, analyzing visual fields with perimetry, and mea-
suring intraocular pressure with a tonometer. Reference [32] 
discussed various glaucoma detection systems, with a par-
ticular emphasis on their suitability for mobile applications.

6. Dry age-related macular degeneration (A).
The incidence of age-related macular degeneration (AMD), 

a condition that primarily affects older adults, is on the rise as 
the population ages. In the initial stages of AMD, patients usu-
ally do not face any significant vision issues. However, without 
prompt intervention, central vision may be diminished or en-
tirely lost. Consequently, early detection plays a crucial role in 
preventing the future advancement of AMD [33, 34].

7. Others (O).
The ODIR dataset comprises over eight distinct ocular 

diseases, while the remaining eye conditions were catego-
rized as “other abnormal conditions”.

This study presented an integrated system designed with 
parallel architectures to diagnose and classify multiple eye 
diseases simultaneously. 

So, the first proposed model in this paper, which is 
Multi-label parallel embedded architecture transfer learn-
ing-based model, was implemented based on parallel ar-
chitecture, where eight binary classifiers work in parallel, 
providing eight detecting and classifying operations at the 
same time. VGG 16 deep learning networks were adopted 
to construct the binary classifiers of the proposed model. 
The incorporation of parallelism in the presented systems 
architecture yields an independent and isolated diagnosis 
of each eye disease. Moreover, opting for parallelism in 
the implementation of deep learning networks, as opposed 
to relying on a single network principle, brought about 
several benefits, including faster disease diagnosis within 
a standard time. In addition, making the disease detection 
and classification process binary. This, in turn, reduced the 
operations within a single deep network, thereby decreas-
ing the capacity consumed by a single neural network and 
minimizing the memory spaces reserved for the extracted 
image features. 

Furthermore, the implementation of parallelism and in-
dependence approach for disease detection and classification 
has enabled the development of a diagnostic system that 
can identify multiple diseases simultaneously across various 
entries. Additionally, this approach allows for the detection 
and diagnosis of several diseases within a single entry, where 
eight ocular diseases can be detected and classified for one 
entry at the same time, as well as the possibility of the de-
tection and classification of eight different diseases for eight 
entries concurrently. These advantages made it possible to 
implement the presented architecture as a standalone em-
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bedded system that can operate independently. Fig. 3 gives 
a schematic description showing the parts of the proposed 
model. The process involves either broadcasting a single 
fundus image to seven binary classifiers, which work concur-
rently to detect and classify seven eye diseases, or inputting 
seven fundus images into the embedded system to detect and 
classify one ocular disease for each image.

As shown in Fig. 3, each binary classifier comprises a deep 
learning network, which is VGG16. For binary classification, 
two extra layers (flatten and dense of 1) were added to those 
networks to make the deep network to be binary classifier with 
two labels, Normal and specified ocular diseases.

Fig. 4 presents a comprehensive overview of the intricate 
particulars concerning the VGG16 network, which was adopt-
ed as a classifier in the first proposed model. These particulars 
include details such as the layer count, dimensions, activation 
function types, network parameters, and other related aspects. 

The VGG16 network is constrained by a total of 
14,714,688 parameters, as illustrated in Fig. 4, b. Moreover, 
two additional layers have been included as a modification to 
get a binary classifier. Unlike the sequential multi-class deep 
networks in our model, complex computations are fractured 
into eight parallel independent computation groups, which 
can be accomplished concurrently. 

 
  Fig. 3. Multi-label parallel embedded proposed model’s architecture 
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Layer (type) Output shape Param# 

Flatten_3 (Flatten) (None, 7, 7, 512) 14714688 
Dense_3 (Dense) (None, 25088) 0 
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Fig. 4. Classifier layers details of the first proposed model: a ‒ modified VGG16 deep network based on transfer learning; 	
b ‒ variables summary of the innovator learning network
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In the second proposed model, which is Multi-label 
parallel embedded architecture novel deep network-based 
model, the same methodology of the parallel architecture 
was employed as in the first proposed model. The key fea-
ture that sets this model apart is its classifiers, which rely 
on novel deep learning networks that were presented, devel-
oped, and trained specifically for this model. The proposed 
approach involves constructing and optimizing deep learn-
ing networks that are well-suited for this model. As shown 
in Fig. 5, a. These networks exhibit exceptional performance 
and were developed following a thorough examination of 
the VGG16 network. This analysis involved tracking the 
extracted features at each layer, investigating and analyzing 
the impact of each layer on the network’s resolution accuracy 
for all eight diagnosed and classified diseases. As a result, 
highly efficient networks were constructed, surpassing oth-
ers in terms of their compact size and layer count within the 
field of deep learning.

Also, Fig. 5, b clarifies the deep network details, like the 
size of convolutional layers, pooling layers, as well as the 
network variable summary.

It can be observed that these deep learning networks 
possess noteworthy characteristics, such as a limited num-
ber of layers, restricted variables, and quick response time, 
while still maintaining a high level of accuracy compared 
to similar deep learning networks used in the first archi-
tecture. The figure reveals that the number of network 
variables has decreased from 14,739,777 to 3,016,001, 
resulting in a network size that is approximately 4.8 times 
smaller than in the first model. Despite this reduction in 
size, the performance accuracy remains almost the same 
as in the first model. The small size of the deep learning 
network used as a classifier in the embedded model offers 
several advantages. Firstly, it offers faster performance 
due to the network comprising only a few layers. Secondly, 
the network requires only a small number of variables to 
build, which results in less storage space and memory han-
dling, thereby increasing performance speed and reducing 
energy consumption. Additionally, the system structure’s 
adoption of parallel architectures enables it to operate 
simultaneously, detecting and differentiating multiple 
diseases from one or multiple inputs simultaneously. The 

model’s small size and high performance 
also make it less energy-intensive, making it 
ideal for self-powered systems and light IoT 
applications.

To enable our proposed model to be 
remote and standalone, without depending 
on any computer system or high-cost, high 
power consumption components, the Jetson 
Nano platform, model P3448-0000, shown 
in Fig. 6 has been chosen. The NVIDIA 
Jetson Nano Developer Kit is designed to 
provide makers, learners, and developers 
with a low-power and user-friendly platform 
to harness the power of modern artificial 
intelligence. 

Fig. 6. The chosen development kit

With its pre-configured support for various 
popular peripherals, add-ons, and readily avail-
able projects, users can easily get started without 
delay [35]. Anyway, our Jetson Nano was con-
figured through installing the operating system, 
TensorFlow with all the necessary libraries. Af-
ter that, the proposed models were implemented 
in this kit. The development kit offers the advan-
tage of being a multi-core processor, enabling 
support for the parallel architecture utilized in 
implementing the proposed models.
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Model: "sequential_3"   

Layer (type) Output shape Param# 
Conv2d_1 (Conv2D) (None, 224, 224, 64) 1,792 
Conv2d_2 (Conv2D) (None, 224, 224, 64) 36,928 

Maxpooling2d_1 (MaxPooling2D) (None, 112, 112, 64) 0 
Conv2d_3 (Conv2D) (None, 112, 112, 128) 73,856 
Conv2d_4 (Conv2D) (None, 112, 112, 128) 147,584 

Maxpooling2d_2 (MaxPooling2D) (None, 56, 56, 128) 0 
Conv2d_5 (Conv2D) (None, 56, 56, 256) 295,168 
Conv2d_6 (Conv2D) (None, 56, 56, 256) 590,080 
Conv2d_7 (Conv2D) (None, 56, 56, 256) 590,080 

Maxpooling2d_3 (MaxPooling2D) (None, 56, 56, 256) 0 
Conv2d_8 (Conv2D) (None, 28, 28, 512) 1,180,160 

Maxpooling2d_4 (MaxPooling2D) (None, 14, 14, 512) 0 
Flatten_1 (Flatten) (None, 100352) 0 
Dense_1 (Dense) (None, 1) 100,353 

Total params: 3,016,001 
Trainable params: 3,016,001 

Non-trainable params: 0 
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Fig. 5. Details of a new deep network for the second proposed model: 
a ‒ the proposed deep learning networks; b ‒ variables summary of the 

proposed deep learning networks
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5. Results of multi-label embedded parallel models for 
ocular disease detection and classification

5. 1. Production accuracy of the Multi-label parallel 
embedded architecture transfer learning-based model

For cataract (C) detection vs. normal (N), we take the 
same number for both of Cataract class and Normal class, 
then we pass the data into pretraining VGG16 and get train-
ing accuracy and validation accuracy, as shown in Fig. 7. 

And after 70 epochs for VGG16, the training and vali-
dation accuracy for VGG16 was 1.0 and 0.977, respectively. 
For glaucoma (G) detection vs. normal (N), as in cataract, 
we extracted a sample of data from the dataset and used a 
pre-trained VGG16 model to compute the training accuracy 
and loss, and the results were as in Fig. 8. 

As shown in Fig. 8, the training and validation accuracy 
for VGG16 was about 1.0, and 0.9487, respectively.

For hypertension (H) detection vs. normal (N), we col-
lected data from the dataset and passed it into a pre-trained 
VGG16 to calculate training accuracy and loss as shown 
in Fig. 9. 

As shown in Fig. 9, the training accuracy was 1.0, 
while the validation accuracy was 0.9096. For moder�-
ate non-proliferative retinopathy (D) detection vs. nor-
mal (N), we obtained the training accuracy and loss by 
extracting a sample of data from the ODIR dataset and 
inputting it into a VGG16 model. The resulting output is 
illustrated in Fig. 10.

As shown in Fig. 10, the training accuracy was about 1.0, 
while the validation accuracy was about 0.86027.

For age-related macular degenera-
tion (A) vs. normal (N), like previously, 
we utilized a pre-trained VGG16 model 
to analyze the sample data for the cur-
rent Ocular Disease and get both train-
ing accuracy, validation accuracy, and 
loss, as shown in Fig. 11.

So, as shown in Fig. 12, these values 
were 1.0, 0.8789, respectively.

For Myopia (M) detection vs. nor-
mal (N), we employed the identical ap-
proach as before by extracting data from 
inputting it into a pre-existing VGG16 
model to compute the results.

So, the training accuracy, validation 
accuracy, and loss were 1.0, 0.9947, and 
0.0214, respectively, after 70 epochs as 
shown in Fig. 12.

Finally, for Other Diseases/Abnor-
malities (O) detection vs. normal (N), 
the ODIR dataset comprises over eight 
distinct ocular diseases, while the re-

maining eye conditions were categorized as “other abnor-
mal conditions”. Similar to the ocular diseases, data for 
these conditions were extracted from the dataset and fed 
into a pre-existing VGG16 model for training and valida-
tion. The results after 70 epochs were 1.0, and 0.85 for both 
training and validation accuracy, while the loss was 1.3, as 
shown in Fig. 13.

Also, Fig. 14 displays the confusion matrix for each ocu-
lar disease compared to the normal state.

These confusion matrices offer comprehension of the 
evaluation metrics, including recall, precision, and accuracy, 
for the proposed model.
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Fig. 7. Cataract detection: a ‒ model accuracy; b ‒ loss 	
for N vs. C for VGG16;  – train;  – val
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Fig. 8. Glaucoma detection: a ‒ model accuracy; b ‒ loss for N vs. G for VGG16;  – train;  – val
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Fig. 9. Hypertension detection: a ‒ model accuracy; b ‒ loss for N vs. H;  – train;  – val
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Fig. 10. Moderate non-proliferative retinopathy: a ‒ model accuracy; b ‒ loss for N vs. D;  – train;  – val
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Fig. 11. Age-related macular degeneration detection: 	
a ‒ model accuracy; b ‒ loss for N vs. A;  – train;  – val



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/2 ( 124 ) 2023

62

1.000 
0.975 

0.950 
0.925  
0.900 
0.875 
0.850 

0.825 

0   10    20    30   40   50    60   70 
Epochs 

Model Accuracy 

A
cc

ur
ac

y

0   10    20    30   40   50    60   70 
Epochs 

2 
1.75 
1.50 
1.25 
1.00 
0.75 
0.50 
0.25 
0.00 

Model Loss 

Lo
ss

a                                                                      b 

Fig. 12. Myopia detection: a ‒ model accuracy; b ‒ loss for N vs. M for VGG16;  – train;  – val
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Fig. 13. Other ocular disease detection: a ‒ model accuracy; b ‒ loss for N vs. O;  – train;  – val
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Fig. 14. Confusion matrix of the first proposed model: a ‒ confusion matrix for N versus C classification; b ‒ confusion matrix for N 
versus G classification, c – confusion matrix for N versus H classification; d ‒ confusion matrix for N versus D classification; 	

e ‒ confusion matrix for N versus A classification; f ‒ confusion matrix for N versus M classification; g ‒ confusion matrix for N 
versus O classification
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5. 2. Production accuracy of the Multi-label parallel 
embedded architecture novel deep network-based model

For cataract (C) detection vs. normal (N), we obtained 
the training accuracy, validation accuracy, and loss by ex-
tracting a sample of data from the ODIR dataset and input-
ting it into a new deep learning network as shown in Fig. 15.

As Fig. 15 shows, we got 0.9805 and 0.9403 for both 
training accuracy and validation accuracy.

For hypertensive retinopathy (H) detection vs. normal (N), 
again we calculated training accuracy, validation accuracy, and 
loss via sampled data from the dataset and fed them into our 
new deep learning network to get the results in Fig. 16.

So after 70 epochs, we got 0.9968 as training accuracy, 
while the validation accuracy was 0.8853. 

For dry age-related macular (A) detection vs. nor-
mal (N), and in the same manner, we calculated train-
ing accuracy and validation accuracy via sampled data 
from the dataset and fed them into our compacted 
learning network. The results are shown in Fig. 17.

As shown in Fig. 17, the training accuracy was about 
0.9939, while the validation accuracy was 0.9356.

Finally, for myopia (M) detection vs. normal (N), and 
after 70 epochs, the results are shown in Fig. 18.

We got about 0.9791 and 0.96 as training and validation 
accuracy, respectively.

However, during the training process of the model, we 
assess its ability to learn from the training data and im-
prove its accuracy. The main goal of training precision is to 
identify any issues, such as overfitting or underfitting, and 
optimize hyperparameters accordingly. Once the model has 
been trained using the training dataset and validated using 
a separate validation dataset, we can determine its final 
accuracy by evaluating its performance on the test dataset. 
Accuracy is shown in (1):

The accuracy achieved by each of the two models pro-
posed in this research study is summarized in Table 1.
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Fig. 15. Cataract detection: a ‒ model accuracy; b ‒ loss for N vs. C for the compact network;  – train;  – val
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Fig. 16. Hypertension detection: a ‒ model accuracy; b ‒ loss for N vs. H for the compact network;  – train;  – val
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Table 1

Test accuracy results

Ocular Disease

Transfer 
Learning 

model

New deep 
Net. model

Validation 
accuracy

Validation 
accuracy

Cataract 0.977 0.9403

Glaucoma 0.9487 0.905

Hypertension 0.9096 0.8853

Moderate non-proliferative retinop-
athy

0.86027 0.846

Age-related Macular Degeneration 0.8789 0.9356

Myopia 0.9947 0.96

Other 0.870 0.861

Occasionally, relying on the accuracy, shown in equa-
tion (1), is insufficient. To evaluate the efficacy of deter-
mining whether a particular image represents a disease, we 
incorporate various metrics related to accuracy. As we have 
employed classification models, we utilize the most preva-
lent metrics for classification problems, including Precision, 

Recall, and F1 Score. The amalgamation of these metrics 
with accurate measurement will provide a comprehensive 
overview of the quality of the classification system.

Precision provides a measure of the proportion of dis-
ease-positive patients correctly identified among the entire 
dataset. Precision is shown in (2):

True�Positive
precision .

True�Positive False�Positive
=

+
	 (2)

Recall assesses the number of true positives that have been 
accurately classified, which in our prediction models refers to 
individuals who are truly afflicted and have been predicted by 
our model to be afflicted. Recall is shown in (3):

True�Positive
Recall .

True�Positive False�Negative
=

+
	 (3)

F1 score is a common evaluation metric used in deep 
learning for binary classification tasks. It combines the 
precision and recall of a classifier into a single value, 
which evaluates the overall performance of a binary clas-
sifier. The F1 score ranges from 0 to 1, with a higher score 
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Fig. 18. Myopia detection: a ‒ model accuracy; b ‒ loss for N vs. M for the compact network;  – train;  – val
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Fig. 17. Age-related macular degeneration detection: a ‒ model accuracy; b ‒ loss for N vs. A for the compact network;	
 – train;  – val
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indicating better performance. The F1 score is calculated 
as in (4):

Precision *�Recall
F1 Score .

Precision Recall
=

+
		  (4)

So, Precision, Recall, and F1 Score, which are a com-
prehensive view of the proposed systems’ performance, are 
shown in Fig. 19. The criteria mentioned are considered as a 
means of validation and confirmation of the results obtained 
by the two proposed models. Both 19-A and 19-B are di-

vided into seven binary subgroups representing the metrics 
of the seven classifiers compared to the normal state. Each 
subgroup is denoted by Class 0 and Class 1, indicating the 
absence or presence of a specific eye disease. This figure pres-
ents the Precision, Recall, and F1 Score values for each class.

A comparison of our model’s performance with other 
published studies for reference is conducted in Table 2. It 
provides an overview of the models utilized in each study, 
indicating the size of the corresponding Deep Learning 
Network. Additionally, it highlights the diagnostic accuracy 
achieved by each system after training on the ODIR dataset. 
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Fig. 19. Performance metrics of each class for multi-label parallel embedded architecture: 	
a – transfer learning based; b – new deep Net. based
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Upon closer examination of Table 2, it becomes evident 
that previous studies utilized various techniques to achieve 
satisfactory outcomes. Although some of these approaches 
were similar, their results varied, indicating that researchers in 
this domain have introduced enhancements and innovations. 
Nonetheless, Table 2 unequivocally demonstrates the superior-
ity of the embedded models proposed in this investigation. The 
initial model exhibits a remarkable advantage in performance 
compared to its transfer learning-based counterparts. More-
over, the second proposed model exhibits a clear distinction in 
terms of efficiency and accuracy in performance, depending on 
the size of the small deep learning networks adopted for clas-
sification. This model competes with renowned deep learning 
networks such as VGG16, EfficientNetB3, and RESNET50. 

The disparity in size between the deep learning networks 
employed in prior studies and those proposed in the second 
model is illustrated clearly in Fig. 20. 

As shown in Fig. 20, a marked difference can be observed in 
the size of the deep learning network proposed for the second 
model in this study, compared to other deep learning networks. 
However, the classification performance and accuracy of this 
network are representatives of those networks, and are some-
times agreed upon.

6. Discussion of experimental results of the proposed 
Multi-label parallel embedded models for ocular disease 

detection and classification

The incorporation of parallel architectures in the imple-
mentation of the deep learning system as shown in (Fig. 3), 
instead of relying on a single deep network, proved highly 
advantageous in each of the proposed development models, 
where this methodology converts the computation complex-
ity of the deep networks, to set of parallel more easiest com-
putation deals with a binary classifier only. Also, parallelism 
gives complete flexibility when dealing with system inputs, 
wherein the proposed models can diagnose multiple diseases 
for various inputs simultaneously. Furthermore, it can diag-
nose several ailments for a specific condition simultaneously.

Additionally, the new implementation plays a crucial 
role in improving accuracy, precision, recall, and F1 score, as 
demonstrated in Table 1 and Fig. 19, which provides multiple 
and comprehensive criteria that confirm the superiority of the 
proposed models and the accuracy of their performance. This 
explains the superior performance of the proposed models 
compared to their counterparts, namely [36–38], which have 
been conducted in a similar scholarly research field. 

Table 2

Various techniques for comparison

Paper reference Model
Model size (Total 

Training variables)
Accuracy

Our first model based on 
(Transfer learning)

Our second model based 
on (New deep Net. )

[36] EFFICIENTNET B3 10,711,602 0.920

0.9947 0.96

[37] RESNET-101 42,200,000 0.930
[38] MOBILE NETV2 34,112,000 0.9432
[39] VGG16 15,135,624 0.8906

[40]

Sequential model of 
DENSENET201 AND 
EFFICIENTNETB4 
AND RESNET105

87,515,476 0.9742

[41]
RESNET-18 11,400,000 0.914
RESNET-34 21,500,000 0.924
RESNET-50 23,900,000 0.928

[42] EFFICIENTNET B7 66,000,000 0.8823

[43]
Sequential model of 

INCEPTION RESNET 
AND DKC BLOCK

56,000,000 0.9608

[44] RESNET50 23,900,000 0.9710
[45] RESNEXT50 27,560,000 0.8606

 

 
  

Fig. 20. Models size comparison based on network parameters
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Table 2 highlights the notable improvement in diagnostic 
accuracy provided by the two suggested models compared to 
the aforementioned studies.

Besides that, the adoption of new deep learning networks 
in the implementation of the proposed model also added to a 
clear reduction in the classifier size of the deep learning sys-
tems that are presented in [40, 42, 43, 45]. Fig. 20 illustrates 
the decrease in the suggested deep networks’ size compared 
to the networks utilized in those studies. Where the reduc-
tion percentages are 29 %, 21 %, 18.56 %, and 9.13 % for 
each of the works, respectively. Consequently, the proposed 
model of such deep networks has played a significant role in 
reducing resource consumption. Furthermore, it has enabled 
the utilization of such networks on affordable hardware 
resources, like Jetson Nano, and Raspberry Pi, that have 
limited energy consumption capabilities.

Hence, the functioning of the proposed embedded systems 
extends beyond the realm of eye disease diagnosis and classi-
fication. These systems can be effectively utilized in various 
artificial intelligence applications related to image detection 
and classification with a simple modification, and by training 
the networks of these systems with suitable databases, their 
potential can be harnessed across diverse domains in this field.

The most important limitation and challenge of this study 
is that it contains a collection of low-quality images. Despite 
the preprocessing and diversity of the database regarding the 
people race groups, the number of pathological cases it con-
tains, the inclusion of fundus images for each of the patient’s 
eyes, and the variety of sources used to provide fundus images, 
however, it includes blurry, dark, and unclear images that neg-
atively impacted the obtained results. One possible proposed 
solution for addressing this issue is to use deep learning for 
further comprehension preprocessing to smooth images and 
highlight the most valuable features in the database. 

Another developed research work can be through the 
employment of SIMD architecture as a means to implement 
deep networks, which can be utilized to construct classifi-
cation models. This is due to its rapid execution of parallel 
commands, thereby reducing execution time.

Meanwhile, it is advantageous to consider the proposed 
approaches to improve power efficiency by utilizing the 
embedded systems described in this research on FPGA 
platforms, where these platforms are recognized for their 
exceptional energy efficiency.

7. Conclusions 

1. Eight eye diseases were diagnosed simultaneously 
through a parallel architecture embedded in two proposed 

models of deep learning systems, where the accuracy of per-
formance was about 0.9947 and 0.96 for both proposed mod-
els, respectively. Also, the response speed of both proposed 
systems was very high due to the adoption of parallelism in 
the implementation of the deep network instead of the pre-
viously adopted consecutive, where the performance speed 
of the presented models was 25.8119 ms and 3.0121 ms, re�-
spectively, when both models were tested on a PC of Intel® 
Core™ i9-9900K CPU @ 3.60GHz 3.60 GHz, 32GB RAM, 
and 64-bit Operating System before implementing them as 
an embedded system on the developer kit.

2. The proposed new deep learning networks with limit�-
ed layers and variables significantly contributed to reducing 
the resource and capacity requirements of the proposed 
systems compared to other deep learning networks. Where 
the total number of the proposed network variables reached 
only 3,016,001 while maintaining efficiency and accuracy of 
performance.

The architectures presented in this study can be invest-
ed in IoT applications supporting deep learning, as well as 
the possibility of using them in smart applications for re-
mote-operated systems and self-powered models.
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