
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

46

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license

A NOVEL APPROACH
TO THE DEVELOPMENT
OF NEURAL NETWORK

ARCHITECTURE BASED
ON METAHEURISTIC
PROTIS APPROACH

T e n g k u H e n n y F e b r i a n a H a r u m y
Corresponding author

PhD Student*
E-mail: hennyharumy@usu.ac.id

M u h a m m a d Z a r l i s
Professor of Computer Science

Department of Information System Management
Binus University

Kebon Jeruk Raya str., 27, Jakarta, Indonesia, 11530
M a y a S i l v i L y d i a

PhD, Dean of Computer Science and Information
Technology*

S y a h r i l E f e n d i
PhD, Associate Professor*

*Department of Computer Science
Universitas Sumatera Utara

Dr. T. Mansur str., 9, Padang bulan, North Sumatera,
Indonesia, 20222

Determining the best model for the neural network
architecture and how to optimize the architecture with the
metaheuristic Protis Approach is a subject of the study.
A comprehensive investigation and utilization of meta-
heuristic methods are necessary. These methods aim to
solve problems and adapt from the lifestyle of the amoe-
ba protis. In this study, the proposed method modifies the
life cycle of the amoeba, which consists of four phases:
prophase, metaphase, anaphase, and telophase. These four
phases are modified in the neural network architecture to
optimize the appropriate number of hidden layers and pro-
duce an efficient architecture model. The results show that
the protis approach optimized the neural network architec-
ture, especially in generating hidden layers to improve the
neural network model. Distinctive features of the results
obtained are that the average range of degenerate neurons
in the hidden layer is 0 to 35 neurons in each layer. The
standard number of neurons makes it possible to solve the
problem of determining the best model on the neural net-
work architecture. The protis algorithm embedded in the
protis recurrent neural network for categorical data mea-
surements produces an average RMSE value, representing
the difference between actual measurements and predic-
tions, equal to 0.066.

Consequently, the developed model surpasses the cur-
rent classical neural network model in terms of perfor-
mance. Regarding accuracy, the protis algorithm embed-
ded in the neural network for categorical and time series
data achieves an average precision of 0.952 and a recall
of 0.950. The protis convolutional neural network achieves
an accuracy of 95.9 %. Therefore, from the three tested
datasets, the protis convolutional neural network exhibits
the highest accuracy value

Keywords: neural network, artificial intelligence, hid-
den layer optimization, deep neural network

UDC 518
DOI: 10.15587/1729-4061.2023.281986

How to Cite: Harumy, T. H. F., Zarlis, M., Lydia, M. S., Efendi, S. (2023). A novel approach to the development of neu­

ral network architecture based on metaheuristic protis approach. Eastern-European Journal of Enterprise Technologies,

4 (4 (124)), 46–59. doi: https://doi.org/10.15587/1729-4061.2023.281986

Received date 10.05.2023

Accepted date 12.07.2023

Published date 31.08.2023

1. Introduction

The fields of metaheuristics and neural networks are expe-
riencing rapid advancements within the realm of artificial in-
telligence. Within this framework, metaheuristics and swarm
intelligence algorithms play integral roles as modern global op-
timization algorithms, contributing to computer intelligence
and software development. These methods are capable of pro-
ducing satisfactory solutions within an acceptable timeframe,
but they do not guarantee the attainment of the absolute best
solution [1, 2]. Metaheuristics employ a combination of rules
and randomness to explore and find global optima through
trial-and-error methods iteratively. These approaches possess
fundamental characteristics that guide the search process ef-
fectively and have been successfully adapted to the domain of
biocomputing for the purpose of finding optimal solutions [3].

The neural network architecture method faces certain
weaknesses, mainly related to the challenge of determining
the optimal combination of hidden layers that can produce
effective and efficient results in the prediction and classifica-
tion processes [4]. Previous relevant studies have provided
some achievements in determining the best neural network

architecture using a metaheuristic approach, but there are still
deficiencies in determining the optimal number of neurons in
the hidden layer of neural network architecture. In addition,
previous research focused on an algorithmic approach [5, 6].
This research has highlighted the importance of striking the
right balance in choosing the right number of neurons in the
hidden layer and the dataset used. On the hidden layer prob-
lem, if too few layers are selected, the model may have difficulty
capturing complex patterns in the data. On the other hand, an
excessive number of layers can result in overfitting, in which
the neural network model starts to catch irrelevant and random
patterns from the training data, mistakenly considering them as
fundamental patterns.

Previous studies have identified that one of the reasons for
the slow training process of neural networks is the inappropriate
number of hidden layers [7]. However, currently, the average
standard number of neurons that are set to determine the op-
timal number of hidden layers in a model still varies [4, 8–10].

Consequently, the number of layers and neurons in the
hidden layer is considered a hyperparameter and must be
optimized using various approaches. In addition, the uncer-
tain and statistically based nature of approaches, techniques,

Mathematics and Cybernetics – applied aspects

47

methods, and algorithms in neural networks poses another
challenge. Also, determining the values of various model pa-
rameters and validating them using limited test data adds to
the complexity of the problem. Nevertheless, the most crucial
issue to address is determining the number of hidden layers
and neurons, significantly affecting the prediction and classi-
fication results in artificial neural networks [11, 12].

To overcome this challenge, it is necessary to carry out
in-depth analysis and develop new algorithms inspired by
swarm intelligence metaheuristics to optimize the regener-
ation of the hidden layer and find the standard number of
neurons in the hidden layer. Furthermore, the optimization
of the dataset is used in this approach [13]. The protis ap-
proach, part of the metaheuristic intelligence and swarm
intelligence algorithms, is currently being developed to opti-
mize the architecture of artificial neural networks [14]. Pre-
vious literature on the development of the theory of protists
in artificial neural networks [14, 15] highlights the potential
of the protist amoeba adaptive lifestyle to enhance perfor-
mance. Further exploration and exploitation of this approach
are required to adapt it specifically to optimize the number of
hidden layers in a neural network model [16].

Research on protist by [17, 18] revealed that protist has
several phases, namely prophase, metaphase, and anaphase,
which contribute to their strength and resilience. The in-
depth approach involves studying and evaluating various
techniques to determine their suitability for solving hidden
layer optimization problems and choosing the most effective
method. Standard tests should be carried out to assess effi-
ciency and effectiveness, as well as to compare different algo-
rithms and understand the strengths and weaknesses of each.

The next step involves fine-tuning the algorithms param-
eters to optimize performance, which may require adjusting
settings such as population size and mutation rate. The goal is
to identify the best combination of neural network architec-
tures that produce a high-quality solution within a reasonable
timeframe. In addition, problem representation design plays
an important role in exploiting protist metaheuristics effec-
tively. Well-designed representations can improve algorithm
performance by facilitating an exploration of the problem
space [10, 19–25]. Protis neural networks, as a metaheuristic
method approach, are needed to optimize the neural network
architecture to produce accurate models with reduced errors
and increased performance. By generating optimal hidden
layers, this approach aims to minimize lengthy training pro-
cesses for categorical data, time series, and complex images,
resulting in more effective and efficient prediction and classifi-
cation models while minimizing errors. Therefore, research on
the development of neural network architecture optimization
is relevant to the research conducted by the authors [21–25].

2. Literature review and problem statement

In the paper [19], a novel method for determining the op-
timum number of hidden layers for FNNs was introduced and
applied in financial data mining. It is shown that the remov-
able nodes are identified by the delta values of hidden layers.
It was observed that the sum of the delta values of the hidden
layer shows a considerable correlation with the output error.
Moreover, this method, based on mathematical arguments,
suggests minor adjustments to the settings used in neural
networks. Further, the modified architecture was obtained
with very limited computations. At a time, 5–20 % can be

removed from hidden layers without degrading the output
performance. This approach in [26] focused on finding the
optimal training parameters and number of hidden layer
neurons in a two-layer perceptron for generalized object
classification. However, this research allows us to argue that
it is appropriate to conduct a study devoted to determining
the standard neurons in the hidden layer that are appropriate
for optimizing the neural network architecture.

The paper [27] assembles a precise prescient model using
the Enhanced Deep Feed Forward Neural Network Model
to predict the customer whittling down in the Banking
Domain. The generalization abilities of feedforward neural
networks with one and two hidden layers are compared.
However, this study only discusses the comparison of clas-
sic machine learning. The resolved questions related to the
postulation that identifying hidden layer neurons, which can
minimize the error of the training cycle, would be significant
for modeling hidden layer architecture, effectively proposing
a method that allowed empirical comparisons between indi-
vidual nodes in the hidden layers of these networks. The rea-
son could be related to pruning the number of neurons, which
makes related research impractical. Ten publicly available
datasets for function approximation were used to evaluate
the method. The results indicated that in nine out of ten in-
stances, the network with two hidden layers performed bet-
ter, although the extent of improvement varied across cases.

The study [28] introduced a technique called «transforma-
tive optimization» and used it to compare hidden nodes in single
and two-layer feedforward networks. The findings consistently
favored the two-hidden-layer feedforward networks (TLFNs)
over single-hidden-layer ones (SLFNs) in most cases. The
proposed method, in combination with binary sampling, offers
a rapid means to determine the feasibility of employing two
hidden layers in a specific problem. Although the presented
data demonstrate the superiority of TLFNs over SLFNs, further
research utilizing more challenging real-world datasets is re-
quired. Moreover, this technique has the potential to be applied
in a variety of metaheuristic training. However, the amount of
increase is highly case-dependent. All this allows us to argue
that it is appropriate to study the proper number of hidden layer
neurons to optimize the neural network architecture.

The paper [4] highlights that metaheuristics belong to
a class of optimization techniques employed to discover ap-
proximate solutions for problems that are intricate or impossi-
ble to solve precisely. However, the resolved questions related
to determining a flexible structure for a metal price forecasting
model using an evolutionary-based ANN model are a costly
part of the plan. A neural network (NN) model for metal price
forecasting based on an evolutionary approach is proposed;
however, this method is used only for time series metal price
data, which makes the corresponding research inexpedient.
Options for overcoming relevant difficulties can be researched
by [20], namely a metaheuristic-based learning algorithm to
build an ensemble system so that the training time becomes
shorter. Furthermore, the training time is shorter. In our pro-
posed method, a master-slave based metaheuristic algorithm is
used in the optimization process to generate a heterogeneous
group of feedforward neural networks. However, from the re-
sults of previous studies [23, 24], in which the paper states that
random weights have the advantage of fast computation time
in both training and testing, all this allows us to argue that it is
appropriate to conduct a study devoted to neural architecture
optimization network that can be used for various data and can
minimize training time.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

48

Further research in [10] highlights the numerous advan-
tages of metaheuristics over traditional optimization me
thods, which render them valuable in tackling a wide range
of problems. Computationally performed tests confirm this
by showing that the approach proposed in this paper achieves
competitive results to other algorithms developed lately, like
the WWO algorithm, while also going one step further by
finding the optimal count of hidden layers without user inter-
vention, as to find the optimal architecture of the ANN for the
given dataset. One significant advantage is their capability to
handle complex problems that are challenging or impossible
to solve precisely. However, for research questions related to
structural design involving both the number of hidden layers
and the number of neurons needed in each of these hidden
layers, this approach requires more in-depth observations.
The reason why this method is feasible is that progress has
been made in adapting this methodology to more sophisti-
cated algorithms and evaluating its performance. In addition,
efforts are being made to minimize the breadth of the overall
search space. This choice of difficulty is also relevant to the
research conducted by [8]. However, further in-depth obser-
vations are still needed, and all of this allows us to conduct
studies aimed at deepening neural network architectural
models with metaheuristic and protis approaches.

The paper [3] shows that metaheuristics in dealing with
non-linear constraints, indistinguishable functions, and noisy
data provide a critical of existing wind power and solar power
ML forecasters, namely artificial neural networks (ANNs),
recurrent neural networks (RNNs), support vector ma-
chines (SVMs), and extreme learning machines (ELMs).
Nevertheless, the resolved questions are only related to
some critical Classical Neural Network Architecture, which
makes related research be developed more deeply. Moreover,
supporting evidence from [29] highlights that the ANN with
30 neurons performs best, but it cannot be visualized using
a framework in research. It is emphasized that metaheuristics
effectively handle uncertainty by incorporating randomiza-
tion into the search process. Additionally, metaheuristics are
well-suited for addressing large-scale problems characterized
by many variables or extensive solution spaces. All this al-
lows for future studies to focus on the development of Protis
recurrent neural networks (RNNs).

In addition, metaheuristics can handle noisy or incomplete
data, which are commonly encountered in real-world problems.
They can also effectively deal with non-numeric categorical
variables, making them applicable in scenarios where the
variables are not continuous [30]. Developing a metaheuris-
tic method typically involves two steps: exploration and
exploitation. As mentioned in [9], exploring metaheuristic
methods entails studying and evaluating various techniques to
assess their suitability for solving a specific problem. Another
approach to exploring metaheuristic methods involves expe
rimenting with different variations of a particular algorithm.

Exploiting metaheuristics entails employing specific me
thods to obtain high-quality solutions for particular problems.
This process often involves refining the algorithm’s param-
eters and settings to optimize its performance in addressing
the specific problem at hand. Additionally, it is crucial to
consider the problem’s unique characteristics and how they
influence the algorithm’s behavior. For instance, if the prob-
lem involves numerous constraints, incorporating constraint-
handling mechanisms like penalty functions may be necessary.
Furthermore, exploiting metaheuristics involves analyzing
the obtained results and interpreting the solutions generated

by the algorithm. This analysis helps identify patterns, trends,
and insights that can be utilized to enhance the algorithm
or gain a better understanding of the problem. In summary,
exploiting metaheuristics is an iterative process that includes
adjusting the algorithm’s parameters and settings, designing
an appropriate problem representation, and interpreting the
obtained results [30, 31].

Previous studies [32] have focused on developing protis
in artificial neural networks. These studies draw inspiration
from how amoebas divide themselves to survive and become
stronger, aiming to improve the performance and accuracy of
neural network models. Building upon this concept, the cur-
rent research aims to adapt it to the existing neural network
model by introducing modifications that incorporate the
phases of prophase, metaphase, and anaphase. These adjust-
ments are intended to enhance the performance and accuracy
of the neural network method. Moreover, by optimizing the
principles of protis theory, this research contributes to the de-
velopment of deep neural networks, where the concepts of di-
vision for survival, self-development, and hidden layers are in-
herited from one generation to another. The adjusted phases,
namely the beginning, middle, and end, have shown promising
results in improving the classification process. Differing
from the classic neural network method, the protis neural
network method introduces a distinct process for generating
hidden layers in the neural network architecture [28, 33, 34].
The proposed method, in combination with binary sampling,
offers a rapid means to determine the feasibility of employ-
ing two hidden layers in a specific problem. Although the
presented data demonstrate the superiority of TLFNs over
SLFNs, further research utilizing more challenging real-world
datasets is required. Moreover, this technique holds potential
for application in various training metaheuristics.

The paper in [16] explains that metaheuristics belong
to a class of optimization techniques employed to discover
approximate solutions for problems that are intricate or
impossible to solve precisely. The research problem solved
in this paper is about the regularized training problem in
the RELU network, which makes this research continue to
be developed. One significant advantage is their capability
to handle complex problems that are challenging or impos-
sible to solve precisely. Metaheuristics excel in dealing with
non-linear constraints, indistinguishable functions, and noisy
data. Moreover, supporting evidence from [30] emphasizes
that metaheuristics effectively handle uncertainty by incor-
porating randomization into the search process. Additionally,
metaheuristics are well-suited for addressing large-scale
problems characterized by many variables or extensive solu-
tion spaces so that it is then appropriate to develop studies on
data training development on neural network architectures.

In addition, metaheuristics can handle noisy or incom-
plete data, which are commonly encountered in real-world
problems. They can also effectively deal with non-numeric
categorical variables, making them applicable in scenarios
where the variables are not continuous [35]. Developing
a metaheuristic method typically involves two steps: explo
ration and exploitation. As mentioned in [36], exploring
metaheuristic methods entails studying and evaluating va
rious techniques to assess their suitability for solving a spe-
cific problem. Another approach to exploring metaheuristic
methods involves experimenting with different variations
of a particular algorithm.In [37], exploiting metaheuristics
entails employing specific methods to obtain high-quality
solutions for particular problems. This process often involves

Mathematics and Cybernetics – applied aspects

49

refining the algorithm’s parameters and settings to optimize
its performance in addressing the specific problem at hand.
Additionally, it is crucial to take into account the problem’s
unique characteristics and how they influence the beha
vior of the algorithm. For instance, if the problem involves
numerous constraints, incorporating constraint-handling
mechanisms like penalty functions may be necessary. Fur-
thermore, in the other paper, the approach used [38], exploit-
ing metaheuristics involves analyzing the obtained results
and interpreting the solutions generated by the algorithm.
This analysis helps identify patterns, trends, and insights
that can be utilized to enhance the algorithm or gain a bet-
ter understanding of the problem. In summary, exploiting
metaheuristics is an iterative process that includes adjusting
the algorithm’s parameters and settings, designing an appro-
priate problem representation, and interpreting the obtained
results. So, it is possible to carry out further studies aimed
at the development of metaheuristics for the development of
neural network architectures.

Several previous studies [14] have focused on the deve
lopment of protis in artificial neural networks. These studies
draw inspiration from how amoebas divide themselves to
survive and become stronger, aiming to improve the per-
formance and accuracy of neural network models. Building
upon this concept, the current research aims to adapt it to
the existing neural network model by introducing modifi-
cations that incorporate the phases of prophase, metaphase,
and anaphase. These adjustments are intended to enhance
the performance and accuracy of the neural network method.
This is an approach that is also used in [39].

Moreover, by optimizing the principles of protist theory,
this research contributes to the development of deep neural
networks, where the concepts of division for survival, self-de-
velopment, and hidden layers are inherited from one genera-
tion to another. The adjusted phases, namely the beginning,
middle, and end, have shown promising results in improving
the classification process. Differing from the classic neural
network method, the Protis neural network method intro-
duces a distinct process for generating hidden layers in the
neural network architecture.

3. The aim and objectives of the study

The aim of the study is to optimize the hidden layers in
a neural network by combining a metaheuristic approach
and protis theory. This optimization will improve the perfor-
mance and accuracy of the neural network model.

To achieve this aim, the following objectives are accom-
plished:

– to deepen and understand the concept of Protis Theory
and its implementation on neural network architecture;

– to adapt the concept of accurate pattern recognition
and for searching neurons in the best hidden layer in neural
networks adapted from Protis Theory;

– to take advantage of the robustness potential gained
from the life processes of Protis Theory in enhancing the
development of hidden layers for neural networks;

– to evaluate the Protis Neural Network Approach’s per-
formance to find the optimal number of neurons in hidden
layer neural network architecture;

– to perform visualization in neural network modeling by
providing insight into adapting protis life processes to better
develop hidden layers.

4. Materials and methods

The object of research is a model for the neural network
architecture and how to optimize the architecture.

The subject of research is to determine the best model
for the neural network architecture and how to optimize the
architecture with the metaheuristic Protis Approach.

The main hypothesis of the study is that the protis approach
can optimize the neural network architecture, especially in
generating hidden layers to improve the neural network model.

The Assumptions made in the work are as follows. The
Hierarchical Representation Assumption assumes that the
neural network architecture can describe a feature hierarchy
that becomes increasingly complex as information passes
through layers in the network. Each layer takes on more
abstract and complex features than the previous input. Next
is the Model Capacity Assumption, which assumes that more
complex or significant architectures have a higher capacity
to learn complex patterns in data. This assumption also con-
siders the risk of overfitting when the model learns too much
from the training data and cannot generalize well to unseen
data. Next is the Assumption of Using the Activation Func-
tion, where this assumption assumes that using nonlinear
activation functions at each layer is an essential requirement.
Activation functions such as ReLU, sigmoid, or tanh intro-
duce nonlinearity into the architecture and enable models to
study complex relationships in data.

The Simplifications adopted in the work consist in op-
timizing and visualizing the neural network architecture by
adopting the Metaheuristic Protis approach, namely taking
inspiration from the concept of the protist way of life, which
consists of several phases, namely metaphase, prophase,
anaphase and telophase where efforts are made to optimize
and generate a search for the best-hidden layer, determine
the correct number of neurons in the hidden layer, and in-
crease efficiency and effectiveness in neural network models.

The research flow follows the stages described below.
Deepening the Protis Neural Network approach by ex-

ploring and exploiting the way of life of an amoeba, which
will later be embedded in the neural network. Furthermore,
this research will be carried out according to the following
research flow. The stages of Protis Neural Network research
are as follows:

– Observation and preparation of categorical, time series,
and image datasets.

This stage involves an in-depth analysis of existing neural
networks, Metaheuristics, and swarm Intelligence methods
in the context of dataset observation. Data preprocessing
techniques such as cleansing, loss removal, and normalization
are applied. The activation function, namely the sigmoid
function, ensures the data is scaled from 0 to 1. It is crucial
to consider the appropriate activation function for data nor-
malization, such as Identity, binary step, sigmoid, Rectified
Linear Unit (ReLU), Leaky ReLU, and softmax.

– Deepening protis approach to the neural network.
This stage delves into the protis Neural Network ap-

proach by exploring and leveraging the amoeba’s way of life,
which involves the following phases: prophase, metaphase,
anaphase, and telophase. These phases mimic the process
of amoeba reproduction through self-division. Additionally,
modeling and mathematical analysis of the protist neural
network algorithm flow are conducted, with attention to
parameters such as epochs, activation function, architecture,
and other parameters to enhance the training process.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

50

– Design and estimation of the protis method in a neural
network.

This stage continues the exploration and exploitation
of the protis neural network approach by integrating the
amoeba’s way of life into the neural network. Starting
from the input dataset, the process involves the prophase
phase, followed by the metaphase phase, anaphase phase,
and telophase phase, representing the reproduction process
through self-division. Mathematical modeling and analysis
of the protist neural network algorithm are performed,
considering parameters such as epochs, activation function,
architecture, and other relevant factors to improve the
training process.

– Generating hidden layer/parameter on a neural net-
work with protis approach.

The next step involves determining the tools, specifically
Python and Matlab, for training and testing the protis model
using a single computer and parallel computing (GPU).
This allows for comparing running time, performance, and
error in the model training architecture. The protis me
thod is trained and tested with different hyperparameters
and epochs, considering variations in the number of ite
rations and data division ratios, such as 70/30 %, 60/40 %,
and 50/50 %. The dataset is divided into 70 % training
and 30 % test data, with epochs set at 10, 100, 1000, 80,
120, and 200.

– Comprehensive evaluation models.
The protis neural network method is comprehensive-

ly evaluated by analyzing its advantages, strengths, and
weaknesses. A comparison is made with existing classical
neural network methods, such as feed forward neural net-
works (FFNN), Convolutional Neural Networks, and recur-
rent neural networks, particularly for time series, categorical,
and image data. This comparison highlights the performance,
efficiency, and level of each method. The results of the pro-
tis neural network method are visualized and displayed on
a landing page website, facilitating user implementation and
enabling further discussion and analysis.

5. Results of Neural Network Architecture Optimization
Based on Protis Metaheuristic

5. 1. Deepening and understanding the concept of
Protis Theory and its implementation on neural network
architecture

The protis theory is currently being developed for various
research purposes, including proposing an algorithm for pattern
recognition. This algorithm aims to accurately track epithelial
and endothelial cells in time-lapse image sequences with low
contrast levels that gradually increase over time. Taking inspi-
ration from the concept of the protis way of life, an effort will
be made to adapt it to the search for the best, most optimal,
efficient, and effective hidden layer in a neural network model.
The inspiration for the theory is illustrated in Fig. 1.

The idea is that similar to how the phases in protists make
their cells stronger, incorporating these phases into neural
networks can potentially enhance their performance. To ad-
dress the problem of determining the appropriate number of
hidden layers for achieving a well-structured neural network
architecture, a deeper exploration and exploitation of the
protis way of life are considered necessary. This exploration
involves studying the four phases: prophase, metaphase, and
anaphase/telophase, and attempting to integrate them into
developing hidden layers in neural networks [14].

5. 2. Adapting the concept of accurate pattern recog­
nition and searching neurons in the best hidden layer in
neural networks adapted from Protis Theory

The protis theory has been further developed and applied
in the context of neural network architecture. The phases
observed in protis have been incorporated into designing
the neural network architecture. This application is depic-
ted in Fig. 2.

To further advance the protis neural network approach,
this research aims to explore and exploit the amoeba’s
way of life, which will be integrated into the neural net-
work framework.

Fig. 1. Protis Neural Network Theory

Mathematics and Cybernetics – applied aspects

51

5. 3. Advantage of the robustness potential gained
from the life processes of Protis Theory in enhancing the
development of hidden layers for neural networks

To prepare the input data and target variables, they are
replaced with values obtained from the collected data. The in-
put data is then transformed into a matrix format to facilitate
training. Categorical data is divided into several matrices: ma-
trix A (6 × 60), matrix B (6 × 70), and matrix C (6 × 50), while
the remaining data is used for testing, with matrix D (6 × 40),
matrix E (6 × 30), and matrix F (6 × 50). Data normalization is
performed for time series data, categorical data, CIFAR image
data, and field observations.

In developing the life processes of Protist Theory in opti-
mizing hidden layer neurons for neural network architecture,
several processes were carried out, including:

1. Protis neural network architecture.
The sigmoid activation function is used for data normaliza-

tion, mapping the original data to the range of 0 to 1. This is
achieved by applying the binary sigmoid function to normalize
the data from 0 to 1. By doing so, the input data values are ad-
justed to fit the sigmoid activation function. The initial input
data ranges from 1 to 6, which is assumed based on the attri-
bute weighting of the categorical data architecture (Fig. 3).

The Protis Feed Forward Neural Network algorithm net-
work is employed in this case as the Artificial Protis Neural
Network architecture, and it comprises the following: 6 nodes
in the input layer (x1, x2, x3, x4, x5, x6). The hidden layer has
a maximum of 4 nodes formed by the protist theory’s phases,
namely the Prophase Phase, Metaphase Phase, Anaphase
Phase, and Telophase Phase, and up to 1,000 neurons can be
selected in each node (z1, z2, z3, z4). The accuracy of cate-
gorizing disease spread in coastal areas categorical data (Y)
is the output layer with one node.

2. Proposing a model design and estimation of the protis
neural network.

The design and estimation of the protis neural network
model follow the core structure of the algorithm. The steps
involved are as follows:

Step 0: set all weights with small random integers.
Step 1: check if the termination condition is met. If not,

proceed to Steps 2–8.
Step 2: repeat Steps 3–8 for each pair of training data.
Step 3: execute phase 1, which consists of Steps 3–5.
Each input unit receives a signal and sends it to the con-

cealed unit above it.

Step 4: calculate the output values for
all hidden units.

The core structure of the algorithm is
the Neural Network primary approach in
the architectural design of a Neural Net-
work protist model for six inputs:

Zj j p Z netj

Vjo X Vjii

n

=() =

= +()=∑

1 2

11

2

, ,..., _

, 	 (1)

Zj f Z netj
z netj

= () =
+ −

_
exp(_)

.
1

1
	 (2)

Step 5: modify the protis neural network
within the neural network architecture.

Modification method prophase phase:
increase variable weight and duplicate chro-
mosomes:

Wj Wj Wj Wjn Xn Random P1 2 3 2 1 0, , , , .() = () = <()Prob 	 (3)

Modification method metaphase phase: optimization us-
ing the binary sigmoid activation function:

Yk f y net Y f x
x

yk
netk

= () = () + −()
+ −()







_

exp

exp
,

1

1

2

	 (4)

y f x
x

= () =
− −()







1

1 exp δ

or

y f x
x

x
= () =

+ −()
− −()







1

1

2
exp

exp
.

δ
	 (5)

For each input chromosome, (Xi, i = 1, 2, 3, …, n), the in-
put Xi is received and propagated to all chromosomes in the
top layer (hidden layer). For the hidden chromosome (Zi,
j = 1, 2, 3, …, p), the input values are calculated using the
weight values:

z in voj x vj i iji

n
_ .= +

=∑ 1
	 (6)

The output value is then determined using the activation
function, which is a binary sigmoid function:

zj f zinj= ().	 (7)

Modification method metaphase phase: binary sigmoid
optimization.

The binary sigmoid function has two possible forms:

y f x
x

= () =
− −()







1

1 exp
,

δ
 y f x

x

x
= () =

+ −()
− −()







1

1

2
exp

exp
.

δ
	(8)

The output value of each output chromosome (Yk,
k = 1, 2, 3, m) is then calculated using the input value, which
is determined by the weighted sum of the hidden chromo-
some outputs:

y k wok Z win i jki

p
= +

=∑ .
1

	 (9)

Then the output value is calculated using the activa-
tion function:

y f y kk in= ().	 (10)

Fig. 2. Protis Neural Network Architecture

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

52

Step 6: anaphase optimization using function:

y f x
x

= () =
+ −()







1

1

2

exp
,

δ

Xn Random P= () =()0 1, , .Prob 	 (11)

Step 7: telophase optimization using function:

Y f x
x

ynetk

= () + −()
+ −()







1

1

2
exp

exp
,

Xn Random P= () =()0 1, , .Prob 	 (12)

Receive the target pattern that matches the input pattern
for each chromosome output (Yk, k = 1, 2, 3, …, m) and calcu-
late the error:

Δk k k inkt y f y= −() ()()ι 2
.	 (13)

The weight value modification is then computed and
applied to the value wjk:

Δw zjk k j= ()αδ
2
.	 (14)

Determine the bias value correction, which will be used
to update the value w0k:

Δwok k= αδ .	 (15)

Then the value of δk is sent to the chromosome in the
previous layer. For each hidden chromosome (Xn = (Ran-
dom (0, 1) = P < Prob), (Zj, j = 1, 2, 3, …, p) calculated as the
input delta of the chromosomes in the upper layer:

δ δ_ .inj wk jkk

m
= ()=∑

2

1
	 (16)

The error information is then calculated by multiplying
it by the activation function’s derivative value:

δ δ ι
j inj injf Z= ()2

.	 (17)

Calculate the weight value correction, which is subse-
quently utilized to update vij:

Δv xij j j= ()αδ
2
.	 (18)

Additionally, compute the bias adjustment value, which
will be used to update the value noj:

Dnoj = (αδj)2.	 (19)

Weight and bias values should be updated. For every
bias and weighting value on the output chromosome (Yk,
k = 1, 2, 3, …, m), update:

w new w beforejk jk ij() = () + Δ ,	 (20)

v new w previouslyi jk ijj
() = () + Δ ,	 (21)

v new v previouslyij i j ij() = () + Δ .	 (22)

Step 8: test whether the stop condition is met.
This stop condition is met if the resulting error value is

less than the error value [14]. The following pseudocode
is derived from the following algorithm design.

Design pseudocode:

PFFNN algorithm
Input:
Vector Input – i
Output:
Vector Output
Initialize the number of input and output neurons
Initialize generate the hidden layer
Initialize all weights with random values between 0 and 1
For each Max up 6 Network
Initialize max up to 1,000 neurons
Initialize Epoch – n
Initialize MaxError – m
While (Epoch≤ ||n|| Error value≥MaxError)
For each layer in the network
For each neuron in layer (Z)
Calculate the sum of weight Vij and bias V0j of each
input Xi that goes to the hidden neuron
Apply the activation function to each neuron
(Metaphase Activation)
Apply the activation function to each neuron (Prophase
Activation)
For each anaphase/telophase: Optimization using
function
Zj f Zinj= ()2

End

Fig. 3. Protis neural network architecture: 	

x – input; w, z, c, d – the weights on the hidden layer; 	
β – the weights on the output layer; Vn – weights on the

output layer; Wb – bias in the hidden layer and output layer;
Y – result output; J = 1 to 6; Yd = 0

Mathematics and Cybernetics – applied aspects

53

// forward propagation of each neuron in the layer
For each neuron, do the output layer
Calculation of the output error value (yk) against the
target (tk) δ_j = ((tk–Yk) Yk (1–Yk))2)
End.

The dataset used in this study consists of categorical and
time series data that have been normalized using a sigmoid
function, resulting in values ranging from 0 to 1. The protis
neural network method is applied in this study to analyze
categorical datasets and time series data. The data above is
presented in Table 1.

Table 1
Sampling Dataset

No. (X1) (X2) (X3) (X4) (X5) (X6) (Y)

1 0.0000 0.3010 0.0000 0.3010 0.4771 0.0000 0.0000

2 0.3010 0.6021 0.3010 0.0000 0.3010 0.0000 0.3010

3 0.4771 0.0000 0.4771 0.3010 0.0000 0.3010 0.0000

4 0.0000 0.3010 0.6021 0.3010 0.3010 0.0000 0.4771

5 0.3010 0.4771 0.0000 0.3010 0.0000 0.3010 0.3010

6 0.4771 0.3010 0.3010 0.3010 0.4771 0.3010 0.0000

7 0.3010 0.6021 0.4771 0.0000 0.3010 0.0000 0.0000

8 0.4771 0.0000 0.6021 0.3010 0.4771 0.3010 0.4771

9 0.0000 0.3010 0.4771 0.3010 0.3010 0.3010 0.3010

10 0.3010 0.4771 0.6021 0.3010 0.0000 0.0000 0.3010

The categorical data consists of disease distribution data
with 6 variables and 1 output variable with 3 labels. On the
other hand, the time series data represents the number of
dengue disease patients over 20 years. During the data trial,
a comparison was conducted between the proposed protis neu-
ral network method and several other methods to assess their
performance. The results obtained using the protis neural net-
work methodology showed an area under the curve (AUC)
of 0.997, classification accuracy value of 0.950, F1 value of
0.950, Precision value of 0.952, and Recall value of 0.950.
These results indicate that the protis neural network ap-
proach is highly effective according to the data. Based on
the findings of this study, the protis neural network method
demonstrates superiority over traditional machine learning
methods when dealing with categorical data situations.

3. PFFNN (Implementation of Protis Feed Forward Neu-
ral Network method) for categorical data.

Based on the results of the tests carried out, it was ob-
tained that the results of a comparison of the accuracy level
of the Feed Forward Neural Network with epoch 10 were
0.4900, and the Protis Feed Forward Neural Network was
0.5900 where the results of PFNN are higher than FFNN.
The results of comparing the model loss with epoch 10 are
illustrated in Fig. 4, a, and the results of comparing the model
accuracy are illustrated in Fig. 4, b.

Based on the results of the tests carried out, the result
of comparing the accuracy level of the Feed Forward Neu-
ral Network with epoch 100 is 0.4490, and the Protis Feed
Forward Neural Network is 0.6690, where the results of
PFFNN are higher than FFNN. The results of comparing the
model loss of the Protis Feed Forward Neural Network with
epoch 100 are illustrated in Fig. 5, a, and the results of com-
paring the model accuracy of the Protis Feed Forward Neural
Network are illustrated in Fig. 5, b.

a

b

Fig. 4. Testing of the Protis neural network model on Feed
Forward Neural Network Epoch 10: a – comparing 	

model loss; b – comparing model accuracy

a

b

Fig. 5. Testing of the Protis neural network model on Feed
Forward Neural Network epoch 100: a – comparing 	

model loss; b – comparing model accuracy

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

54

Furthermore, the tests found that the result of comparing
the accuracy level of the Feed Forward Neural Network with
epoch 1000 for categorical data was 0.4900, and the Protis
Feed Forward Neural Network was 0.4800, where the results
of FFNN are higher than PFFNN. The results of comparing
the model loss of the Protis Feed Forward Neural Network
with epoch 1000 are illustrated in Fig. 6, a, and the results
of comparing the model accuracy of the Protis Feed Forward
Neural Network are illustrated in Fig. 6, b.

The accuracy results were evaluated during the training
and testing trials of the FFNN and PFFNN methods for ca
tegorical data. It was observed that the best accuracy result
was achieved for the testing data measurements when using
an epoch of 100, which amounted to 0.6690 or 66.90 %. The
above data is presented in Table 2.

a

b

Fig. 6. Testing of the Protis neural network model on Feed
Forward Neural Network epoch 1000: a – comparing 	

model loss; b – comparing model accuracy

Table 2

Comparison of FFNN Methods And PFFNN Categorical Data

Method
Feed Forward

Neural Net-
work

Protis Feed
Forward Neural

Network

Accuracy Training Epoch 10 0.6774 0.5324

Accuracy Testing Epoch 10 0.4900 0.5900

Accuracy Training Epoch 100 0.4993 0.5993

Accuracy Testing Epoch 100 0.4490 0.6690

Accuracy Training Epoch 1000 0.4540 0.4540

Accuracy Testing Epoch 1000 0.4900 0.4800

4. Implementation of the Protis Recurrent Neural Net-
work Method for Categorical Data.

From the results of the training and testing carried out,
it was found that the results of a comparison of the accuracy
level between Recurrent Neural Network and Protis Re-
current Neural Network Method for Categorical Data with
epoch 80 are 0.043, epoch 100 is 0.485, epoch 120 is 0.894,
epoch 250 is 0.608 and epoch 400 is 0445. The results of
PRNN are higher at 250 epoch measurements. In the training
and testing trials of the RNN and PRNN methods for cate-
gorical data, it was found that the best accuracy results were
for testing data measurements with an epoch of 120, namely
0.894 or 89.4 %. A comparison of RNN and PRNN Methods’
categorical data is illustrated in Table 3.

Table 3

Comparison of RNN and PRNN Methods categorical data

Method
Recurrent Neu-

ral Network
Protis Recurrent
Neural Network

RMSE Training Epoch 80 0.247 0.317

RMSE Testing Epoch 80 0.063 0.043

RMSE Training Epoch 100 0.115 0.275

RMSE Testing Epoch 100 0.445 0.485

RMSE Training Epoch 120 0.243 0.113

RMSE Testing Epoch 120 0.844 0.894

RMSE Training Epoch 250 0.215 0.115

RMSE Testing Epoch 250 0.708 0.608

RMSE Training Epoch 400 0.017 0.117

RMSE Testing Epoch 400 0.666 0.445

5. Implementation of the Protis recurrent neural network
method for time series data.

From the training and testing results, it can be seen that
the development of the Protis Reccurent Neural Network
method for time series data has an improvement seen from the
comparison where the RMSE Value of the Protis Reccurent
Neural Network method at epoch 1000 is smaller than the
Reccurent Neural Network. Furthermore, to make it easier
to know the number of Hidden Neuron ranges, the display
layer is made as a website to facilitate data visualization. The
implementation of the Protis Recurrent Neural Network for
time series for epoch 100 data is shown in Fig. 7, a, the im-
plementation with epoch 120 is shown in Fig. 7, b. Then the
implementation with 250 epochs is shown in Fig. 7, c, and the
implementation with a total of 400 epochs is shown in Fig. 7, d.

6. Implementation of the Protis convolutional neural
network method for image data.

In implementing the Protis Convolutional Neural Net-
work Method for image data, several datasets were used,
including CIFAR image data, food product data, and rice
disease data where the dataset was trained and tested with
epochs 100 and 120 and then compared using the Convo-
lutional Neural Network architecture where the results are
given in Table 4.

The protis convolutional neural network achieves an ac-
curacy of 95.9 %. Therefore, from the three tested datasets,
the protis convolutional neural network exhibits the highest
accuracy value. So, from these results, it is found that the
Protis neural network can be applied to several types of
datasets, including categorical, image, and time series data,
and can be used in several architectures, including Convo-
lutional neural networks, Feedforward neural networks, and
recurrent neural networks.

Mathematics and Cybernetics – applied aspects

55

Fig. 7. Implementation of the Protis Recurrent Neural Network for Time series Data: 	
a – epoch 100; b – epoch 120; c – epoch 250; d – epoch 400

a

b

c

d

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

56

Table 4

Comparison of CNN with PCNN for image data

Convolutional Neural Network

Dataset
Epoch 100

AUC AUC AUC AUC AUC

58:42:00 60:40:00 70:30:00 80:20:00 90:10:00

CIFAR 80.47 75.00 80.93 70.95 67.99

Food product 64.80 54.80 50.30 60.80 43.80

Rice Diseases 80.47 86.47 77.47 75.47 82.47

Average AUC 75.25 72.09 69.57 69.07 64.75

Dataset
Epoch 120

AUC AUC AUC AUC AUC

58:42:00 60:40:00 70:30:00 80:20:00 90:10:00

CIFAR 80.47 95 93.3 95 99

Food product 54.80 57.80 60.80 64.80 65.80

Rice Diseases 81.67 90.55 89.00 93.67 92.56

Average AUC 72.31 81.12 81.03 84.49 85.79

Protis Convolutional Neural Network

Dataset
Epoch 100

AUC AUC AUC AUC AUC

58:42:00 60:40:00 70:30:00 80:20:00 90:10:00

CIFAR 90.47 95.00 93.30 95.00 99.00

Food product 92.47 96.30 94.30 96.00 98.90

Rice Diseases 90.32 93.2 97.33 95 99

Average AUC 91.09 94.83 94.98 95.33 98.97

Dataset
Epoch 120

AUC AUC AUC AUC AUC

58:42:00 60:40:00 70:30:00 80:20:00 90:10:00

CIFAR 92.85 92.50 96.67 99.00 99.00

Food product 91.85 96.50 98.06 98.90 98.00

Rice Diseases 97.85 97.50 96.33 99.30 98.00

Average AUC 94.18 95.50 97.02 99.07 98.33

5. 4. Evaluating the performance of Protis, finding the
optimal hidden layers

In applying the protist neural network method, catego
rical datasets and time-series data are used, with categorical
data, namely disease distribution data consisting of 6 variables
and 1 output consisting of 3 labels. For
time series data, data on the number of
dengue disease patients for 20 years are
used. In this data trial, a comparison was
also made with several other methods
to see the performance of the proposed
method approach results of classification
assessments done with the Protis Neural
Network methodology. The Protis neural
network, which has an AUC of 0.997,
CA value of 0.950, F1 value of 0.950,
Precision value of 0.952, and Recall value
of 0.950, is the most effective approach,
according to the data. According to this
study, the Protis Neural Network method
is superior to traditional machine learning
methods for categorical data situations.

In the final evaluation of determining
the number of hidden layer neurons in the
neural network architecture, it was found
that from the results of the generating
neuron model, Protis continued to search
for the best architecture through 4 phases,
namely anaphase, telophase, metaphase,
and prophase. Finally, the best architec-
tural standard was found from Protis Neu-

ral Network, Protis Recurrent Neural Network, and Protis
Convolutional Neural Network, namely from the range of
neurons 0–35 neurons in each layer. The final evaluation is
shown in Table 5.

The standard neurons can be used as a reference for the
formation of the neural network’s architecture.

Table 5

Final Evaluation of Hidden Layer in Neural Networks

Algorithm Input Hidden Layer Output AUC
Neural Network 6 – – – – – – 3 0.749

Protis Neural
Network

6 12 0 35 32 8 0 3 0.997

Recurrent
Neural Network

6 – – – – – – 3 0.156

Protis Recurrent
Neural Network

6 23 0 34 23 8 2 3 0.334

Protis Convo-
lutional Neural

Network
6 – – – – – – 3 0.925

Protis Convo-
lutional Neural

Network
6 41 17 29 34 15 0 3 0.959

5. 5. Visualization in neural network modeling by pro­
viding insight into the adaptation of protis life processes
for better development of hidden layers

To facilitate the standard determination of the number of
hidden layer neurons in the neural network architecture, name-
ly the Protis neural network, data visualization is then carried
out using a website because the number of neurons in the neural
network architecture is not visible, but with this framework, the
number of neurons in the hidden layer can be seen. So far, the
hidden layer used is still only 5 layers with a maximum number
of neurons that can be formed up to 1000 neurons, but from
several trials, it was found that the optimal number of neurons
was 35 in each layer. The Framework website Generate Neu-
ron Hidden Layer Protis Neural Network is shown in Fig. 8.

Fig. 8. Display generate neuron hidden layer Protis Neural Network

Mathematics and Cybernetics – applied aspects

57

In this framework, we can find an overview of the archi-
tecture formed and the results of accuracy and recall, input,
and output.

6. Discussion of the results of optimization of the Protis
Neural Network architecture for categorical, time series

and image data

The results of studies from optimizing the Protis Neural
Network architecture for categorical, time series, and image
data types provide valuable insights into the approach’s ef-
fectiveness. This study shows that the protis approach, which
consists of several phases including prophase, metaphase, and
anaphase/telophase found in Fig. 1 and Fig. 2, turns out to
be effectively embedded in the classic Neural Network archi-
tecture where modification formulas are carried out in this
architecture. Starting in the four phases, namely the modified
modification method of the Prophase Phase by increasing
the variable weights and doubling the chromosomes, modi
fication method metaphase phase, and optimization using
the activation function, modification method anaphase and
telophase by generating each neuron by generating the num-
ber of neurons in multiples of two until the optimal number
of neurons are found.

In this study, it was found that the average range opti-
mization standard for the number of neurons in the hidden
layer was found to be between 0 to 35 neurons. This pro-
vides a guideline for determining the appropriate size of
the hidden layer in the neural network architecture, and
a visualization generates the architecture in the form of
a framework (Fig. 8) to visually show the optimal number
of neurons in each layer. The test results of the Protis Al-
gorithm Approach to the neural network are also shown in
Table 5 regarding the Final Evaluation of Hidden Layers.
Furthermore, testing the Protis Neural Network Archi-
tecture can optimize categorical data classification and
prediction processes. The mean precision value of 0.952 in-
dicates a high degree of accurate positive prediction,
while the average recall value of 0.950 indicates the abi
lity to capture a significant proportion of positive events.
These results highlight the potential of the Protis algo-
rithm in handling categorical data effectively and making
good predictions.

The peculiarity of the proposed method lies in deve
loping the Protis Neural network algorithm to optimize the
neural network’s architecture by optimizing the neurons
contained in the hidden layer. This study shows that the
metaheuristic approach optimizes the architecture for time
series data. The information provided does not explicitly
discuss the application of the Protis Neural Network Ar-
chitecture to image data. However, given the versatility
and adaptability of neural networks in dealing with image
data, it can be concluded that this approach can potential-
ly optimize the architecture for image classification and
prediction tasks. Further research and experimentation
will be needed to explore specific performance metrics and
the ability of the Protis algorithm to optimize image data.
Overall, the results obtained from optimizing the Protis
Neural Network Architecture for categorical and time se-
ries data show its effectiveness in achieving high accuracy
and precision. However, additional details and experimen-
tal evidence are needed to assess the performance of the
approach on image data.

Further studies and comparisons with existing research can
provide more comprehensive insights into the potential advan-
tages and limitations of the Protis Neural Network Architec-
ture in optimizing the architecture for different data types. This
research is also relevant to research [19] methods to determine
the optimal architecture by using a pruning technique. The
unimportant neurons are identified using the delta values of
hidden layers and research conducted by [30] regarding the
modeling of artificial neural networks for silicon prediction
in the cast iron production process, which also focuses on the
optimal number of neurons and hidden layers. It is stated that
the optimal number of neurons is 30 per hidden layer.

However, this research cannot be visualized through the
framework. The limitation of this study is that the tests car-
ried out only used categorical data, images, and time series
but had not yet touched data such as anomaly and bino
mial data. The drawback of this research is that it is hoped
to be discussed further with various types of datasets, such as
anomaly and binomial data, as well as other datasets expec
ted to be further developed.

7. Conclusions

1. Protis Neural Network Architecture can be implemen
ted on Time Series, Categorical data types. The Protis Neu-
ral Network metaheuristic approach in this study can form
a hidden layer neuron formation process that can optimize
the Neural Network Architecture in the classification and
prediction process.

2. The average range optimization standard for the
number of neurons in the hidden layer is between 0 to
35 neurons. This provides a guideline for determining the
appropriate size of the hidden layer in the neural network
architecture.

3. Furthermore, when applying the Protis algorithm em-
bedded in the Neural Network for categorical data and time
series, impressive results are achieved. The average precision
value of 0.952 indicates a high level of accurate positive pre-
dictions, while the average recall value of 0.950 demonstrates
the ability to identify a significant proportion of the actual
positive instances.

4. The Protis algorithm embedded in the Protis recur-
rent Neural Network for Categorical data measurements
produces an average value of RMSE, or the difference bet
ween actual measurements and predictions, equal to 0.066.
Overall, the Protis Neural Network Architecture and the
embedded Protis algorithm show potential in optimizing
the architecture and achieving high accuracy and precision
in classification and prediction tasks for both time series and
categorical data types.

5. Visualization of the model data is presented using
a framework so that the number of neurons in the neural net-
work architecture can be seen, which was previously difficult
to know. This framework presents 5 layers with a maximum
number of neurons that can form up to 1,000 neurons.

Conflict of interest

The authors declare that they have no conflict of inte
rest in relation to this research, whether financial, personal,
authorship or otherwise, that could affect the research and its
results presented in this paper.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

58

Funding

The study was conducted without financial support.

Data availability

All data are available in the main text of the manuscript.

References

1.	 Mladenovi , N., Brimberg, J., Hansen, P., Moreno-P rez, J. A. (2007). The p-median problem: A survey of metaheuristic approaches.

European Journal of Operational Research, 179 (3), 927–939. doi: https://doi.org/10.1016/j.ejor.2005.05.034

2.	 Ren, P., Xiao, Y., Chang, X., Huang, P., Li, Z., Chen, X., Wang, X. (2021). A Comprehensive Survey of Neural Architecture Search.

ACM Computing Surveys, 54 (4), 1–34. doi: https://doi.org/10.1145/3447582

3.	 Alkabbani, H., Ahmadian, A., Zhu, Q., Elkamel, A. (2021). Machine Learning and Metaheuristic Methods for Renewable Power

Forecasting: A Recent Review. Frontiers in Chemical Engineering, 3. doi: https://doi.org/10.3389/fceng.2021.665415

4.	 Joshi, D., Chithaluru, P., Anand, D., Hajjej, F., Aggarwal, K., Torres, V. Y., Thompson, E. B. (2023). An Evolutionary Technique

for Building Neural Network Models for Predicting Metal Prices. Mathematics, 11 (7), 1675. doi: https://doi.org/10.3390/

math11071675

5.	 Panario, D. (2014). Open Problems for Polynomials over Finite Fields and Applications. Open Problems in Mathematics and Com-

putational Science, 111–126. doi: https://doi.org/10.1007/978-3-319-10683-0_6

6.	 Panchal, G., Ganatra, A., Kosta, Y. P., Panchal, D. (2011). Behaviour Analysis of Multilayer Perceptronswith Multiple Hidden Neu-

rons and Hidden Layers. International Journal of Computer Theory and Engineering, 3 (2), 332–337. doi: https://doi.org/10.7763/

ijcte.2011.v3.328

7.	 Sengupta, S., Basak, S., Saikia, P., Paul, S., Tsalavoutis, V., Atiah, F. et al. (2020). A review of deep learning with special em-

phasis on architectures, applications and recent trends. Knowledge-Based Systems, 194, 105596. doi: https://doi.org/10.1016/

j.knosys.2020.105596

8.	 Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M. (2012). Water cycle algorithm – A novel metaheuristic optimization me

thod for solving constrained engineering optimization problems. Computers & Structures, 110-111, 151–166. doi: https://doi.org/

10.1016/j.compstruc.2012.07.010

9.	 Alagoz, B. B., Simsek, O. I., Ari, D., Tepljakov, A., Petlenkov, E., Alimohammadi, H. (2022). An Evolutionary Field Theorem: Evolu-

tionary Field Optimization in Training of Power-Weighted Multiplicative Neurons for Nitrogen Oxides-Sensitive Electronic Nose

Applications. Sensors, 22 (10), 3836. doi: https://doi.org/10.3390/s22103836

10.	 Ebenezer M., A., Arya, A. (2022). An Atypical Metaheuristic Approach to Recognize an Optimal Architecture of a Neural Net-

work. Proceedings of the 14th International Conference on Agents and Artificial Intelligence. doi: https://doi.org/10.5220/

0010951600003116

11.	 Castellanos, J. L., Gomez, M. F., Adams, K. D. (2017). Using machine learning based on eye gaze to predict targets: An exploratory

study. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). doi: https://doi.org/10.1109/ssci.2017.8285207

12.	 Adhitya, E. K., Satria, R., Subagyo, H. (2015). Komparasi Metode Machine Learning dan Metode Non Machine Learning untuk

Estimasi Usaha Perangkat Lunak. Journal of Software Engineering, 1 (2), 109–113. Available at: https://www.neliti.com/publica-

tions/90180/komparasi-metode-machine-learning-dan-metode-non-machine-learning-untuk-estimasi#cite

13.	 Demin, S. Yu., Berdieva, M. A., Podlipaeva, Yu. I., Yudin, A. L., Goodkov, A. V. (2017). Karyotyping of Amoeba proteus. Cell and

Tissue Biology, 11 (4), 308–313. doi: https://doi.org/10.1134/s1990519x17040046

14.	 Harumy, T. H. F., Zarlis, M., Effendi, S., Lidya, M. S. (2021). Prediction Using A Neural Network Algorithm Approach (A Review).

2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational

Science and Information Management (ICSECS-ICOCSIM). doi: https://doi.org/10.1109/icsecs52883.2021.00066

15.	 Harumy, T. H. F., Sitorus, J., Lubis, M. (2018). Sistem Informasi Absensi Pada Pt. Cospar Sentosa Jaya Menggunakan Bahasa

Pemprograman Java. Jurnal Teknik dan Informatika, 5 (1), 63–70. Available at: https://jurnal.pancabudi.ac.id/index.php/Juti/

article/view/95

16.	 Ergen, T., Pilanci, M. (2021). Convex geometry and duality of over-parameterized neural networks. Journal of Machine Learning

Research, 22, 1–63. Available at: https://jmlr.org/papers/volume22/20-1447/20-1447.pdf

17.	 Harumy, T. H. F., Yustika Manik, F., Altaha (2021). Optimization Classification of Diseases Which is Dominant Suffered by

Coastal Areas Using Neural Network. 2021 International Conference on Data Science, Artificial Intelligence, and Business Analy

tics (DATABIA). doi: https://doi.org/10.1109/databia53375.2021.9650223

18.	 Pomey, P. (2017). The Protis project (Marseilles, France). Ships And Maritime Landscapes, 484–489. doi: https://doi.org/10.2307/

j.ctt20p56b6.86

19.	 Wagarachchi, N. M., Karunananda, A. S. (2013). Optimization of multi-layer artificial neural networks using delta values of hidden

layers. 2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB). doi: https://

doi.org/10.1109/ccmb.2013.6609169

20.	 Musikawan, P., Sunat, K., Kongsorot, Y., Horata, P., Chiewchanwattana, S. (2019). Parallelized Metaheuristic-Ensemble of He

terogeneous Feedforward Neural Networks for Regression Problems. IEEE Access, 7, 26909–26932. doi: https://doi.org/10.1109/

access.2019.2900563

Mathematics and Cybernetics – applied aspects

59

21.	 Guliyev, N. J., Ismailov, V. E. (2018). On the approximation by single hidden layer feedforward neural networks with fixed weights.

Neural Networks, 98, 296–304. doi: https://doi.org/10.1016/j.neunet.2017.12.007

22.	 Qolomany, B., Maabreh, M., Al-Fuqaha, A., Gupta, A., Benhaddou, D. (2017). Parameters optimization of deep learning models us-

ing Particle swarm optimization. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC).

doi: https://doi.org/10.1109/iwcmc.2017.7986470

23.	 Henr quez, P. A., Ruz, G. A. (2018). A non-iterative method for pruning hidden neurons in neural networks with random weights.

Applied Soft Computing, 70, 1109–1121. doi: https://doi.org/10.1016/j.asoc.2018.03.013

24.	 Balamurugan, P., Amudha, T., Satheeshkumar, J., Somam, M. (2021). Optimizing Neural Network Parameters For Effective

Classification of Benign and Malicious Websites. Journal of Physics: Conference Series, 1998 (1), 012015. doi: https://doi.org/

10.1088/1742-6596/1998/1/012015

25.	 Mohammed, A. J., Al-Majidi, S. D., Al-Nussairi, M. Kh., Abbod, M. F., Al-Raweshidy, H. S. (2022). Design of a Load Frequency Con-

troller based on Artificial Neural Network for Single-Area Power System. 2022 57th International Universities Power Engineering

Conference (UPEC). doi: https://doi.org/10.1109/upec55022.2022.9917853

26.	 Romanuke, V. (2015). Optimal Training Parameters and Hidden Layer Neuron Number of Two-Layer Perceptron for Generalised

Scaled Object Classification Problem. Information Technology and Management Science, 18 (1). doi: https://doi.org/10.1515/

itms-2015-0007

27.	 Hegde, S., Mundada, M. R. (2019). Enhanced Deep Feed Forward Neural Network Model for the Customer Attrition Analysis

in Banking Sector. International Journal of Intelligent Systems and Applications, 11 (7), 10–19. doi: https://doi.org/10.5815/

ijisa.2019.07.02

28.	 Thomas, A. J., Petridis, M., Walters, S. D., Gheytassi, S. M., Morgan, R. E. (2017). Two Hidden Layers are Usually Better than One.

Communications in Computer and Information Science, 279–290. doi: https://doi.org/10.1007/978-3-319-65172-9_24

29.	 Cardoso, W., Di Felice, R., Dos Santos, B. N., Schitine, A. N., Pires Machado, T. A., Sousa Galdino, A. G. de, Morbach Dixini, P. V.

(2022). Modeling of artificial neural networks for silicon prediction in the cast iron production process. IAES International Journal

of Artificial Intelligence (IJ-AI), 11 (2), 530. doi: https://doi.org/10.11591/ijai.v11.i2.pp530-538

30.	 Zhou, Y., Niu, Y., Luo, Q., Jiang, M. (2020). Teaching learning-based whale optimization algorithm for multi-layer perceptron neural

network training. Mathematical Biosciences and Engineering, 17 (5), 5987–6025. doi: https://doi.org/10.3934/mbe.2020319

31.	 Sadollah, A., Eskandar, H., Lee, H. M., Yoo, D. G., Kim, J. H. (2016). Water cycle algorithm: A detailed standard code. SoftwareX,

5, 37–43. doi: https://doi.org/10.1016/j.softx.2016.03.001

32.	 Zheng, Y.-J., Lu, X.-Q., Du, Y.-C., Xue, Y., Sheng, W.-G. (2019). Water wave optimization for combinatorial optimization: Design

strategies and applications. Applied Soft Computing, 83, 105611. doi: https://doi.org/10.1016/j.asoc.2019.105611

33.	 Wang, N., Er, M. J., Han,M. (2015). Generalized Single-Hidden Layer Feedforward Networks for Regression Problems. IEEE Trans-

actions on Neural Networks and Learning Systems, 26 (6), 1161–1176. doi: https://doi.org/10.1109/tnnls.2014.2334366

34.	 Geurts, A. M., Hackett, C. S., Bell, J. B., Bergemann, T. L., Collier, L. S., Carlson, C. M. et al. (2006). Structure-based prediction

of insertion-site preferences of transposons into chromosomes. Nucleic Acids Research, 34 (9), 2803–2811. doi: https://doi.org/

10.1093/nar/gkl301

35.	 Yang, X.-S. (2011). Metaheuristic Optimization: Algorithm Analysis and Open Problems. Lecture Notes in Computer Science, 21–32.

doi: https://doi.org/10.1007/978-3-642-20662-7_2

36.	 Yang, X.-S., He, X. (2014). Swarm Intelligence and Evolutionary Computation: Overview and Analysis. Recent Advances in Swarm

Intelligence and Evolutionary Computation, 1–23. doi: https://doi.org/10.1007/978-3-319-13826-8_1

37.	 Agrawal, P., Abutarboush, H. F., Ganesh, T., Mohamed, A. W. (2021). Metaheuristic Algorithms on Feature Selection: A Survey of

One Decade of Research (2009-2019). IEEE Access, 9, 26766–26791. doi: https://doi.org/10.1109/access.2021.3056407

38.	 Ge, D. H., Li, H. S., Zhang, L., Liu, R. Y., Shen, P. Y., Miao, Q. G. (2020). Survey of Lightweight Neural Network. Journal of Software.

doi: https://doi.org/10.13328/j.cnki.jos.005942

39.	 Hofmann, W., Sedlmeir-Hofmann, C., Ivandic’, M., Ruth, D., Luppa, P. (2010). PROTIS: Use of Combined Biomarkers for Providing

Diagnostic Information on Disease States. The Urinary Proteome, 123–142. doi: https://doi.org/10.1007/978-1-60761-711-2_8

