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Determining the best model for the neural network 
architecture and how to optimize the architecture with the 
metaheuristic Protis Approach is a subject of the study.  
A comprehensive investigation and utilization of meta-
heuristic methods are necessary. These methods aim to 
solve problems and adapt from the lifestyle of the amoe-
ba protis. In this study, the proposed method modifies the 
life cycle of the amoeba, which consists of four phases: 
prophase, metaphase, anaphase, and telophase. These four 
phases are modified in the neural network architecture to 
optimize the appropriate number of hidden layers and pro-
duce an efficient architecture model. The results show that 
the protis approach optimized the neural network architec-
ture, especially in generating hidden layers to improve the 
neural network model. Distinctive features of the results 
obtained are that the average range of degenerate neurons 
in the hidden layer is 0 to 35 neurons in each layer. The 
standard number of neurons makes it possible to solve the 
problem of determining the best model on the neural net-
work architecture. The protis algorithm embedded in the 
protis recurrent neural network for categorical data mea-
surements produces an average RMSE value, representing 
the difference between actual measurements and predic-
tions, equal to 0.066.

Consequently, the developed model surpasses the cur-
rent classical neural network model in terms of perfor-
mance. Regarding accuracy, the protis algorithm embed-
ded in the neural network for categorical and time series 
data achieves an average precision of 0.952 and a recall  
of 0.950. The protis convolutional neural network achieves 
an accuracy of 95.9 %. Therefore, from the three tested 
datasets, the protis convolutional neural network exhibits 
the highest accuracy value
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1. Introduction

The fields of metaheuristics and neural networks are expe-
riencing rapid advancements within the realm of artificial in-
telligence. Within this framework, metaheuristics and swarm 
intelligence algorithms play integral roles as modern global op-
timization algorithms, contributing to computer intelligence 
and software development. These methods are capable of pro-
ducing satisfactory solutions within an acceptable timeframe, 
but they do not guarantee the attainment of the absolute best 
solution [1, 2]. Metaheuristics employ a combination of rules 
and randomness to explore and find global optima through 
trial-and-error methods iteratively. These approaches possess 
fundamental characteristics that guide the search process ef-
fectively and have been successfully adapted to the domain of 
biocomputing for the purpose of finding optimal solutions [3].

The neural network architecture method faces certain 
weaknesses, mainly related to the challenge of determining 
the optimal combination of hidden layers that can produce 
effective and efficient results in the prediction and classifica-
tion processes [4]. Previous relevant studies have provided 
some achievements in determining the best neural network 

architecture using a metaheuristic approach, but there are still 
deficiencies in determining the optimal number of neurons in 
the hidden layer of neural network architecture. In addition, 
previous research focused on an algorithmic approach [5, 6]. 
This research has highlighted the importance of striking the 
right balance in choosing the right number of neurons in the 
hidden layer and the dataset used. On the hidden layer prob-
lem, if too few layers are selected, the model may have difficulty 
capturing complex patterns in the data. On the other hand, an 
excessive number of layers can result in overfitting, in which 
the neural network model starts to catch irrelevant and random 
patterns from the training data, mistakenly considering them as 
fundamental patterns.

Previous studies have identified that one of the reasons for 
the slow training process of neural networks is the inappropriate 
number of hidden layers [7]. However, currently, the average 
standard number of neurons that are set to determine the op-
timal number of hidden layers in a model still varies [4, 8–10].

Consequently, the number of layers and neurons in the 
hidden layer is considered a hyperparameter and must be 
optimized using various approaches. In addition, the uncer-
tain and statistically based nature of approaches, techniques,  
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methods, and algorithms in neural networks poses another 
challenge. Also, determining the values of various model pa-
rameters and validating them using limited test data adds to 
the complexity of the problem. Nevertheless, the most crucial 
issue to address is determining the number of hidden layers 
and neurons, significantly affecting the prediction and classi-
fication results in artificial neural networks [11, 12].

To overcome this challenge, it is necessary to carry out 
in-depth analysis and develop new algorithms inspired by 
swarm intelligence metaheuristics to optimize the regener-
ation of the hidden layer and find the standard number of 
neurons in the hidden layer. Furthermore, the optimization 
of the dataset is used in this approach [13]. The protis ap-
proach, part of the metaheuristic intelligence and swarm 
intelligence algorithms, is currently being developed to opti-
mize the architecture of artificial neural networks [14]. Pre-
vious literature on the development of the theory of protists 
in artificial neural networks [14, 15] highlights the potential 
of the protist amoeba adaptive lifestyle to enhance perfor-
mance. Further exploration and exploitation of this approach 
are required to adapt it specifically to optimize the number of 
hidden layers in a neural network model [16]. 

Research on protist by [17, 18] revealed that protist has 
several phases, namely prophase, metaphase, and anaphase, 
which contribute to their strength and resilience. The in-
depth approach involves studying and evaluating various 
techniques to determine their suitability for solving hidden 
layer optimization problems and choosing the most effective 
method. Standard tests should be carried out to assess effi-
ciency and effectiveness, as well as to compare different algo-
rithms and understand the strengths and weaknesses of each. 

The next step involves fine-tuning the algorithms param-
eters to optimize performance, which may require adjusting 
settings such as population size and mutation rate. The goal is 
to identify the best combination of neural network architec-
tures that produce a high-quality solution within a reasonable 
timeframe. In addition, problem representation design plays 
an important role in exploiting protist metaheuristics effec-
tively. Well-designed representations can improve algorithm 
performance by facilitating an exploration of the problem 
space [10, 19–25]. Protis neural networks, as a metaheuristic 
method approach, are needed to optimize the neural network 
architecture to produce accurate models with reduced errors 
and increased performance. By generating optimal hidden  
layers, this approach aims to minimize lengthy training pro-
cesses for categorical data, time series, and complex images, 
resulting in more effective and efficient prediction and classifi-
cation models while minimizing errors. Therefore, research on 
the development of neural network architecture optimization 
is relevant to the research conducted by the authors [21–25].

2. Literature review and problem statement

In the paper [19], a novel method for determining the op-
timum number of hidden layers for FNNs was introduced and 
applied in financial data mining. It is shown that the remov-
able nodes are identified by the delta values of hidden layers. 
It was observed that the sum of the delta values of the hidden 
layer shows a considerable correlation with the output error. 
Moreover, this method, based on mathematical arguments, 
suggests minor adjustments to the settings used in neural 
networks. Further, the modified architecture was obtained 
with very limited computations. At a time, 5–20 % can be 

removed from hidden layers without degrading the output 
performance. This approach in [26] focused on finding the 
optimal training parameters and number of hidden layer 
neurons in a two-layer perceptron for generalized object 
classification. However, this research allows us to argue that 
it is appropriate to conduct a study devoted to determining 
the standard neurons in the hidden layer that are appropriate 
for optimizing the neural network architecture.

The paper [27] assembles a precise prescient model using 
the Enhanced Deep Feed Forward Neural Network Model 
to predict the customer whittling down in the Banking 
Domain. The generalization abilities of feedforward neural 
networks with one and two hidden layers are compared. 
However, this study only discusses the comparison of clas-
sic machine learning. The resolved questions related to the 
postulation that identifying hidden layer neurons, which can 
minimize the error of the training cycle, would be significant 
for modeling hidden layer architecture, effectively proposing  
a method that allowed empirical comparisons between indi-
vidual nodes in the hidden layers of these networks. The rea-
son could be related to pruning the number of neurons, which 
makes related research impractical. Ten publicly available 
datasets for function approximation were used to evaluate 
the method. The results indicated that in nine out of ten in-
stances, the network with two hidden layers performed bet-
ter, although the extent of improvement varied across cases.

The study [28] introduced a technique called «transforma-
tive optimization» and used it to compare hidden nodes in single 
and two-layer feedforward networks. The findings consistently 
favored the two-hidden-layer feedforward networks (TLFNs) 
over single-hidden-layer ones (SLFNs) in most cases. The 
proposed method, in combination with binary sampling, offers 
a rapid means to determine the feasibility of employing two 
hidden layers in a specific problem. Although the presented 
data demonstrate the superiority of TLFNs over SLFNs, further 
research utilizing more challenging real-world datasets is re-
quired. Moreover, this technique has the potential to be applied 
in a variety of metaheuristic training. However, the amount of 
increase is highly case-dependent. All this allows us to argue 
that it is appropriate to study the proper number of hidden layer 
neurons to optimize the neural network architecture.

The paper [4] highlights that metaheuristics belong to  
a class of optimization techniques employed to discover ap-
proximate solutions for problems that are intricate or impossi-
ble to solve precisely. However, the resolved questions related 
to determining a flexible structure for a metal price forecasting 
model using an evolutionary-based ANN model are a costly 
part of the plan. A neural network (NN) model for metal price 
forecasting based on an evolutionary approach is proposed; 
however, this method is used only for time series metal price 
data, which makes the corresponding research inexpedient. 
Options for overcoming relevant difficulties can be researched 
by [20], namely a metaheuristic-based learning algorithm to 
build an ensemble system so that the training time becomes 
shorter. Furthermore, the training time is shorter. In our pro-
posed method, a master-slave based metaheuristic algorithm is 
used in the optimization process to generate a heterogeneous 
group of feedforward neural networks. However, from the re-
sults of previous studies [23, 24], in which the paper states that 
random weights have the advantage of fast computation time 
in both training and testing, all this allows us to argue that it is 
appropriate to conduct a study devoted to neural architecture 
optimization network that can be used for various data and can 
minimize training time.
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Further research in [10] highlights the numerous advan-
tages of metaheuristics over traditional optimization me
thods, which render them valuable in tackling a wide range 
of problems. Computationally performed tests confirm this 
by showing that the approach proposed in this paper achieves 
competitive results to other algorithms developed lately, like 
the WWO algorithm, while also going one step further by 
finding the optimal count of hidden layers without user inter-
vention, as to find the optimal architecture of the ANN for the 
given dataset. One significant advantage is their capability to 
handle complex problems that are challenging or impossible 
to solve precisely. However, for research questions related to 
structural design involving both the number of hidden layers 
and the number of neurons needed in each of these hidden  
layers, this approach requires more in-depth observations. 
The reason why this method is feasible is that progress has 
been made in adapting this methodology to more sophisti-
cated algorithms and evaluating its performance. In addition, 
efforts are being made to minimize the breadth of the overall 
search space. This choice of difficulty is also relevant to the 
research conducted by [8]. However, further in-depth obser-
vations are still needed, and all of this allows us to conduct 
studies aimed at deepening neural network architectural 
models with metaheuristic and protis approaches.

The paper [3] shows that metaheuristics in dealing with 
non-linear constraints, indistinguishable functions, and noisy 
data provide a critical of existing wind power and solar power 
ML forecasters, namely artificial neural networks (ANNs), 
recurrent neural networks (RNNs), support vector ma-
chines (SVMs), and extreme learning machines (ELMs). 
Nevertheless, the resolved questions are only related to 
some critical Classical Neural Network Architecture, which 
makes related research be developed more deeply. Moreover, 
supporting evidence from [29] highlights that the ANN with 
30 neurons performs best, but it cannot be visualized using  
a framework in research. It is emphasized that metaheuristics 
effectively handle uncertainty by incorporating randomiza-
tion into the search process. Additionally, metaheuristics are 
well-suited for addressing large-scale problems characterized 
by many variables or extensive solution spaces. All this al-
lows for future studies to focus on the development of Protis 
recurrent neural networks (RNNs).

In addition, metaheuristics can handle noisy or incomplete 
data, which are commonly encountered in real-world problems. 
They can also effectively deal with non-numeric categorical 
variables, making them applicable in scenarios where the 
variables are not continuous [30]. Developing a metaheuris-
tic method typically involves two steps: exploration and 
exploitation. As mentioned in [9], exploring metaheuristic 
methods entails studying and evaluating various techniques to 
assess their suitability for solving a specific problem. Another 
approach to exploring metaheuristic methods involves expe
rimenting with different variations of a particular algorithm.

Exploiting metaheuristics entails employing specific me
thods to obtain high-quality solutions for particular problems. 
This process often involves refining the algorithm’s param-
eters and settings to optimize its performance in addressing 
the specific problem at hand. Additionally, it is crucial to 
consider the problem’s unique characteristics and how they 
influence the algorithm’s behavior. For instance, if the prob-
lem involves numerous constraints, incorporating constraint-
handling mechanisms like penalty functions may be necessary. 
Furthermore, exploiting metaheuristics involves analyzing 
the obtained results and interpreting the solutions generated 

by the algorithm. This analysis helps identify patterns, trends, 
and insights that can be utilized to enhance the algorithm 
or gain a better understanding of the problem. In summary, 
exploiting metaheuristics is an iterative process that includes 
adjusting the algorithm’s parameters and settings, designing 
an appropriate problem representation, and interpreting the 
obtained results [30, 31]. 

Previous studies [32] have focused on developing protis 
in artificial neural networks. These studies draw inspiration 
from how amoebas divide themselves to survive and become 
stronger, aiming to improve the performance and accuracy of 
neural network models. Building upon this concept, the cur-
rent research aims to adapt it to the existing neural network 
model by introducing modifications that incorporate the 
phases of prophase, metaphase, and anaphase. These adjust-
ments are intended to enhance the performance and accuracy 
of the neural network method. Moreover, by optimizing the 
principles of protis theory, this research contributes to the de-
velopment of deep neural networks, where the concepts of di-
vision for survival, self-development, and hidden layers are in-
herited from one generation to another. The adjusted phases, 
namely the beginning, middle, and end, have shown promising 
results in improving the classification process. Differing 
from the classic neural network method, the protis neural 
network method introduces a distinct process for generating 
hidden layers in the neural network architecture [28, 33, 34].  
The proposed method, in combination with binary sampling, 
offers a rapid means to determine the feasibility of employ-
ing two hidden layers in a specific problem. Although the 
presented data demonstrate the superiority of TLFNs over 
SLFNs, further research utilizing more challenging real-world 
datasets is required. Moreover, this technique holds potential 
for application in various training metaheuristics. 

The paper in [16] explains that metaheuristics belong 
to a class of optimization techniques employed to discover 
approximate solutions for problems that are intricate or 
impossible to solve precisely. The research problem solved 
in this paper is about the regularized training problem in 
the RELU network, which makes this research continue to 
be developed. One significant advantage is their capability 
to handle complex problems that are challenging or impos-
sible to solve precisely. Metaheuristics excel in dealing with 
non-linear constraints, indistinguishable functions, and noisy 
data. Moreover, supporting evidence from [30] emphasizes 
that metaheuristics effectively handle uncertainty by incor-
porating randomization into the search process. Additionally, 
metaheuristics are well-suited for addressing large-scale 
problems characterized by many variables or extensive solu-
tion spaces so that it is then appropriate to develop studies on 
data training development on neural network architectures.

In addition, metaheuristics can handle noisy or incom-
plete data, which are commonly encountered in real-world 
problems. They can also effectively deal with non-numeric 
categorical variables, making them applicable in scenarios 
where the variables are not continuous [35]. Developing  
a metaheuristic method typically involves two steps: explo
ration and exploitation. As mentioned in [36], exploring 
metaheuristic methods entails studying and evaluating va
rious techniques to assess their suitability for solving a spe-
cific problem. Another approach to exploring metaheuristic 
methods involves experimenting with different variations 
of a particular algorithm.In [37], exploiting metaheuristics 
entails employing specific methods to obtain high-quality 
solutions for particular problems. This process often involves 
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refining the algorithm’s parameters and settings to optimize 
its performance in addressing the specific problem at hand. 
Additionally, it is crucial to take into account the problem’s 
unique characteristics and how they influence the beha
vior of the algorithm. For instance, if the problem involves 
numerous constraints, incorporating constraint-handling 
mechanisms like penalty functions may be necessary. Fur-
thermore, in the other paper, the approach used [38], exploit-
ing metaheuristics involves analyzing the obtained results 
and interpreting the solutions generated by the algorithm. 
This analysis helps identify patterns, trends, and insights 
that can be utilized to enhance the algorithm or gain a bet-
ter understanding of the problem. In summary, exploiting 
metaheuristics is an iterative process that includes adjusting 
the algorithm’s parameters and settings, designing an appro-
priate problem representation, and interpreting the obtained 
results. So, it is possible to carry out further studies aimed 
at the development of metaheuristics for the development of 
neural network architectures.

Several previous studies [14] have focused on the deve
lopment of protis in artificial neural networks. These studies 
draw inspiration from how amoebas divide themselves to 
survive and become stronger, aiming to improve the per-
formance and accuracy of neural network models. Building 
upon this concept, the current research aims to adapt it to 
the existing neural network model by introducing modifi-
cations that incorporate the phases of prophase, metaphase, 
and anaphase. These adjustments are intended to enhance 
the performance and accuracy of the neural network method. 
This is an approach that is also used in [39].

Moreover, by optimizing the principles of protist theory, 
this research contributes to the development of deep neural 
networks, where the concepts of division for survival, self-de-
velopment, and hidden layers are inherited from one genera-
tion to another. The adjusted phases, namely the beginning, 
middle, and end, have shown promising results in improving 
the classification process. Differing from the classic neural 
network method, the Protis neural network method intro-
duces a distinct process for generating hidden layers in the 
neural network architecture.

3. The aim and objectives of the study

The aim of the study is to optimize the hidden layers in 
a neural network by combining a metaheuristic approach 
and protis theory. This optimization will improve the perfor-
mance and accuracy of the neural network model. 

To achieve this aim, the following objectives are accom-
plished:

– to deepen and understand the concept of Protis Theory 
and its implementation on neural network architecture;

– to adapt the concept of accurate pattern recognition 
and for searching neurons in the best hidden layer in neural 
networks adapted from Protis Theory;

– to take advantage of the robustness potential gained 
from the life processes of Protis Theory in enhancing the 
development of hidden layers for neural networks;

– to evaluate the Protis Neural Network Approach’s per-
formance to find the optimal number of neurons in hidden 
layer neural network architecture;

– to perform visualization in neural network modeling by 
providing insight into adapting protis life processes to better 
develop hidden layers.

4. Materials and methods

The object of research is a model for the neural network 
architecture and how to optimize the architecture.

The subject of research is to determine the best model 
for the neural network architecture and how to optimize the 
architecture with the metaheuristic Protis Approach.

The main hypothesis of the study is that the protis approach 
can optimize the neural network architecture, especially in 
generating hidden layers to improve the neural network model. 

The Assumptions made in the work are as follows. The 
Hierarchical Representation Assumption assumes that the 
neural network architecture can describe a feature hierarchy 
that becomes increasingly complex as information passes 
through layers in the network. Each layer takes on more 
abstract and complex features than the previous input. Next 
is the Model Capacity Assumption, which assumes that more 
complex or significant architectures have a higher capacity 
to learn complex patterns in data. This assumption also con-
siders the risk of overfitting when the model learns too much 
from the training data and cannot generalize well to unseen 
data. Next is the Assumption of Using the Activation Func-
tion, where this assumption assumes that using nonlinear 
activation functions at each layer is an essential requirement. 
Activation functions such as ReLU, sigmoid, or tanh intro-
duce nonlinearity into the architecture and enable models to 
study complex relationships in data.

The Simplifications adopted in the work consist in op-
timizing and visualizing the neural network architecture by 
adopting the Metaheuristic Protis approach, namely taking 
inspiration from the concept of the protist way of life, which 
consists of several phases, namely metaphase, prophase, 
anaphase and telophase where efforts are made to optimize 
and generate a search for the best-hidden layer, determine 
the correct number of neurons in the hidden layer, and in-
crease efficiency and effectiveness in neural network models. 

The research flow follows the stages described below.
Deepening the Protis Neural Network approach by ex-

ploring and exploiting the way of life of an amoeba, which 
will later be embedded in the neural network. Furthermore, 
this research will be carried out according to the following 
research flow. The stages of Protis Neural Network research 
are as follows:

– Observation and preparation of categorical, time series, 
and image datasets.

This stage involves an in-depth analysis of existing neural 
networks, Metaheuristics, and swarm Intelligence methods 
in the context of dataset observation. Data preprocessing 
techniques such as cleansing, loss removal, and normalization 
are applied. The activation function, namely the sigmoid 
function, ensures the data is scaled from 0 to 1. It is crucial 
to consider the appropriate activation function for data nor-
malization, such as Identity, binary step, sigmoid, Rectified 
Linear Unit (ReLU), Leaky ReLU, and softmax.

– Deepening protis approach to the neural network. 
This stage delves into the protis Neural Network ap-

proach by exploring and leveraging the amoeba’s way of life, 
which involves the following phases: prophase, metaphase, 
anaphase, and telophase. These phases mimic the process 
of amoeba reproduction through self-division. Additionally, 
modeling and mathematical analysis of the protist neural 
network algorithm flow are conducted, with attention to 
parameters such as epochs, activation function, architecture, 
and other parameters to enhance the training process.
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– Design and estimation of the protis method in a neural 
network.

This stage continues the exploration and exploitation 
of the protis neural network approach by integrating the 
amoeba’s way of life into the neural network. Starting 
from the input dataset, the process involves the prophase 
phase, followed by the metaphase phase, anaphase phase, 
and telophase phase, representing the reproduction process 
through self-division. Mathematical modeling and analysis 
of the protist neural network algorithm are performed, 
considering parameters such as epochs, activation function, 
architecture, and other relevant factors to improve the 
training process.

– Generating hidden layer/parameter on a neural net-
work with protis approach.

The next step involves determining the tools, specifically 
Python and Matlab, for training and testing the protis model 
using a single computer and parallel computing (GPU). 
This allows for comparing running time, performance, and 
error in the model training architecture. The protis me
thod is trained and tested with different hyperparameters 
and epochs, considering variations in the number of ite
rations and data division ratios, such as 70/30 %, 60/40 %, 
and 50/50 %. The dataset is divided into 70 % training 
and 30 % test data, with epochs set at 10, 100, 1000, 80,  
120, and 200.

– Comprehensive evaluation models.
The protis neural network method is comprehensive-

ly evaluated by analyzing its advantages, strengths, and 
weaknesses. A comparison is made with existing classical 
neural network methods, such as feed forward neural net-
works (FFNN), Convolutional Neural Networks, and recur-
rent neural networks, particularly for time series, categorical, 
and image data. This comparison highlights the performance, 
efficiency, and level of each method. The results of the pro-
tis neural network method are visualized and displayed on  
a landing page website, facilitating user implementation and 
enabling further discussion and analysis.

5. Results of Neural Network Architecture Optimization 
Based on Protis Metaheuristic

5. 1. Deepening and understanding the concept of  
Protis Theory and its implementation on neural network 
architecture

The protis theory is currently being developed for various 
research purposes, including proposing an algorithm for pattern 
recognition. This algorithm aims to accurately track epithelial 
and endothelial cells in time-lapse image sequences with low 
contrast levels that gradually increase over time. Taking inspi-
ration from the concept of the protis way of life, an effort will 
be made to adapt it to the search for the best, most optimal, 
efficient, and effective hidden layer in a neural network model. 
The inspiration for the theory is illustrated in Fig. 1.

The idea is that similar to how the phases in protists make 
their cells stronger, incorporating these phases into neural 
networks can potentially enhance their performance. To ad-
dress the problem of determining the appropriate number of 
hidden layers for achieving a well-structured neural network 
architecture, a deeper exploration and exploitation of the 
protis way of life are considered necessary. This exploration 
involves studying the four phases: prophase, metaphase, and 
anaphase/telophase, and attempting to integrate them into 
developing hidden layers in neural networks [14].

5. 2. Adapting the concept of accurate pattern recog­
nition and searching neurons in the best hidden layer in 
neural networks adapted from Protis Theory

The protis theory has been further developed and applied 
in the context of neural network architecture. The phases 
observed in protis have been incorporated into designing 
the neural network architecture. This application is depic- 
ted in Fig. 2.

To further advance the protis neural network approach, 
this research aims to explore and exploit the amoeba’s 
way of life, which will be integrated into the neural net-
work framework. 

 
Fig. 1. Protis Neural Network Theory
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5. 3. Advantage of the robustness potential gained 
from the life processes of Protis Theory in enhancing the 
development of hidden layers for neural networks

To prepare the input data and target variables, they are 
replaced with values obtained from the collected data. The in-
put data is then transformed into a matrix format to facilitate 
training. Categorical data is divided into several matrices: ma-
trix A (6 × 60), matrix B (6 × 70), and matrix C (6 × 50), while 
the remaining data is used for testing, with matrix D (6 × 40), 
matrix E (6 × 30), and matrix F (6 × 50). Data normalization is 
performed for time series data, categorical data, CIFAR image 
data, and field observations. 

In developing the life processes of Protist Theory in opti-
mizing hidden layer neurons for neural network architecture, 
several processes were carried out, including:

1. Protis neural network architecture.
The sigmoid activation function is used for data normaliza-

tion, mapping the original data to the range of 0 to 1. This is 
achieved by applying the binary sigmoid function to normalize 
the data from 0 to 1. By doing so, the input data values are ad-
justed to fit the sigmoid activation function. The initial input 
data ranges from 1 to 6, which is assumed based on the attri-
bute weighting of the categorical data architecture (Fig. 3).

The Protis Feed Forward Neural Network algorithm net-
work is employed in this case as the Artificial Protis Neural 
Network architecture, and it comprises the following: 6 nodes 
in the input layer (x1, x2, x3, x4, x5, x6). The hidden layer has 
a maximum of 4 nodes formed by the protist theory’s phases, 
namely the Prophase Phase, Metaphase Phase, Anaphase 
Phase, and Telophase Phase, and up to 1,000 neurons can be 
selected in each node (z1, z2, z3, z4). The accuracy of cate-
gorizing disease spread in coastal areas categorical data (Y)  
is the output layer with one node.

2. Proposing a model design and estimation of the protis 
neural network.

The design and estimation of the protis neural network 
model follow the core structure of the algorithm. The steps 
involved are as follows:

Step 0: set all weights with small random integers.
Step 1: check if the termination condition is met. If not, 

proceed to Steps 2–8.
Step 2: repeat Steps 3–8 for each pair of training data. 
Step 3: execute phase 1, which consists of Steps 3–5.
Each input unit receives a signal and sends it to the con-

cealed unit above it.

Step 4: calculate the output values for 
all hidden units.

The core structure of the algorithm is 
the Neural Network primary approach in 
the architectural design of a Neural Net-
work protist model for six inputs:

Zj j p Z netj

Vjo X Vjii

n

=( ) =

= +( )=∑

1 2

11

2

, ,..., _

, 	 (1)

Zj f Z netj
z netj

= ( ) =
+ −

_
exp( _ )

.
1

1
	 (2)

Step 5: modify the protis neural network 
within the neural network architecture.

Modification method prophase phase: 
increase variable weight and duplicate chro-
mosomes:

Wj Wj Wj Wjn Xn Random P1 2 3 2 1 0, , , , .( ) = ( ) = <( )Prob 	 (3)

Modification method metaphase phase: optimization us-
ing the binary sigmoid activation function:

Yk f y net Y f x
x

yk
netk

= ( ) = ( ) + −( )
+ −( )







_

exp

exp
,

1

1

2

	 (4)

y f x
x

= ( ) =
− −( )







1

1 exp δ

or

y f x
x

x
= ( ) =

+ −( )
− −( )







1

1

2
exp

exp
.

δ
	 (5)

For each input chromosome, (Xi, i = 1, 2, 3, …, n), the in-
put Xi is received and propagated to all chromosomes in the 
top layer (hidden layer). For the hidden chromosome (Zi, 
j = 1, 2, 3, …, p), the input values are calculated using the 
weight values:

z in voj x vj i iji

n
_ .= +

=∑ 1
	 (6)

The output value is then determined using the activation 
function, which is a binary sigmoid function:

zj f zinj= ( ).	 (7)

Modification method metaphase phase: binary sigmoid 
optimization.

The binary sigmoid function has two possible forms:

y f x
x

= ( ) =
− −( )







1

1 exp
,

δ
 y f x

x

x
= ( ) =

+ −( )
− −( )







1

1

2
exp

exp
.

δ
	(8)

The output value of each output chromosome (Yk, 
k = 1, 2, 3, m) is then calculated using the input value, which  
is determined by the weighted sum of the hidden chromo-
some outputs:

y k wok Z win i jki

p
= +

=∑ .
1

	 (9)

Then the output value is calculated using the activa-
tion  function:

y f y kk in= ( ).	 (10)

Fig. 2. Protis Neural Network Architecture

 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 ( 124 ) 2023

52

Step 6: anaphase optimization using function:

y f x
x

= ( ) =
+ −( )







1

1

2

exp
,

δ

Xn Random P= ( ) =( )0 1, , .Prob 	 (11)

Step 7: telophase optimization using function:

Y f x
x

ynetk

= ( ) + −( )
+ −( )







1

1

2
exp

exp
,

Xn Random P= ( ) =( )0 1, , .Prob 	 (12)

Receive the target pattern that matches the input pattern 
for each chromosome output (Yk, k = 1, 2, 3, …, m) and calcu-
late the error:

Δk k k inkt y f y= −( ) ( )( )ι 2
.	 (13)

The weight value modification is then computed and 
applied to the value wjk:

Δw zjk k j= ( )αδ
2
.	 (14)

Determine the bias value correction, which will be used 
to update the value w0k:

Δwok k= αδ .	 (15)

Then the value of δk is sent to the chromosome in the 
previous layer. For each hidden chromosome (Xn = (Ran-
dom (0, 1) = P < Prob), (Zj, j = 1, 2, 3, …, p) calculated as the 
input delta of the chromosomes in the upper layer:

δ δ_ .inj wk jkk

m
= ( )=∑

2

1
	 (16)

The error information is then calculated by multiplying  
it by the activation function’s derivative value:

δ δ ι
j inj injf Z= ( )2

.	 (17)

Calculate the weight value correction, which is subse-
quently utilized to update vij:

Δv xij j j= ( )αδ
2
.	 (18)

Additionally, compute the bias adjustment value, which 
will be used to update the value noj:

Dnoj = (αδj)2.	 (19)

Weight and bias values should be updated. For every 
bias and weighting value on the output chromosome (Yk,  
k = 1, 2, 3, …, m), update:

w new w beforejk jk ij( ) = ( ) + Δ ,	 (20)

v new w previouslyi jk ijj
( ) = ( ) + Δ ,	 (21)

v new v previouslyij i j ij( ) = ( ) + Δ .	 (22)

Step 8: test whether the stop condition is met.
This stop condition is met if the resulting error value is  

less than the error value [14]. The following pseudocode  
is derived from the following algorithm design.

Design pseudocode: 

PFFNN algorithm
Input: 
Vector Input – i
Output: 
Vector Output 
Initialize the number of input and output neurons 
Initialize generate the hidden layer 
Initialize all weights with random values between 0 and 1 
For each Max up 6 Network 
Initialize max up to 1,000 neurons 
Initialize Epoch – n 
Initialize MaxError – m 
While (Epoch≤ ||n|| Error value≥MaxError)
For each layer in the network
For each neuron in layer (Z)
Calculate the sum of weight Vij and bias V0j of each 
input Xi that goes to the hidden neuron
Apply the activation function to each neuron 
(Metaphase Activation) 
Apply the activation function to each neuron (Prophase 
Activation) 
For each anaphase/telophase: Optimization using 
function
Zj f Zinj= ( )2

End

 
Fig. 3. Protis neural network architecture: 	

x – input; w, z, c, d – the weights on the hidden layer; 	
β – the weights on the output layer; Vn – weights on the 

output layer; Wb – bias in the hidden layer and output layer; 
Y – result output; J = 1 to 6; Yd = 0
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// forward propagation of each neuron in the layer
For each neuron, do the output layer 
Calculation of the output error value (yk) against the 
target (tk) δ_j = ((tk–Yk) Yk (1–Yk))2) 
End.

The dataset used in this study consists of categorical and 
time series data that have been normalized using a sigmoid 
function, resulting in values ranging from 0 to 1. The protis 
neural network method is applied in this study to analyze 
categorical datasets and time series data. The data above is 
presented in Table 1.

Table 1
Sampling Dataset

No. (X1) (X2) (X3) (X4) (X5) (X6) (Y)

1 0.0000 0.3010 0.0000 0.3010 0.4771 0.0000 0.0000

2 0.3010 0.6021 0.3010 0.0000 0.3010 0.0000 0.3010

3 0.4771 0.0000 0.4771 0.3010 0.0000 0.3010 0.0000

4 0.0000 0.3010 0.6021 0.3010 0.3010 0.0000 0.4771

5 0.3010 0.4771 0.0000 0.3010 0.0000 0.3010 0.3010

6 0.4771 0.3010 0.3010 0.3010 0.4771 0.3010 0.0000

7 0.3010 0.6021 0.4771 0.0000 0.3010 0.0000 0.0000

8 0.4771 0.0000 0.6021 0.3010 0.4771 0.3010 0.4771

9 0.0000 0.3010 0.4771 0.3010 0.3010 0.3010 0.3010

10 0.3010 0.4771 0.6021 0.3010 0.0000 0.0000 0.3010

The categorical data consists of disease distribution data 
with 6 variables and 1 output variable with 3 labels. On the 
other hand, the time series data represents the number of 
dengue disease patients over 20 years. During the data trial,  
a comparison was conducted between the proposed protis neu-
ral network method and several other methods to assess their 
performance. The results obtained using the protis neural net-
work methodology showed an area under the curve (AUC)  
of 0.997, classification accuracy value of 0.950, F1 value of 
0.950, Precision value of 0.952, and Recall value of 0.950. 
These results indicate that the protis neural network ap-
proach is highly effective according to the data. Based on 
the findings of this study, the protis neural network method 
demonstrates superiority over traditional machine learning 
methods when dealing with categorical data situations.

3. PFFNN (Implementation of Protis Feed Forward Neu-
ral Network method) for categorical data.

Based on the results of the tests carried out, it was ob-
tained that the results of a comparison of the accuracy level 
of the Feed Forward Neural Network with epoch 10 were 
0.4900, and the Protis Feed Forward Neural Network was 
0.5900 where the results of PFNN are higher than FFNN. 
The results of comparing the model loss with epoch 10 are 
illustrated in Fig. 4, a, and the results of comparing the model 
accuracy are illustrated in Fig. 4, b. 

Based on the results of the tests carried out, the result 
of comparing the accuracy level of the Feed Forward Neu-
ral Network with epoch 100 is 0.4490, and the Protis Feed 
Forward Neural Network is 0.6690, where the results of 
PFFNN are higher than FFNN. The results of comparing the 
model loss of the Protis Feed Forward Neural Network with  
epoch 100 are illustrated in Fig. 5, a, and the results of com-
paring the model accuracy of the Protis Feed Forward Neural 
Network are illustrated in Fig. 5, b. 

 
 

 

 
 

 

a

b

Fig. 4. Testing of the Protis neural network model on Feed 
Forward Neural Network Epoch 10: a – comparing 	

model loss; b – comparing model accuracy

 
 

 

 
 

 

a

b

Fig. 5. Testing of the Protis neural network model on Feed 
Forward Neural Network epoch 100: a – comparing 	

model loss; b – comparing model accuracy
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Furthermore, the tests found that the result of comparing 
the accuracy level of the Feed Forward Neural Network with 
epoch 1000 for categorical data was 0.4900, and the Protis 
Feed Forward Neural Network was 0.4800, where the results 
of FFNN are higher than PFFNN. The results of comparing 
the model loss of the Protis Feed Forward Neural Network 
with epoch 1000 are illustrated in Fig. 6, a, and the results 
of comparing the model accuracy of the Protis Feed Forward 
Neural Network are illustrated in Fig. 6, b. 

The accuracy results were evaluated during the training 
and testing trials of the FFNN and PFFNN methods for ca
tegorical data. It was observed that the best accuracy result 
was achieved for the testing data measurements when using 
an epoch of 100, which amounted to 0.6690 or 66.90 %. The 
above data is presented in Table 2. 

 
 

 

 
 

 

a

b

Fig. 6. Testing of the Protis neural network model on Feed 
Forward Neural Network epoch 1000: a – comparing 	

model loss; b – comparing model accuracy

Table 2

Comparison of FFNN Methods And PFFNN Categorical Data

Method
Feed Forward 

Neural Net-
work

Protis Feed 
Forward Neural 

Network

Accuracy Training Epoch 10 0.6774 0.5324

Accuracy Testing Epoch 10 0.4900 0.5900

Accuracy Training Epoch 100 0.4993 0.5993

Accuracy Testing Epoch 100 0.4490 0.6690

Accuracy Training Epoch 1000 0.4540 0.4540

Accuracy Testing Epoch 1000 0.4900 0.4800

4. Implementation of the Protis Recurrent Neural Net-
work Method for Categorical Data.

From the results of the training and testing carried out, 
it was found that the results of a comparison of the accuracy 
level between Recurrent Neural Network and Protis Re-
current Neural Network Method for Categorical Data with 
epoch 80 are 0.043, epoch 100 is 0.485, epoch 120 is 0.894, 
epoch 250 is 0.608 and epoch 400 is 0445. The results of 
PRNN are higher at 250 epoch measurements. In the training 
and testing trials of the RNN and PRNN methods for cate-
gorical data, it was found that the best accuracy results were 
for testing data measurements with an epoch of 120, namely 
0.894 or 89.4 %. A comparison of RNN and PRNN Methods’ 
categorical data is illustrated in Table 3.

Table 3

Comparison of RNN and PRNN Methods categorical data

Method
Recurrent Neu-

ral Network
Protis Recurrent 
Neural Network

RMSE Training Epoch 80 0.247 0.317

RMSE Testing Epoch 80 0.063 0.043

RMSE Training Epoch 100 0.115 0.275

RMSE Testing Epoch 100 0.445 0.485

RMSE Training Epoch 120 0.243 0.113

RMSE Testing Epoch 120 0.844 0.894

RMSE Training Epoch 250 0.215 0.115

RMSE Testing Epoch 250 0.708 0.608

RMSE Training Epoch 400 0.017 0.117

RMSE Testing Epoch 400 0.666 0.445

5. Implementation of the Protis recurrent neural network 
method for time series data.

From the training and testing results, it can be seen that 
the development of the Protis Reccurent Neural Network 
method for time series data has an improvement seen from the 
comparison where the RMSE Value of the Protis Reccurent 
Neural Network method at epoch 1000 is smaller than the 
Reccurent Neural Network. Furthermore, to make it easier 
to know the number of Hidden Neuron ranges, the display 
layer is made as a website to facilitate data visualization. The 
implementation of the Protis Recurrent Neural Network for 
time series for epoch 100 data is shown in Fig. 7, a, the im-
plementation with epoch 120 is shown in Fig. 7, b. Then the 
implementation with 250 epochs is shown in Fig. 7, c, and the 
implementation with a total of 400 epochs is shown in Fig. 7, d.

6. Implementation of the Protis convolutional neural 
network method for image data.

In implementing the Protis Convolutional Neural Net-
work Method for image data, several datasets were used, 
including CIFAR image data, food product data, and rice 
disease data where the dataset was trained and tested with 
epochs 100 and 120 and then compared using the Convo-
lutional Neural Network architecture where the results are 
given in Table 4.

The protis convolutional neural network achieves an ac-
curacy of 95.9 %. Therefore, from the three tested datasets, 
the protis convolutional neural network exhibits the highest 
accuracy value. So, from these results, it is found that the 
Protis neural network can be applied to several types of 
datasets, including categorical, image, and time series data, 
and can be used in several architectures, including Convo-
lutional neural networks, Feedforward neural networks, and 
recurrent neural networks.
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Fig. 7. Implementation of the Protis Recurrent Neural Network for Time series Data: 	
a – epoch 100; b – epoch 120; c – epoch 250; d – epoch 400
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Table 4

Comparison of CNN with PCNN for image data

Convolutional Neural Network

Dataset  
Epoch 100 

AUC AUC AUC AUC AUC

58:42:00 60:40:00 70:30:00 80:20:00 90:10:00

CIFAR 80.47 75.00 80.93 70.95 67.99

Food product 64.80 54.80 50.30 60.80 43.80

Rice Diseases 80.47 86.47 77.47 75.47 82.47

Average AUC 75.25 72.09 69.57 69.07 64.75

Dataset  
Epoch 120

AUC AUC AUC AUC AUC

58:42:00 60:40:00 70:30:00 80:20:00 90:10:00

CIFAR 80.47 95 93.3 95 99

Food product 54.80 57.80 60.80 64.80 65.80

Rice Diseases 81.67 90.55 89.00 93.67 92.56

Average AUC 72.31 81.12 81.03 84.49 85.79

Protis Convolutional Neural Network

Dataset  
Epoch 100 

AUC AUC AUC AUC AUC

58:42:00 60:40:00 70:30:00 80:20:00 90:10:00

CIFAR 90.47 95.00 93.30 95.00 99.00

Food product 92.47 96.30 94.30 96.00 98.90

Rice Diseases 90.32 93.2 97.33 95 99

Average AUC 91.09 94.83 94.98 95.33 98.97

Dataset  
Epoch 120

AUC AUC AUC AUC AUC

58:42:00 60:40:00 70:30:00 80:20:00 90:10:00

CIFAR 92.85 92.50 96.67 99.00 99.00

Food product 91.85 96.50 98.06 98.90 98.00

Rice Diseases 97.85 97.50 96.33 99.30 98.00

Average AUC 94.18 95.50 97.02 99.07 98.33

5. 4. Evaluating the performance of Protis, finding the 
optimal hidden layers

In applying the protist neural network method, catego
rical datasets and time-series data are used, with categorical 
data, namely disease distribution data consisting of 6 variables 
and 1 output consisting of 3 labels. For 
time series data, data on the number of 
dengue disease patients for 20 years are 
used. In this data trial, a comparison was 
also made with several other methods 
to see the performance of the proposed 
method approach results of classification 
assessments done with the Protis Neural 
Network methodology. The Protis neural 
network, which has an AUC of 0.997,  
CA value of 0.950, F1 value of 0.950, 
Precision value of 0.952, and Recall value 
of 0.950, is the most effective approach, 
according to the data. According to this 
study, the Protis Neural Network method 
is superior to traditional machine learning 
methods for categorical data situations.

In the final evaluation of determining 
the number of hidden layer neurons in the 
neural network architecture, it was found 
that from the results of the generating 
neuron model, Protis continued to search 
for the best architecture through 4 phases, 
namely anaphase, telophase, metaphase, 
and prophase. Finally, the best architec-
tural standard was found from Protis Neu-

ral Network, Protis Recurrent Neural Network, and Protis 
Convolutional Neural Network, namely from the range of 
neurons 0–35 neurons in each layer. The final evaluation is 
shown in Table 5.

The standard neurons can be used as a reference for the 
formation of the neural network’s architecture.

Table 5

Final Evaluation of Hidden Layer in Neural Networks

Algorithm Input Hidden Layer Output AUC
Neural Network 6 – – – – – – 3 0.749

Protis Neural 
Network 

6 12 0 35 32 8 0 3 0.997

Recurrent  
Neural Network 

6 – – – – – – 3 0.156

Protis Recurrent 
Neural Network 

6 23 0 34 23 8 2 3 0.334

Protis Convo-
lutional Neural 

Network 
6 – – – – – – 3 0.925

Protis Convo-
lutional Neural 

Network 
6 41 17 29 34 15 0 3 0.959

5. 5. Visualization in neural network modeling by pro­
viding insight into the adaptation of protis life processes 
for better development of hidden layers

To facilitate the standard determination of the number of 
hidden layer neurons in the neural network architecture, name-
ly the Protis neural network, data visualization is then carried 
out using a website because the number of neurons in the neural 
network architecture is not visible, but with this framework, the 
number of neurons in the hidden layer can be seen. So far, the 
hidden layer used is still only 5 layers with a maximum number 
of neurons that can be formed up to 1000 neurons, but from 
several trials, it was found that the optimal number of neurons 
was 35 in each layer. The Framework website Generate Neu-
ron Hidden Layer Protis Neural Network is shown in Fig. 8.

 
Fig. 8. Display generate neuron hidden layer Protis Neural Network
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In this framework, we can find an overview of the archi-
tecture formed and the results of accuracy and recall, input, 
and output.

6. Discussion of the results of optimization of the Protis 
Neural Network architecture for categorical, time series 

and image data

The results of studies from optimizing the Protis Neural 
Network architecture for categorical, time series, and image 
data types provide valuable insights into the approach’s ef-
fectiveness. This study shows that the protis approach, which 
consists of several phases including prophase, metaphase, and 
anaphase/telophase found in Fig. 1 and Fig. 2, turns out to 
be effectively embedded in the classic Neural Network archi-
tecture where modification formulas are carried out in this 
architecture. Starting in the four phases, namely the modified 
modification method of the Prophase Phase by increasing 
the variable weights and doubling the chromosomes, modi
fication method metaphase phase, and optimization using 
the activation function, modification method anaphase and 
telophase by generating each neuron by generating the num-
ber of neurons in multiples of two until the optimal number 
of neurons are found.

In this study, it was found that the average range opti-
mization standard for the number of neurons in the hidden 
layer was found to be between 0 to 35 neurons. This pro-
vides a guideline for determining the appropriate size of 
the hidden layer in the neural network architecture, and 
a visualization generates the architecture in the form of  
a framework (Fig. 8) to visually show the optimal number 
of neurons in each layer. The test results of the Protis Al-
gorithm Approach to the neural network are also shown in 
Table 5 regarding the Final Evaluation of Hidden Layers. 
Furthermore, testing the Protis Neural Network Archi-
tecture can optimize categorical data classification and 
prediction processes. The mean precision value of 0.952 in-
dicates a high degree of accurate positive prediction, 
while the average recall value of 0.950 indicates the abi
lity to capture a significant proportion of positive events.  
These results highlight the potential of the Protis algo-
rithm in handling categorical data effectively and making 
good predictions.

The peculiarity of the proposed method lies in deve
loping the Protis Neural network algorithm to optimize the 
neural network’s architecture by optimizing the neurons 
contained in the hidden layer. This study shows that the 
metaheuristic approach optimizes the architecture for time 
series data. The information provided does not explicitly 
discuss the application of the Protis Neural Network Ar-
chitecture to image data. However, given the versatility 
and adaptability of neural networks in dealing with image 
data, it can be concluded that this approach can potential-
ly optimize the architecture for image classification and 
prediction tasks. Further research and experimentation 
will be needed to explore specific performance metrics and 
the ability of the Protis algorithm to optimize image data. 
Overall, the results obtained from optimizing the Protis 
Neural Network Architecture for categorical and time se-
ries data show its effectiveness in achieving high accuracy 
and precision. However, additional details and experimen-
tal evidence are needed to assess the performance of the 
approach on image data.

Further studies and comparisons with existing research can 
provide more comprehensive insights into the potential advan-
tages and limitations of the Protis Neural Network Architec-
ture in optimizing the architecture for different data types. This 
research is also relevant to research [19] methods to determine 
the optimal architecture by using a pruning technique. The 
unimportant neurons are identified using the delta values of 
hidden layers and research conducted by [30] regarding the 
modeling of artificial neural networks for silicon prediction 
in the cast iron production process, which also focuses on the 
optimal number of neurons and hidden layers. It is stated that 
the optimal number of neurons is 30 per hidden layer. 

However, this research cannot be visualized through the 
framework. The limitation of this study is that the tests car-
ried out only used categorical data, images, and time series 
but had not yet touched data such as anomaly and bino
mial data. The drawback of this research is that it is hoped 
to be discussed further with various types of datasets, such as 
anomaly and binomial data, as well as other datasets expec
ted to be further developed.

7. Conclusions

1. Protis Neural Network Architecture can be implemen
ted on Time Series, Categorical data types. The Protis Neu-
ral Network metaheuristic approach in this study can form  
a hidden layer neuron formation process that can optimize 
the Neural Network Architecture in the classification and 
prediction process. 

2. The average range optimization standard for the 
number of neurons in the hidden layer is between 0 to  
35 neurons. This provides a guideline for determining the 
appropriate size of the hidden layer in the neural network 
architecture.

3. Furthermore, when applying the Protis algorithm em-
bedded in the Neural Network for categorical data and time 
series, impressive results are achieved. The average precision 
value of 0.952 indicates a high level of accurate positive pre-
dictions, while the average recall value of 0.950 demonstrates 
the ability to identify a significant proportion of the actual 
positive instances.

4. The Protis algorithm embedded in the Protis recur-
rent Neural Network for Categorical data measurements 
produces an average value of RMSE, or the difference bet
ween actual measurements and predictions, equal to 0.066. 
Overall, the Protis Neural Network Architecture and the 
embedded Protis algorithm show potential in optimizing 
the architecture and achieving high accuracy and precision 
in classification and prediction tasks for both time series and 
categorical data types. 

5. Visualization of the model data is presented using  
a framework so that the number of neurons in the neural net-
work architecture can be seen, which was previously difficult 
to know. This framework presents 5 layers with a maximum 
number of neurons that can form up to 1,000 neurons.
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