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1. Introduction

The Fourth Industrial Revolution, the digitalization, the 
outbreak and spread of COVID-19 led to the increase of im-
portance of digital twin solutions. The MarketsandMarkets 
portal forecasted, that the digital twin market would reach a 
73.5 billion USD Compound Annual Growth Rate (CAGR) 
by 2027. As the report emphasizes, the main players in the 
digital twin market are the following companies: General 
Electric, Microsoft, Siemens, Amazon, Ansys, Dassault Sys-
temes and PTC [1], and these companies will significantly 
revolutionize the processes in industry, agriculture, civil 
engineering, healthcare and services. 

Digital Twin technology can be defined as an integration 
of data between a real world object or system and a virtual, 
digital object or system.

It is possible to find a wide range of digital twin defi-
nitions in [2]. The first definition by NASA focusing on 
aerospace industry is the following [3]: “A Digital Twin is 
an integrated multiphysics, multiscale, probabilistic sim-
ulation of an as-built vehicle or system that uses the best 
available physical models, sensor updates, fleet history, 
etc., to mirror the life of its corresponding flying twin.”, 
which defines the digital twin for the whole lifecycle of 
general objects, processes and systems: “A Digital Twin 
is a virtual instance of a physical system (twin) that is 
continually updated with the latter’s performance, main-

tenance, and health status data throughout the physical 
system’s life cycle.”

In the literature, it is possible to find misconceptions, 
which define digital solutions as digital twin, but it is im-
portant to define, that in a digital twin the data exchange 
is automatized in both directions between the real world 
system and the digital twin (Fig. 1).

In the case of a digital model, the data exchange is manual 
in both directions. An example of a digital model is a digital 
design of a building or a product. It is about a digital model in 
this case because after the digital model is created, if there is a 
change in the physical part, it does not affect the digital mod-
el. The same is true in the other direction, changes in the 3D 
model do not result a direct change in the modelled part. It is 
possible to build a link between the physical part and the CAD 
model using for example a 3D metrology (e. g. GOM by Zeiss), 
but this link can be described as a digital model until there are 
not direct links between the real world model and the virtual 
model. In the case of a digital shadow, the data exchange is au-
tomatized from the real world model to the digital twin, while it 
is manual from the digital twin to the real world system.

The digital twin application can integrate a wide range 
of state of the art technologies, therefore it is important 
to find the most suitable, cost efficient solutions. As Fig. 2 
shows, these technologies can be combined in different appli-
cation field, where cyber-security, integrity, infrastructure 
and standardization related problems have to be solved.
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One of the most important achievement of a digital twin 
deployment project is to estimate the financial impact of the 
investment. A wide range of articles discusses the positive 
impact of digital twin applications in the field of automo-
tive industry [5], food industry [6], agriculture [7], health 
care [8], logistics [9], facility management [10], but these 
researches are generally focusing on the performance indica-
tors (lead time, efficiency, availability, capacity utilization, 
flexibility, productivity) and only a few of them analysis the 
financial impact. Based on this fact, research on the finan-
cial evaluation of Industry 4.0 technologies is important, 
especially in the case of expensive, integrated technological 
solutions, such as digital twin, where a wide range of state 
of the art technologies are applied to improve the flexibility 
and productivity of production systems.

2. Literature review and problem statement

There is a wide range of practical applications of digital 
twin solutions, integrating Industry 4.0 technologies to 
achieve significant economic impact. Facility and building 
management, health care, maintenance, product design, sys-
tem control, asset monitoring and manufacturing represent 
these application fields. The first important phase of digital 

twin deployment was the automation, Internet of Things 
solutions and mobile applications. In the field of building and 
facility management, Building Automation Systems (BAS) 
and Building Information Modeling (BIM) [11] have ex-
tended these technologies. Beyond this, the digital twin can 
support an efficient facility management, as the efficient 
data collection and processing can provide significant eco-
nomic benefits even in the early stages of facility operation. 
In a natural gas production plant, an online digital twin was 
used to increase the output of saleable products and reduce 
energy consumption and emissions. The paper [12] presents 
the results of research to highlight the main advantages of 
the digital twin deployment including the true representa-
tion of the physical processes of the plant, dynamic moni-
toring and calculation of energy-related key performance 
indicators, forecasting of lifecycle of technological resources 
using machine learning, but there were unresolved issues 
related to the financial impact of digital twin with. The 
reason for this may be that the article mentions an increased 
revenue and an attractive return on investment, but a deep-
er analytical or simulation-based approach could validate 
these financial impacts. The same topic is also discussed 
in the oil and gas industry, focusing on the improvement of 
management of 200 drilling rigs and 300 completion wells in 
an oil field [13]. This research emphasizes the importance of 

Fig.	1.	Data	exchange	in	digital	model,	digital	shadow	and	digital	twin	[4]
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Fig.	2.	Technologies,	applications	and	challenges	of	digital	twin	deployment
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real-time big data solutions. Digital twin technologies were 
used in the Field Development Process (FDP) of petroleum 
industry to improve the financial impact of investments. 
This approach tries to convert the digital twin deployment 
into financial indicators [14]. Digital twin deployment 
can also support measuring bridge condition performance 
state. It is especially important from financial point of view, 
because budget decisions require quantitative information, 
which is not always available by visual inspection of bridge 
assets. As the cloud-based Internet of Things Platform 
deployment shows, the costs of the asset management of 
bridges can be significantly decreased through digital twin. 
The financial analysis of digital twin deployment shows, 
that smart bridges show a high ROI from performance 
monitoring [15]. This financial analysis resulted measur-
able financial impact, but these impacts are static. A way 
to overcome these difficulties can be the application of a 
simulation-based approach, which makes it possible to an-
alyze the financial impact in the case of different scenarios, 
depending on the lifecycle of the technological system. The 
application fields of digital twin includes both industrial and 
agricultural examples. Plant growth and plant cultivation 
in rice fields can be monitored and influenced by a digital 
twin using ontology-based knowledge base to perform adap-
tive scheduling of resources, such as fertilizers, protection 
agents, vehicles and human resources [16]. As an example of 
executable digital twin (xDT) in the food industry shows, 
one of the main problems of digital twin applications is 
that they cannot be deployed at the operational level of 
food processing technologies, because they are extremely 
complex to react real-time. These problems can be solved us-
ing Industry 4.0 technologies integrating machine-learning 
technologies for online quality predictions and predictive 
maintenance scheduling based on fast edge computing to 
collect sensor data for the xDT [17]. These research results 
are analyzing the technological impacts of digital twin solu-
tions focusing on overall equipment effectiveness (OEE), 
shown, that xDT can significantly increase the performance 
of the technological system, but the financial impact of xDT 
application should have a deeper analysis, which can be 
based on simulation supported methodologies. The aggrega-
tion level of many types of data significantly influences an 
example in the semiconductor device manufacturing shows, 
the return of investment of factory scheduling, which is an 
integrity-related topic of big data [18]. Technologies like 
cloud computing, simulation, optimization, artificial intel-
ligence, blockchain, smart sensors, cyber-physical systems, 
additive manufacturing, robotics, visualization, quantum 
computing, big data, virtual and augmented reality, Internet 
of Things (IoT), nanotechnology, radiofrequency identifica-
tion, autonomous vehicles and machine learning are under 
the umbrella of Industry 4.0 solutions and these technologies 
can be used to integrate technological, human and logistics 
resources into a cloud [19]. In the field of city logistics, the 
most important initiative is to build sustainable smart ener-
gy cities (SECs). However, independent products and unit 
technologies are available for SECs, but it is not possible to 
build efficient solutions without a proper connection of these 
unit technologies, therefore the architecture of different IoT 
solutions become more and more important. The paper [20] 
presents the results of research on the integration of IoT 
technologies, shown, that an AI-based physical and virtual 
platform using a multi-layer architecture could be suitable 
for the integration of the available I4.0 technologies, but the 

financial impact of these integration potentials is not deeply 
analyzed. This issue can be resolved using economic analy-
sis, which could support decision making while planning IoT 
solutions in manufacturing processes.

A wide range of researches has discussed the main 
streamlines of digital twin solutions, the potential archi-
tectures, the standardization problems, optimization algo-
rithms and integration aspects, but only a few of them tries 
to define the estimated economic impact. 

The theories and methods of complexity science must play 
an important role in the design and operation of digital twin 
supported systems [21]. This complexity is resulted by the com-
plex set of equipment, software, investment and organization. 

A wide range of multi-scale, multi-scenario, multi-di-
mensional applications of digital twin are existing, which 
can be defined as complex digital twin [22], and it is not 
easy to model, design, build, operate and maintain their 
components and the whole system. Therefore, it is essential 
to research the financial impact of digital twin solutions.

All this suggests that it is advisable to conduct a study on 
analysis of different digital twin applications regarding tech-
nological, logistics and economic impact. Within the frame of 
this research work, the authors discuss a simulation-based ap-
proach, which can be used to define the return of investment 
and the net present value of digital twin deployment focusing 
on job-shop manufacturing system. This article focuses on the 
simulation-based analysis of the impact of digital twin deploy-
ment in the case of a job shop manufacturing system. 

3. The aim and the objectives of the study 

The aim of this research work is to identify the impact of 
digital twin solutions on the efficiency of job-shop manufac-
turing using agent-based simulation.

To achieve this aim, the following objectives are accom-
plished:

– identify the physical and digital resources of the digital 
twin supported job-shop manufacturing;

– identify the most important performance indicators 
to measure the impact if digital twin solution on the perfor-
mance of the job-shop manufacturing;

– define the most important financial indicators to mea-
sure the financial impact of different digital twin solutions 
focusing on identification technologies (barcode and RFID);

– perform an agent-based simulation of digital twin 
supported job-shop manufacturing and integrate a financial 
evaluation module into the agent-based simulation to link 
the productivity and the financial indicators;

– analyze the impact of different digital twin solutions 
on the productivity of job-shop manufacturing.

4. Materials and methods

The object of this research is to impact of digital twin 
solution using different identification technologies on the 
performance and economic parameters in job-shop manu-
facturing systems. The main hypothesis of the study is that 
digital twin solutions can significantly increase the perfor-
mance of job-shop production systems, but the economic 
impact of digital twin solutions must be analyzed to validate 
the advantages of digital win solutions. Our assumption is 
that the financial impact of different digital twin solutions is 
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influenced by the used Industry 4.0 technologies, therefore 
the financial impact must be analyzed in different cases of 
digital twin solutions. In this study, let’s focus on identifica-
tion technologies, which is a simplification, because it is also 
possible to take other IoT technologies into consideration, 
but it can be a future research direction. 

Our simulation-based evaluation approach has the fol-
lowing main phases (Fig. 3):

– definition of the architecture;
– analysis of the technological units, solutions of the po-

tential digital twin solutions to identify the main cost com-
ponents (sensors, actuators, architecture, network, software, 
database, cyber-security);

– identification of the main potential performance-relat-
ed impacts of the digital twin to identify the main factors 
of expected cost reduction (lead time, capacity utilization, 
productivity, flexibility, efficiency);

– definition of the main investment indicators to mea-
sure the financial impact of the digital twin (Net Present 
Value, Internal Rate of Return, Return on Investment, Com-
pound Annual Growth Rate);

– building of the agent-based simulation model of the 
job-shop manufacturing system in the case of both conven-
tional and digital-twin supported operation;

– computation of the financial impact of digital twin 
deployment through different scenario analyses.

This research is based on the authors earlier research re-
sults [23], where the economic impact of digital twin technol-
ogy was analyzed by evaluating the digital twin investment 
on the basis of productivity indicators obtained by agent-
based simulation using a suitable Excel spreadsheet. In this 
article, the evaluation based on this Excel spreadsheet was 
integrated into the agent-based simulation method, so that 
the simulation of the job-shop production system calculates 
the financial indicators for a given time interval in real time.

The application of these phases makes it possible to anal-
yse the impact of different types of digital twin solutions 
on the efficiancy of production systems and compute the 
expected finanacial impacts.

5. Results of simulation-based evaluation of the impact of 
digital twin

5. 1. Analysis of the digital twin components
The digital twin solutions integrate a wide range of tech-

nologies including hardware and software components. A 
digital twin is a digital representation of a physical system or 
object, where the data flow between the digital and the real 
world system or object is fully automatized. As a simple model, 
it is possible to say, that sensors collect status information in 
the real world system and transfer these data to the digital 
representation, where a decision support system makes deci-
sions regarding the operation of the physical system, and these 
decisions are transferred as control data to the actuators of the 
physical system. The dashboard makes it possible to perform 
human-machine interaction through a special graphical user 
interface (GUI) focusing on the key performance indica-
tors (KPIs) of the physical system (Fig. 4).

If it is necessary to analyze the impact of digital twin 
deployment on the financial indicators of the real-world 
system, then it is necessary to define the main components 
of the digital twin, which includes sensors, actuators, archi-
tecture, network, software, database, cyber-security. These 
technology units can be defined as shown in Fig. 5. 

The real-world system includes processes of the value 
chain and the required resources of technology, logistics 
and human operators. The link between the real world 
system and the digital twin is performed through sensors 
and actuators. Sensors upload process parameters to the 
data base and the decisions made by the digital twin are 
performed by actuators connected to the technological 
and logistics resources of the job-shop manufacturing. The 
identification and the tracking of products and processes 
can be performed using different identification technolo-
gies including barcode and RFID. The layout of the job-
shop manufacturing plant, the technological and logistics 
processes and the products are defined by the Enterprise 
Resource Planning (ERP) and the Manufacturing Execu-
tion System (MES) [24]. The database integrates both the 
data from the real world system and the digital system. The 
digital twin uses a dynamic simulation model to analyze the 
operation of the real worlds system and forecast the poten-
tial future states of the real world system. The simulation 
model is permanently upgraded by the sensor data collected 
from the real world system, therefore the simulation model 
reflects the current status of the job-shop and this current 
status can also be transferred to the ERP and MES. The 
decision making process is supported by a dashboard, which 
is a GUI including human-machine interaction module and 
visualization of KPIs, such as lead time, productivity, in-
ventory, capacity utilization, idle time of technological and 
logistics resources and operation costs.

Fig.	3.	Flowchart	of	the	evaluation	process
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The investment cost of a digital solution includes the de-
ployment cost of sensors, actuators, network, software, data-
base and cyber-security. The main components of the digital 
twin solutions can be summarized as shown in Table 1.

Table	1

Components	of	the	digital	twin	solutions

Component 
type

Typical solutions and apps

Sensors
Proximity, motion, occupancy, optical, tempera-

ture, humidity, etc.

Actors
Hydraulic, pneumatic, electric, thermal, magnetic, 

mechanical, etc.

Network Wi-Fi, Bluetooth, NFC, LPWAN, cellular network

Database
Centralised, distributed, NoSQL, relational, 

cloud, network, object-oriented, hierarchical [25]

Application 
server

Jboss, Weblogic, Websphere, Glassfish, Tcat Serv-
er, Apache Geronimo, Jrun, Oracle OC4J, SAP 

Netweaver AS [26]

Security
Firewalls, endpoint detection and response, 

antivirus software, email protection, two factor 
identification, hardware security key

Control or 
monitor 

application

Input control, output control, processing control, 
access control, integrity control [27]

Identification Barcode, RFID

However, the sensors used in IoT solutions (proximity, 
motion, occupancy, optical, temperature, humidity, etc.) 
become more and more cheaper [28], but it is only true in 
the case of low-cost sensors. In the case of low-cost sensors, 
it is about prices below 0.5 USD per pieces, but in the case of 
professional sensor with high sensitivity and high availabili-
ty the prices are more higher.

The actuators are expensive parts of real world systems, 
for example in the case of manufacturing systems, where 

the actuators of NC and CNC machines and the actuators 
of automatized material handling machines and systems are 
about 10-3000 USD per pieces and this price depends on the 
type of the actuator (hydraulic, pneumatic, electric, thermal, 
magnetic, mechanical, etc.).

The network cost of an IoT solution depends on the type 
of the connection. Short range wireless (Wi-Fi, Bluetooth, 
NFC), low power wide area network (LPWAN) and cellular 
solutions can be taken as potential solutions into consider-
ation. In the case of cellular network, it is about a 0.04 USD 
per MB networking cost, but embedded software cost must 
be also taken into consideration with a 10000 to 30000 USD 
cost [29].

The estimation of database cost is a complex problem, 
because there is a wide range of costs to be taken into con-
sideration including storage cost, usage cost, read and write 
operation cost. As an example [30], the cost comparison 
between Google Cloud Bigtable and Amazon DynamoDB 
shows a significant difference between capacity and usage 
cost (3164 USD per month total cost for Google Cloud 
Bigtable and 11353 USD per month total cost for Amazon 
DynamoDB).

The cyber-security solutions are generally focusing on 
protection against ransomware, data breaches, phishing 
attacks, DNS hijacking, crypto-jacking, insider threats and 
denial of service attacks. The costs of cyber-security are sig-
nificantly influenced by the size of the company, types and 
sensitivity of data, related services and they can be defined 
within the following cost ranges [31]:

– firewalls with professional configuration and subscrip-
tion: 1500-15000 USD;

– endpoint detection and response: 5‒8 USD per user 
per month and 9‒18 USD per server per month;

– antivirus software: 3‒5 USD per user per month and 
5‒8 USD per server per month, monitoring 100‒2000 USD 
per month;

– email protection: 3‒6 USD per user per month,

Fig.	5.	Conceptual	framework	of	the	digital	twin	deployment	of	job-shop	manufacturing	system
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– two-factor authentication: <10 USD per user per 
month,

– hardware security key: 30‒60 USD per pieces.
As the above-mentioned costs of the components of an 

IoT solution shows, the estimation of the investment and 
operation costs of a digital twin deployment is a very com-
plex problem because the cost estimation is significantly 
influenced by the components used, size and type of data, 
connected services.

5. 2. Identification of the performance indicators of 
the digital twin deployment

Within the frame of our approach, a wide range of 
performance can be taken into consideration to measure 
the impact of the digital twin deployment on the job-shop 
manufacturing system. These performance indicators are 
the followings:

– number of produced items: this performance indicator 
can be used to measure the fulfillment rate of customers’ 
demands;

– number of working hours: this performance indi-
cator can be used to measure the capacity utilization of 
resources;

– error rate or inaccuracy: this performance rate can 
be used to measure the quality of manufacturing process-
es, for example the impact of using different identification 
solutions we can avoid inaccuracy caused by misidentifi-
cation;

– failure in the production system: this performance 
indicator can reflect the quality of monitoring of the manu-
facturing process and resources, for example the digital twin 
deployment makes the real-time continuous monitoring of 
the manufacturing system and the forecasting of the future 
status of its resources;

– number of not produced items: this performance indi-
cator can be used to measure the fulfillment rate of custom-
ers’ demands;

– utilization of manufacturing, material handling and 
human resources: this performance indicator shows the qual-
ity of process control;

– inventory level and inventory cost: this performance 
indicator can evaluate the material handling operations 
including purchasing, warehousing and distribution pro-
cesses;

– manufacturing cost: this performance indicator re-
flects the performance of manufacturing operations;

– materials handling cost: this performance indicator 
reflects the performance of logistics operations.

These performance indicators make it possible to mea-
sure the impact of the digital twin application on the job-
shop manufacturing system.

5. 3. Investment indicators
Within the frame of our approach, let’s use the following 

four financial indicators to evaluate the financial impact 
of the digital twin deployment: Return on Investment, Net 
Present Value, Internal Rate of Return and Compound An-
nual Growth Rate as follows.

Return on Investment. The Return on Investment reflects 
the profitability of an investment depending on the final value 
of the investment and the cost of investment as follows:

,
FVI IVI

ROI
CI
−

=  (1)

where ROI is the Return on Investment, FVI is the final 
value of the investment (analyzed system), IVI is the initial 
value of the investment, and CI is the cost of the investment.

Net Present Value. The Net Present Value represents 
the current value of the future stream of payments from the 
company for the digital twin deployment depending on the 
discount rate, number of time periods, cash flow and initial 
investment, and it can be calculated in the case of a long-
term digital twin deployment project as follows [32]:

( )0

,
1

T

t
t

CI CO
NPV I

d=

−
= −

+
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where NPV is the net present value, CI is the net cash inflow 
within a time period, CO is the net cash outflow within a 
time period, d is the discount rate influenced by either the 
cost of capital or the potential returns expected from other 
investments, T is the time period of the analysis and I is the 
initial investment. In this calculation, the net cash inflow 
and the net cash outflow are constant, because let’s calculate 
with an average production intensity in the manufacturing 
system. Let’s use CO in the calculation to taking the opera-
tion cost (label/tag costs) into consideration.

Internal Rate of Return: The Internal Rate of Return is 
the annual rate of growth that the digital twin deployment 
is expected to generate. The IRR can be calculated from the 
following equation:

( )0

0.
1

T

t
t

CI CO
I

d=

−
− =

+
∑  (3)

The calculation of IRR can help to analyze the impact of 
digital twin project and to determine the investment returns 
of different digital twin deployments based on available In-
dustry 4.0 technologies.

Compound Annual Growth Rate: The Compound An-
nual Growth Rate represents the return on an investment 
over a certain period of time, but is can be calculated a more 
easier way than IRR as follows:

1

1,
TFV

CAGR
IV

 = − 
 

 (4)

where CAGR is the Compound Annual Growth Rate, FV is 
the final value of the analyzed system, IV is the initial value 
of the analyzed system and T is the number of time periods 
to be taken into consideration.

5. 4. Agent-based simulation model of a job-shop
In the manufacturing processes let’s define a huge number 

of types of manufacturing systems, but there are two main 
types of shops: flow-shop and job-shop. In the case of a flow-
shop the manufacturing operations are ordered in a fixed 
linear structure. In a job-shop, the routing of operations of 
different items is flexible and it means, that all products to be 
manufactured can have individual manufacturing route.

Within the frame of our research, let’s demonstrate our 
evaluation approach in the case of a job-shop manufacturing 
system. In our scenario, let’s analyze a job-shop manufac-
turing system including 6 CNC drilling machine, 4 CNC 
milling machine, an input storage, an intermediate storage 
between the drilling and milling operations, and an output 
storage for the final products. The structure of this scenario 
is shown in Fig. 6.
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The first phase of model building is to define the layout 
of the job-shop manufacturing system including locations of 
milling and drilling machines, storages, forklift and AGV 
pools and transportation routes. The second phase of the 
model building is to define the main routes using point 
nodes, rectangular nodes and polygonal nodes. Point nodes 
were used to define the loading and unloading locations of 
drilling and milling CNC machines. Rectangular and po-
lygonal nodes were used to define operation areas for AGV 
and forklift pools, input and output zones, as sources and 
sinks of the job-shop manufacturing system. After defining 
the point, rectangular and polygonal nodes the next step is 
to define transportation routes using the path function of 
the simulation software. Paths can be defined among nodes 
representing the connection points of manufacturing and 
materials handling resources to the transportation network.

The third phase of the model building is to define the 
physical objects (resources) of the job-shop manufacturing 
system. Let’s use the AnyLogic multimethod simulation mod-
elling tool to build the real-world system (Fig. 7) and define 
resources for transportation operations (AGV and Fork-
liftTruck), technological operations (CNCA and CNCB) and 
for components to be manufactured (Component).

The fourth phase of the model building is the definition 
of agents. Agents represent physical and logical things of sys-
tems. The definition of agents includes the following steps: 
define variables and events. 

The agents for transportation processes are defined 
(agvPool, ManufForkliftPool, SinkagvPool, StorageFork-
liftPool), for storage processes (storeA, storeB and storeC), 
for technological resources (cncA and cncB), for initialization 
and closing of the analyzed process (sourceCom and sink), for 
storage process (CominStoA, CominStoB and CominStoC), 
for milling and drilling operations of CNCs (procA and 
procB), for seizing products between storages and machines 
(seizeCNCA and seizeCNCB) and for release CNC machines 
after operations (relCNCA and relCNCB). This defined simu-
lation model makes it possible to perform the scenario analysis 
of the described job-shop manufacturing system using various 
parameters influenced by the type of the applied digital twin. 

While running the simulation, it is possible to analyze 
the operation of agents (Fig. 8, a), the statistics of resources 
including utilization of capacity, currently active resources, 
total processed units (Fig. 8, b), the whole physical process 
in 3D visualization (Fig. 8, b) and other parameters, such as 
utilization or cost structure (Fig. 8, c).

Fig.	6.	Structure	of	the	job-shop	scenario

Fig.	7.	The	physical	objects	of	the	job-shop	manufacturing	system
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As Fig. 8, a shows, in the case of the agents, the number 
of input and output objects are visualized real time, which 
makes it possible to identify deadlocks in the debugging 
phase of the model. The 3D animation is optional as shown 
in Fig. 8, b, it is possible to switch between 2D and 3D an-
imation. One of the most useful part of the simulation 
software is the statistical analysis, as shown in Fig. 8, c, it is 
possible to add and configure a wide range of statistical tools 
writing Java Scripts.

5. 5. Numerical analysis
Within the frame of the numerical analysis, three differ-

ent scenarios will be compared to show the financial impact 
of different digital twin solutions. The first scenario shows 
the costs of a conventional job-shop manufacturing system 
without digital twin deployment. In this scenario analyses 
the following parameters are given:

– n: daily number of items to be produced in pcs/day;
– w: number of working days per year in day/year;
– cI: intrinsic cost per product in EUR/pcs;
– cR: replacement cost per product in EUR/pcs;
– cP: specific penalty cost per product in EUR/pcs;
– cS: shipping fee per product in EUR/pcs;
– cW : warehousing cost per product in EUR/pcs;

– cM: average specific maintenance cost EUR/mainte-
nance;

– I: planned yearly income from the supplier EUR/year.
In the conventional solution the inaccuracy of the man-

ufacturing system is rINA=2.50 %, while the failure in the 
manufacturing system is about f=3.75 %.

Based on these input parameters it is possible to cal-
culate the following manufacturing ‒ and logistics-related 
parameters of the job-shop manufacturing system:

– yearly number of items to be produced:

;N n w= ⋅  (5)

– yearly number of not produced items:

( )1 ;NOT
INAN n f f n r= ⋅ + − ⋅ ⋅  (6)

– yearly lost product value:

;LOST NOT Iv N c= ⋅  (7)

– yearly replacement cost of lost products:

;R NOT RC N c= ⋅  (8)

Fig.	8.	Main	parts	of	the	simulation	screen:		
a	–	agents;	b	–	resources	and	3D	animation;	c –	statistical	analysis	of	the	job-shop	manufacturing	system

a

b

c
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– yearly penalties to be paid due to the lost products to 
the buyer:

;P NOT PC N c= ⋅  (9)

– yearly warehousing cost of products to be replaced:

;W NOT WC N c= ⋅  (10)

– number of yearly required maintenances:

1000;Mn f= ⋅  (11)

– yearly cost of maintenance:

.M M MC c n= ⋅  (12)

Based on the above-mentioned parameters, the yearly 
profit of the conventional job-shop manufacturing system 
can be calculated as follows:

1 .LOST R P W MP I v C C C C= − − − − −   (13)

The above-mentioned calculations (5)–(13) are integrat-
ed into the simulation model as a Java script:

YearlyProducedItems=DailyProducedItems*Working-
DaysperYear;

YearlynotProducedItems=YearlyPlan–YearlyProduced- 
Items;

LostProductValue=YearlynotProducedItems*Intrinsic-
Cost;

ReplacementCost=SpecificReplacementCost*Yearly-
notProducedItems;

ShippingFee=SpecificShippingFee*YearlynotProduced- 
Items;

Penalty=LostProductValue/SpecificPenalty;
WarehousingCost=YearlynotProducedItems*Specific- 

WarehousingCost;
MaintenanceCost=AverageMaintenanceCost*Number-

of Maintenances;
TotalCost=MaintenanceCost+WarehousingCost+Pen-

alty+ShippingFee+ReplacementCost+LostProductValue;
ProfitUsingBarCode=InvestmentCost-TotalCost;
ReturnOnInvestment=(Year*(ProfitUsingBarCode–

ProfitwithoutDigitalTwin)–(CostofDigitalTwinDeploy-
ment+Year*YearlyLabelCost))/(CostofDigitalTwinDeploy-
ment+Year*YearlyLabelCost);

NetPresentValue=(ProfitUsingBarCode–Profitwith- 
outDigitalTwin-YearlyLabelCost)/pow(1+InterestRate,1)+ 
+(ProfitUsingBarCode–ProfitwithoutDigitalTwin-Year-
lyLabelCost)/pow(1+InterestRate,2)+(ProfitUsingBar-
Code–ProfitwithoutDigitalTwin-YearlyLabelCost)/pow(1+ 
+InterestRate,3)+(ProfitUsingBarCode–Profitwithout- 
DigitalTwin–YearlyLabelCost)/pow(1+InterestRate,4)– 
–CostofDigitalTwinDeployment;

CompoundAnnualGrowthRate=pow(ProfitUsingBar-
Code/ProfitwithoutDigitalTwin,1/Year)-1.

The input parameters and the computed indicators re-
garding financial parameters of the simulation model of the 
conventional job-shop without identification technology are 
shown in Fig. 9.

The second scenario shows the impact of a digital twin 
deployment using barcode technology for identification and 
tracking of products in the job-shop manufacturing system on 
financial indicators. In this case the inaccuracy of the manu-
facturing system can be decreased using barcode technology: 
rINA=1.20 % and f=2.20 %. The input parameters, the manufac-
turing- and logistics-related parameters, the total cost and the 
profit, as part of the simulation model are shown in Fig. 10, a.

In the case of scenario 2, the cost of the digital twin 
deployment is 200000 EUR, the time frame is 4 years, the 
yearly label cost for barcode identification and tracking is 
15000 EUR, and the rate of interest is 7 %. Based on this 
deployment and operation costs of the digital twin solution 
with barcode identification and tracking we can use the above 
described investment indicators as follows.

In the case of the computation of digital twin deploy-
ment’s ROI the initial value is represented by the total extra 
profit of the job-shop manufacturing system resulted by the 
digital twin deployment. The cost of the investment includes 
the cost of the deployment and the yearly operation cost. In 
the case of the analyses of barcode and RFID solution this 
yearly operation cost includes the yearly tag or label cost.

In the case of the computation of digital twin deployment’s 
NPV, the net cash inflow is represented by the extra profit re-
sulted by the digital twin solution, the net cash output is the 
yearly tag or label cost, while the digital twin deployment cost 
can be taken into consideration as the investment cost.

For the solution of this equation, let’s use the Excel 
IRR function, which returns the internal rate of return for a 
series of cash flows represented by the numbers in values. In 
this scenario IRR=22 %. NPV, CAGR and ROI are computed 
by Anylogic using the Java script. These computed financial 
indicators are shown in Fig. 10, a.

The third scenario shows the impact of a digital twin 
deployment using RFID technology for identification and 
tracking of products in the job-shop manufacturing system on 
financial indicators. In this case the inaccuracy of the manu-
facturing system can be significantly decreased using RFID 
technology. In this case the inaccuracy of the manufacturing 
system is 0.50 %, while the failure in the manufacturing system 
is about 1.80 %. The input parameters, the manufacturing- and 
logistics-related parameters, the total cost and the profit can be 
also computed as shown in the case of barcode application. In 
this case, the following values were computed as financial in-
dicators: ROI=55.3 %, NPV=108598 EUR and CAGR=8.9 %.

Fig.	9.	Analysis	of	a	conventional	job-shop	without	digital	
twin	deployment
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The cost of the digital twin deployment is 220000 EUR, 
the time frame is 4 years, the yearly label cost for barcode 
identification and tracking is 21000 EUR, and the rate of 
interest is 7 %.

The input parameters, the manufacturing- and logis-
tics-related parameters, the total cost and the profit, as part 
of the simulation model are shown in Fig. 10, b.

As the above-described 
analysis of the three scenar-
ios shows, the digital twin 
solutions can significantly in-
crease the cost-efficiency of 
job-shop manufacturing sys-
tems. This cost efficiency is 
influenced by the components 
of the digital twin solution. 
In this scenario analysis, let’s 
focus on the application of 
barcode and RFID technol-
ogies of identification and 
tracking tasks of products to 
be produced in the job-shop 
manufacturing system.

As the comparison of the fi-
nancial indicators show, RFID 
supported digital twin technol-
ogy can lead to a more cost-effi-
cient solution (Table 2).

Let’s analyze the impact of 
the investment on the financial 
indicators, as shown in Fig. 11.

As the results of the anal-
ysis shows, the CAGR is con-
stant, while ROI, IRR and 
NPV are decreasing. It is pos-
sible to conclude, that the zero 

value of the financial operators are at different deployment 
cost, which means, that the financial evaluation of digital 
twin deployments must be performed using more financial 
indicators.

The analysis of the impact of yearly tag or label cost on 
the financial indicators shows the same results. CAGR and 
NPV are constant, while the value of ROI and IRR is de-
creasing, as shown in Fig. 12.

a b

Fig.	10.	Analysis	of	digital	twin	supported	job-shop:	a	–	with	barcode-based	identification	and	tracking;		
b – with	RFID-based	identification	and	tracking

Fig.	11.	Impact	of	digital	twin	deployment	cost	on	the	financial	indicators
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Table	2

Comparison	of	the	main	financial	indicators	of	the	scenarios

Financial 
indicator

Digital twin with 
barcode 

Digital twin with 
RFID

ROI 46.1 % 55.3 %

NPV 70899 EUR 108598 EUR

CAGR 7.3 % 8.9 %

As a summary of the numerical results it is possible to 
conclude, that the proposed simulation-based approach is 
suitable for the financial evaluation of a digital twin de-
ployment. This methodology is flexible, so it is possible to 
analyze not only the impact of identification technologies, 
but also other hardware and software on the economic 
aspects.

6. Discussion of results determining the impact of 
digital twin technologies on the performance of job-

shop production

To improve the efficiency of the application of Indus-
try 4.0 technologies, it is necessary to analyze not only 
the technological consequences but also to measure their 
financial impact. Determination of the short time and long-
term financial impacts makes it possible to build, apply and 
operate a much more economical manufacturing system.

To determine the impact of different digital twin 
solutions on the performance and cost-efficiency of the 
job-shop production system, an integrated approach was 
proposed. The authors described a new approach, which is 
suitable to analyze the impact of digital twin deployment 
on the cost efficiency of job-shop manufacturing systems. 
The approach includes the following main phases: 

1) analysis of the digital twin components to define the 
most important cost factors; 

2) identification of the impact of digital twin on the 
performance indicators of the job-shop manufacturing 
system; 

3) identification of the 
most important investment 
indicators to analyze the im-
pact of different digital twins 
on the costs and profit; 

4) agent-based simulation 
of the job-shop manufacturing 
system to measure the impact 
of different IoT technologies 
(in our cases different identi-
fication technologies includ-
ing barcodes and RFID) on 
the performance; 

5) scenario analysis to 
compare the potential digital 
twin deployment.

The results of the agent-
based simulation showed that 
it is not enough to analyze the 
impact of digital twin solu-
tions on the performance but 
their financial impact must be 
studied. As Fig. 9, 10 showed, 

the RFID identification technology-based digital twin solu-
tion can lead to a higher productivity. Their financial indica-
tors are also significantly better, than in the case of barcode 
technology based digital twin solutions. The return on 
investment was 9.2 % higher for RFID-based digital twin, 
than for the barcode-based solution. The net present value 
was 53 % higher for RFID and the compound annual growth 
rate was 1.6 % higher for RFID than for barcode technolo-
gies (Table 2). This analysis showed, that RFID-based iden-
tification technologies have more significant impact on both 
performance and return on investment.

It is important to note that the operation of the physical 
system is not only determined by the digital twin, but that 
the human resources, the local control and the digital twin 
together influence the operation of the real-world system.

The managerial impacts of this research are the followings:
– the simulation-based analysis can support managerial 

decisions regarding the deployment of digital twin solutions;
– the analysis of the suitable IoT solutions (in this case 

the integration of barcode or RFID into digital twin) makes 
it possible to support the decision of choosing the suitable 
and most cost-efficient technologies;

– the analysis of the impact of digital twin on the techno-
logical and logistics performance of job-shop manufacturing 
system can lead to the reengineering of the technological 
and logistics processes to increase efficiency.

The advantage of this study in comparison with [2, 6–11] 
is that the proposed evaluation methodology makes it pos-
sible to analyzed not only the technological, but also the 
financial impact of the digital twin technologies on the 
manufacturing plant. In comparison with the works [33, 34], 
the simulation is suitable to solve not only technological and 
logistics problems, but also financial aspects of technological 
improvement can be analyzed. 

The limitation of this study is that it does not take all 
components of digital twin solutions into consideration.

The disadvantage of this study is that the methodology 
was tested only in the case of job shop manufacturing.

These limitations and disadvantages define the potential 
future research directions: it is possible to extend our meth-

Fig.	12.	Impact	of	yearly	tag	or	label	cost	on	the	financial	indicators

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

15000 30000 45000 60000 75000 90000 105000

Fi
na

nc
ia

l i
nd

ic
at

or
s [

%
]

Yearly tag or label cost [EUR]

Return on Investment (ROI) [%]
Internal Rate of Return (IRR) [%]



Transfer of technologies: industry, energy, nanotechnology 

77

odology and to analyze other manufacturing systems, for 
example the flow shop manufacturing or U-shaped manufac-
turing systems. It is also advisable to extend our methodolo-
gy to be able to analyze more complex digital twin solutions.

7.  Conclusions

1. Digital twin solutions can greatly enhance the produc-
tivity of manufacturing systems. The efficiency of digital twin 
solutions is greatly influenced by the technologies used. In this 
research, the most important physical and digital resources of 
the digital twin supported job-shop manufacturing were iden-
tified. These technologies are the followings: simulation, cloud 
computing, optimization, artificial intelligence, blockchain, 
smart sensors, big data, virtual and augmented reality, radiof-
requency-based and barcode-based identification and tracking.

2. The identification of the most important performance 
indicators to measure the impact if digital twin solution on 
the performance of the job-shop manufacturing is carried 
out to make it possible to analyze the impact of different 
digital twin solutions on the performance of job shop pro-
duction. These performance indicators are the followings: 
number of produced items, number of working hours, error 
rate or inaccuracy, failure in the production system, number 
of not produced items: this performance indicator can be 
used to measure the fulfillment rate of customers’ demands, 
utilization of manufacturing, material handling and human 
resources, inventory level and inventory cost, manufactur-
ing cost and materials handling cost.

3. For the technologies presented in this research work, 
cost factors can be identified to estimate the investment and 
operational costs of a digital twin solution. The used financial 
indicators to analyze the impact of digital twin solutions are 
the followings: Return on Investment, Net Present Value, In-
ternal Rate of Return and Compound Annual Growth Rate.

4. An agent-based simulation model has been developed 
to evaluate the economic efficiency of a digital twin solu-
tion for different manufacturing systems. The developed 
model integrates the analysis of parameters related to the 
productivity of the manufacturing system to determine the 
economic indicators that can be derived from it.

5. The analyzes showed that the return on investment of 
digital twin solutions based on RFID identification technol-
ogy is significantly higher than that of barcode identification 
technology in the scenario under study. It can be concluded 
from the research results that Industry 4.0 technologies 
make it possible to improve productivity, efficiency, flexibil-
ity, but the complexity, the used technological components 
can significantly increase the investment and operation 
costs, therefore it is important to analyze the suitable po-
tential solutions from both technological and financial point 
of view. The numerical analysis of a job shop manufacturing 
scenario shows more significant financial impact (ROI, 
CAGR, NPV and IRR) for radiofrequency identification 
technology-based digital twin solution, than in the case of 
barcode technology. In the case of digital twin with RFID 
the ROI was 46.1 %, the NPV was 70899 EUR, and the 
CAGR was 7.3 % for a 4 years long time period. In the case of 
barcode identification and tracking, the ROI was 55.3 %, the 
NPV was 108598 EUR, and the CAGR was 8.9 %.
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