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1. Introduction 

The involute of a circle is widely known as a curve along 
which the contour of a gear tooth is outlined. In addition to 

the involute one, there is a cycloidal engagement, the teeth 
of which are outlined by the arcs of cycloids and epo- and 
hypocycloids. When designing bevel gears with an invo-
lute profile, a spherical involute is used ‒ an analog of the 
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The common properties of images on 
a plane and a sphere are considered in 
the scientific works by scientists-design-
ers of spherical mechanisms. This is due 
to the fact that the plane and the sphere 
share common geometric parameters. 
They include constancy at all points of 
the Gaussian curve, which has a zero 
value for a plane and a positive value 
for a sphere. Figures belonging to them 
can slide freely on both surfaces. With 
unlimited growth of the radius of the 
sphere, its limited section approach-
es the plane, and the spherical shape 
transforms into a plane. Thus, a loxo-
drome that crosses all meridians at a 
constant angle is transformed into a log-
arithmic spiral that intersects at a con-
stant angle the radius vectors that come 
from the pole. The tooth profile of cylin-
drical gears is outlined by the involute 
of a circle. A spherical involute is used 
for the corresponding bevel gears. Other 
spherical curves are also known, which 
are analogs of flat ones.

The formation of a cycloid and an 
involute of a circle are associated with 
the mutual rolling of a line segment with 
each of these figures. If the segment is 
fixed and the circle rolls along it, then the 
point of the circle describes the cycloid. 
In the case of a stationary circle along 
which a segment is rolled, the point of 
the segment will execute the involute. To 
move to the spherical analogs of these 
curves, it is necessary to replace the 
circle with a cone, and the straight line 
with a plane. The spherical prototype of 
the cycloid will be the trajectory of the 
point of the base of the cone, which rolls 
along the plane, that is, along the sweep 
of the cone. The sweep of a cone is a sec-
tor, the radius of the limiting circle of 
which is equal to the generating cone. If 
this sweep, like a section of a plane, is 
rolled around a fixed cone, when its top 
coincides with the center of the sector, 
then the point of the limiting radius of 
the sector will execute a spherical invo-
lute. This paper analytically implements 
these two motions and reports the para-
metric equations of the spherical ana-
logs of the circle involute and the cycloid
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involute of a circle on a sphere. Despite the fact that such 
curves are widely known, there is very little information in 
scientific sources on the techniques of constructing involute 
circles and cycloids, and even less data on their mathematical 
notation. The concept of a spherical cycloid also exists and 
applies to a spherical pendulum. It refers more to mechanics 
than to geometry. However, the properties of cycloids and 
involutes of a circle can be transferred to their spherical 
analogs, which predetermines the relevance of research in 
this area.

2. Literature review and problem statement

In the scientific literature, it is quite difficult to find 
information about the techniques of constructing spatial 
analogs of plane curves. Although quite a lot of attention 
is paid to the study of the properties of such curves and 
their application. Thus, the concept of spherical helicity 
and its application in magnetohydrodynamics is quite fully 
explained in paper [1]. However, nothing is said about the 
technique of obtaining such spatial curves.

Work [2] is quite interesting from the point of view 
of techniques of construction of curves. Its authors study 
spherical curves, the curvature of which is expressed by the 
distance to a great circle (or to a point). New characteristics 
of some known spatial curves, as well as several new families 
of spherical curves, were found. The internal equations of the 
latter are expressed through elementary functions or elliptic 
Jacobi functions. In addition, parametric equations can be 
obtained for them as a function of the arc length. However, 
with the help of the approach proposed by the authors, it is 
impossible to find spherical analogs spherical analogs of the 
plane curves that interest us. The same situation occurs in 
work [3], where spherical curves are considered in relation 
to a modified orthogonal system with twist in three-dimen-
sional Euclidean space. The authors of article [4] propose 
the transition from spherical curves to Mannheim curves as 
a possible method of constructing the latter. But even this 
method is not considered possible to apply to the search for 
spherical analogs of plane curves.

In [5], spherical curves are studied using the Bishop sys-
tem. In the role of initial data, the authors propose general 
differential equations of spherical curves. In this case, it is 
possible to switch to their flat analogs, but not vice versa.

It should be noted separately that work [6] investigates 
spherical mechanisms, and the concept of a spherical ellipse 
is used to design a bevel transmission, which is an analog of 
a transmission between parallel axes, in which ellipses act 
as non-circular wheels. In work [7], a special grid is created 
using spherical curves, which is an analog of a rectangular 
square grid on a plane. Approximation of the sphere by a 
continuous strip of the unfolding surface is considered in 
work [8].

All this allows us to argue that it is expedient to conduct 
a study aimed at building a geometric model of the formation 
of spherical analogs of the involute of a circle and a cycloid.

3. The aim and objectives of the study

The purpose of this study is to build a geometric model of 
the formation of spherical analogs of the involute circle and 
cycloid and their mathematical notation. This will make it 

possible to construct involute and cycloidal coupling using 
the obtained parametric equations.

To achieve the goal, the following tasks must be solved:
– to derive parametric equations of the spherical involute 

of a circle;
– to derive parametric equations of a spherical cycloid;
– to visualize the results using computer graphics in 

relation to spherical objects.

4. The study materials and methods

The object of our research is spherical curves, the 
technique of their formation is similar to the technique of 
formation of known plane curves, namely involutes of circles 
and cycloids. The subject of the study is the development of 
analytical techniques for constructing spherical curves ‒ an-
alogs of known plane curves.

The main hypothesis assumed that on the surface of the 
sphere one can get curves that are analogs of the involute 
of a circle and a cycloid. To this end, the mutual rolling of a 
plane and a cylinder in the formation of plane curves must 
be replaced by the mutual rolling of a plane and a cone in the 
formation of their spherical analogs.

As mentioned above, the involute of a circle and a cycloid 
on a plane can be formed as the trajectory of a point during 
the mutual rolling of a segment of a straight line and a circle. 
The trajectory of a point of a straight line when it rolls along 
a fixed circle is an involute, and vice versa, when a circle rolls 
along a fixed segment, the trajectory of a point of a circle exe-
cutes a cycloid. From this scheme of formation of flat curves, 
it is possible to proceed to the scheme of formation of spherical 
analogs of these same curves. The mutual rolling of a circle 
and a segment is a simplified variant of the mutual rolling of 
surfaces ‒ a plane and a cylinder. Simply, in this case, the roll-
ing of the surfaces can be replaced by the rolling of curves ‒ 
orthogonal sections of the cylinder and the plane. If the 
cylinder is replaced by a cone, the mutual rolling of the cone 
and the plane makes it possible to obtain spherical curves. 
And there is a complete analogy in this ‒ when rolling a cone 
on a plane, its top will be a fixed point, and the trajectory of 
the point of the circle (the base of the cone) will execute the 
spherical analog of the cycloid. If you roll the plane (sweep) 
around a fixed cone, then the point of the plane executes the 
spherical analog of the involute of a circle. To implement the 
described techniques of mutual rolling of a cone and a plane, 
the apparatus of analytical and differential geometry is used.

Calculations were performed using the Wolfram Mathe-
matica computer algebra system [9]. Drawings were created 
in the environment of the commercial Maple computer alge-
bra system [10].

5. Results of the construction of spherical analogs of the 
involute of a circle and cycloid

5. 1. Parametric equations of a spherical involute
The parametric equations of a cone with a vertical axis, 

in which rectilinear generators inclined at an angle of β to 
the horizontal plane are:

cos cos ;X u= β γ

cos sin ;Y u= β γ
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sin ,Z u= β      (1)

where γ and u are independent surface variables, and γ is nu-
merically equal to the angle of rotation of the surface point 
around the Oz axis, and u is the second variable, which is 
numerically equal to the length of the rectilinear generating 
cone, the count of which starts from the origin of the coordi-
nates (top of the cone). The element of the sweep of the cone 
will be a flat sector μ bounded by an arc of radius R, where R 
is the radius of the sphere on the surface of which the base of 
the cone lies ‒ a circle of radius r (Fig. 1). There is a relation-
ship between the radii r and R:

cos .r = β      (2)

The flat sector μ must roll around the cone. Fig. 1 shows 
the position of the sector when it touches the base of the cone 
at point A. If it is rolled around a stationary cone, point B on 
the arc of the sector, executing a certain trajectory ВВ0, will 
coincide with point А0 on the base of the cone (Fig. 1). At the 
same time, the lengths of arcs AB and АА0 will be equal since 
rolling occurs without sliding. The segment ОВ is equal to 
the radius of the sphere R, so it follows that the arc ВВ0 is a 
spherical curve. But on the other hand, its formation corre-
sponds to the technique of constructing an involute. Thus, 
the arc ВВ0 is part of the sought-after curve ‒ the spherical 
involute of a circle. It is necessary to give its mathematical 
notation.

When the sector μ is rolled around the cone, a set of 
circles of radius R with the center at point O and inclined to 
the horizontal plane at an angle β is formed. Let’s write down 
the parametric equations of one circle that passes through 
point O (origin of coordinates) and is inclined at an angle β 
to the horizontal plane:

sin ;x R= α

sin cos ;y R= − β α

cos cos ,z R= β α     (3)

where α is the independent variable (the angle that varies 
from 0 to 2π for a closed circle). At α=0, the starting point of 

the circle of radius R will be at the top of the circle of radius r. 
Let’s form a set of circles that will go around the cone and will 
have a common point with a circle of radius r. To this end, we 
turn the inclined circle (3) around the OZ axis by an angle γ. 
As a result of rotation, its equation will be written as follows:

sin cos sin sin cos ;x R R= α ψ + β ψ α

sin sin sin cos cos ;y R R= ψ α− β ψ α

cos cos .z R= β α     (4)

With constant values of the angles β and ψ, one circle can 
be constructed according to equations (4). By setting a new 
value to the angle ψ, a new circle will be obtained, the plane 
of which will be tangent to the cone. The set of values of the 
angle ψ will correspond to the set of positions of circles of 
radius R, which will have a common point with the circle of 
radius r and whose planes will surround the cone.

We obtain a circle of radius r on the surface of the cone 
from its equations (1) at u=R. When the sector μ is rolled 
around the cone, the contact point A will move to the po-
sition А0 (Fig. 1), which will correspond to the rotation of 
the radius r by the angle γ. The length s of the arc АА0 will 
be equal to s=r·γ. When rolling in the reverse order, the 
length of the arc AB of the circle of radius R must be equal 
to the length of the arc АА0 of the circle of radius r, i.e., r·γ. 
The length of the corresponding arc of a circle of radius R 
is determined similarly ‒ by the product of its radius by 
the angle of rotation α: R·α. From the equality of the arcs, 
we find: α=–r·γ/R. The sign “–” means that when changing 
the angle γ, which is equal to the angle ψ, the angle α must 
change in the opposite direction, which corresponds to the 
direction of movement of point A towards point B (in Fig. 1, 
the direction of movement is shown by an arrow). Substi-
tution of α=–r·γ/R and ψ=γ in (4) will make it possible to 
obtain the parametric equations of the spherical involute:

sin cos sin sin cos ;
r r

x R R
R R

   = − γ γ + β γ − γ   
   

sin sin sin cos cos ;
r r

y R R
R R

   = γ − γ − β γ − γ   
   

cos cos .
r

z R
R

 = β − γ 
 

    (5)

Equation (5) can be simplified. The value of the angle β 
depends on the ratio of the radii r and R according to (2). 
Therefore, it can be excluded from equations (5). In addition, 
the ratio r/R is replaced by the constant a. Under such con-
ditions, equation (5) will be finally written:

sin cos cos sin ;x a a a= γ γ − γ γ

cos cos sin sin ;y a a a= − γ γ − γ γ

21 cos .z a a= − γ     (6)

Parametric equations (6) describe a spherical involute 
on a sphere of unit radius. The constant a is the radius of the 
circle on this sphere, so it must be less than unity. To go from 
a unit sphere to its desired size, three equations (6) need to be 
multiplied by a scale factor, which is the radius of the sphere R.

Fig.	1.	Geometric	model	of	the	formation	of	a	spherical	
involute	of	a	circle	by	rolling	a	flat	sector	(sweep)	on	the	

surface	of	a	cone
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5. 2. Parametric equations of spherical cycloids
The geometric model of obtaining a spherical cycloid 

is based on the common property of the involute and the 
cycloid – the mutual rolling of the cone and the plane. 
Fig. 2, a shows the diagram of the formation of a spherical 
cycloid. A cone with a fixed vertex O rolls on a plane, and 
its base (a circle of radius r) rolls on a circle of radius R. 
The point of the circle, which is the base of the cone, exe-
cutes a certain trajectory (arc AB), which is an element of 
a spherical cycloid. The base of the cone (circle of radius r) 
lies with all its points on the surface of the sphere. This fol-
lows from the fact that a flat section of a sphere is a circle. 
Fig. 2, b shows the base of the cone, projected in a straight 
line, which is a flat section of the sphere. When rolling a 
cone, its base (a circle of radius r) rolls along a circle of radi-
us R. Such rolling creates a set of circles of radius r, inclined 
at an angle β to the horizontal plane (Fig. 2, b), which lie on 
the surface of a sphere of radius R. In this sense, there is a 
similarity between the model of mutual rolling of a cone and 
a plane with the previous problem. In both cases, the set of 
circles circumscribes the cone. But in the first problem, the 
set of circles of radius R of the sphere surrounds the cone of 
radius r of its section, and in the second problem, it is the oth-
er way around. However, the commonality of the approach 
allows solving the second problem in a similar way.

After matching the geometric parameters, it is possible 
to write the equation of a one-parameter set of circles, which 
are inclined at an angle β to the horizontal plane and touch 
the circle of the hemisphere (Fig. 2, b). Since there is a rela-
tionship (2) between the angle β and the radii R and r, it is 
possible to proceed to the ratio a=r/R by analogy with the 
previous problem. At the same time, a transition to a sphere 
of unit radius (R=1) is made, and the value a<1 is the radius 
of a circle on a sphere of unit radius. The set of circles will be 
written by parametric equations:

( )2sin cos 1 1 cos sin ;x a a = α γ − − + α γ 

( )2sin sin 1 1 cos cos ;y a a = α γ + − + α γ 

( )21 1 cos .z a a= − + α     (7)

When γ=const and the angle α changes within α=0...2π, 
equations (7) will describe a circle of radius a, which belongs 
to a sphere of unit radius. At different values of the angle γ, a 
set of such circles is formed. A certain circle will correspond 
to the angle γ. At α=0 and γ=0, the circle of radius a and the 
circle of unit radius of the sphere will have a common point 
of contact. When the unit radius vector is rotated by the an-
gle γ, the radius vector a must turn at angle α with the con-
dition that the corresponding arcs of the circles are equal. 
From here, we can write γ=а·α, from which we find: α=–γ/a. 
The sign “–” corresponds to the physical essence of the for-
mation of a spherical cycloid. By substituting the expression 
α=–γ/a into equation (7) and simplifications, the paramet-
ric equations of the spherical cycloid, which is located on a 
sphere of unit radius, will finally be constructed:

2sin 1 cos sin cos sin ;x a a
a a
γ γ = − γ + + γ − γ 

 

2cos 1 cos cos sin sin ;y a a
a a
γ γ = γ − + γ − γ 

 

21 1 cos .z a a
a
γ = − + 

 
    (8)

With the integer value  of n arcs, the constant a  is de-
fined as the inverse of n: a=1/n.

5. 3. The construction of a spherical involute and cy-
cloid according to the parametric equations built

Before constructing the spherical involute, let’s pay at-
tention to the main properties of the involute of a circle in 
the plane. In Fig. 3, a, its symmetrical turns are constructed, 
where it is shown that the tangent lines to the circle cross 
them at a right angle. In Fig. 3, b, according to equations (6) 
at a=0.75, a spherical involute is constructed. An analog 
of tangent lines to a circle in a plane are tangent circles of 
radius R=1 on a sphere of unit radius. All of them, by anal-
ogy, cross the spherical involute at a right angle. The main 
difference between planar and spherical involutes is that the 
turns of a planar involute can continue to infinity while the 
turns of a spherical involute go to a congruent circle in the 
opposite hemisphere.

A spherical cycloid can be constructed according to 
equations (8). In Fig. 4, a, a spherical cycloid is constructed 
with the number of arcs n=5, that is, at a=0.2.

If we specify the number of arcs not as an integer but as 
an integer and a fractional part, then the number of arcs can 
also be an integer, but they will intersect and the point will 
return to its original position after passing all turns. This is 
demonstrated in Fig. 4, b with n=4.5.

A similar situation, as with the construction of spheri-
cal cycloids, occurs when constructing spherical involutes. 
The turns of the involute may not intersect and be located 
between two symmetrical circles on the sphere (Fig. 5, a) 
or they may intersect (Fig. 5, b). In all cases, at the point 
of contact with the circle, they form a right angle with it in 
both hemispheres.

Fig.	2.	Graphical	illustrations	of	the	formation	of	a	spherical	
cycloid:	a	–	a	diagram	of	the	rolling	of	a	cone	on	a	plane	and	
the	formation	of	an	arc	AB,	which	is	an	element	of	a	spherical	

cycloid;	b	–	designating	the	structural	parameters	of	the	
cone	and	the	sphere,	which	are	interconnected

a

b
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If a is an irrational fraction, then the 
point of the involute will not return to its 
initial position at any number of revolu-
tions around the OZ axis. If a is a rational 
fraction, then after a certain number of 
revolutions the point will return to its 
original position. Such curves can be used 
to form patterns on the sphere. The num-
ber of shaping options can be increased 
by rotating the involute turn around the 
OZ axis at a given interval. For example, 
in Fig. 6, a, the involute shown in Fig. 5, a, 
was rotated around the OZ axis by 30°. 
In Fig. 6, b, two involutes are constructed 
at a=0.4, which are symmetrically rotated 
relative to each other.

Using various combinations of the spherical invo-
lute, it is possible to form a grid on the surface of the 
sphere for its parqueting with elements of the same type, 
both square (Fig. 7) and diamond-shaped (Fig. 5, b). 
At a=0.707, the formed grid will have the form of curvi-
linear squares. By turning the spherical involute around 
the OZ axis by a certain angle, you can get squares of 
different sizes (Fig. 7).

Regarding the formation of a spherical cycloid, it 
is possible to set the condition that the circle does not 
roll along the equator, as shown in Fig. 2, a, and on an-
other parallel. Such curves are shown in Fig. 8, a, which 
also form a certain pattern on the surface of the sphere. 
In Fig. 8, b, the pattern is formed by a combination of 
involutes and cycloids.

The obtained parametric equations of spherical invo-
lutes and cycloids make it possible to combine them in an 
orderly manner to obtain patterns.

Fig.	3.	The	involute	of	a	circle	on	a	plane	and	its	spherical	analog:		
a	–	symmetric	turns	of	the	involute	of	a	circle	in	the	plane;		

b	–	symmetric	turns	of	a	spherical	involute	of	a	circle

a b

Fig.	4.	Spherical	cycloids	constructed	according	to	
equations	(8):	a	–	n=5,	arcs	do	not	intersect;		

b	–	n=4.5,	arcs	intersect

a

b

Fig.	5.	Spherical	involutes	constructed	from	equation	(6):		
a	–	а=0.5;	b	–	а=0.85

a b

Fig.	6.	Spherical	involutes	rotated	relative	to	
the	OZ	axis	by	the	same	angle:		

а	–	а=0.5,	12	turns;	b	–	a=0.4,	2	turns

a

b



Applied mechanics

11

6. Discussion of results of studying the procedure for 
constructing spherical involutes and cycloids

The results obtained in the previous chapter can be ex-
plained by analogies of the construction of curves on a plane 
and on the surface of a sphere. The essence of this analogy 
lies in the physical techniques of curves on a plane and their 
spherical prototypes (analogs).

For some known plane curves, there are ways to physical-
ly construct them using tools or devices. For example, a cir-
cle is built using a compass. Obviously, with its help, you can 
build a circle on one of the hemispheres of the sphere. An in-
volute on a plane can be constructed by unwinding a thread 
that is conventionally wound on a circle. Then the end of the 
stretched string will execute the involute. It is obvious that 
such a scheme is also suitable for the physical construction of 
a spherical involute. At the same time, the stretched thread 
will be tangent to the circle and will wrap around the sphere, 
as shown in Fig. 3, b. It should be noted that the stretched 
thread is an arc of a large circle corresponding to a straight 
line on the plane (Fig. 3, a). This is logical because the arc 
of a great circle is the shortest distance between two points 
on the sphere.

A feature of the proposed method is the transfer of tech-
niques for constructing flat curves to obtain their spherical 
analogs. In journal [11] it is noted that the properties of 
the spherical ellipse were invented for the first time by 
Fuss (1755–1825), a Swiss by origin. A spherical ellipse 
was constructed by analogy with an ellipse on a plane. The 
difference between the studies reported in this paper is that 

other known flat curves were considered, and their 
spherical analogs were found.

When rolling a flat sector μ around a cone, a set of 
circles was created that go around this cone. The spher-
ical involute of the circle was obtained on the basis of 
the established relationship between the independent 
variable of the base of the cone – the angle α and the 
independent variable of the circle tangent to the cone – 
the angle α in the form α=–r·γ/R=а·γ. With any other 
dependence α=α(γ), another spherical curve will be 
obtained. Thus, substituting the arbitrary dependence 
α=α(γ) in equation (5) instead of (–r·γ/R) will make 
it possible to obtain various spherical curves. For any 
curve, both flat and spatial, an important character-

istic is the length of the arc, 
that is, a natural parameter. It 
is determined by integrating 
the root expression, which is 
a significant obstacle to ob-
taining the original function. 
Therefore, thanks to different 
dependences α=α(γ), differ-
ent spherical curves can be 
obtained, but obtaining the 
expression of the length of the 
arc with this approach is pos-
sible in rare cases, and then 
only with a purposeful choice 
of the dependence α=α(γ). 
For the involute of a circle in 
the plane, the expression for 
the arc length has a simple 
form. This also applies to the 
spherical involute.

Thanks to our research results, it was possible to build a 
geometric model of the formation of spherical analogs of plane 
curves using the example of well-known curves – involute of 
a circle and cycloid. The basis for achieving the stated goal 
was the hypothesis according to which spherical curves can 
be obtained by similar constructions on the plane and on the 
surface of the sphere. At the same time, the analogy was made 
both for the physical construction of curves with the help of a 
tool, and for the construction of curves by analytical methods.

A cycloid is the trajectory of a point on a circle that rolls 
in a straight line. The involute of a circle is the trajectory of 
a straight line that rolls around a circle. This is a partial case 
of mutual rolling of a cylinder and a plane as a result of their 
cross section. Thanks to the generalization and replacement 
of the cylinder with a cone, a physical model for obtaining 
spherical curves was created, which became the basis for 
the mathematical notation of these curves. In Fig. 1, a plane 
in the form of a sector (cone sweep) rolls along the cone. 
The arc point of this sector executes a spherical curve – an 
analog of the involute of a circle (in this case – the base of 
a cone). If the cone is rolled along the plane (Fig. 2), then 
the point of the circle – the base of the cone – will execute 
a spherical curve, which is analogous to a cycloid. Based on 
this approach, the parametric equations (6) of the spherical 
involute and (8) of the spherical cycloid were built. These 
equations include the constant a, which is subject to a re-
striction: it must be less than unity. The disadvantage is that 
the construction of a grid on the surface of the sphere in the 
form of equal curvilinear squares is possible on a limited area 

Fig.	7.	Grid	on	the	sphere	in	the	form	of	curvilinear	squares	at	
a=0.707:	a	–	rotation	of	the	involute	by	increasing	the	angle	of	

rotation	by	π/7;	b	–	rotation	of	the	involute	by	increasing	the	angle	
of	rotation	by	π/5

a b

Fig.	8.	Formation	of	patterns	on	the	sphere	using	spherical	cycloids	and	involutes:		
a	–	spherical	cycloids;	b	–	combination	of	cycloids	and	involutes

a b
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of the sphere. The development of the current study is to find 
spherical analogs of other known plane curves, which will 
help overcome this drawback.

Parametric equations of spherical cycloids and involutes 
were derived in our work. The analytical description of the 
spherical ellipse [14] is supplemented by the analytical de-
scription of two more spherical curves.

It is known that some spherical mechanisms are formed by 
analogy with flat ones. For example, a gear between parallel 
axes, in which the profile of the teeth is outlined along the 
involute of a circle, is a prototype for the formation of a bevel 
gear, in which the axes intersect. At the same time, the profile 
of the bevel gear teeth is a spherical involute. Based on the 
rolling of the cone along its sweep, you can create a suitable 
gear. Spherical cycloids can also be used, provided that our 
results are made public and available to the general public, 
including specialists in the design of spherical mechanisms.

7. Conclusions 

1. The qualitative indicator of the current research is 
the derivation of the parametric equations of the spherical 
involute. This result differs from the known ones in that it 
gives a new way of constructing a spherical involute, namely 
the transition from manual construction to construction by 
means of computer graphics.

2. The qualitative indicator of our study is the deriva-
tion of the parametric equations of the spherical cycloid. 

This result differs from the known ones in that it provides 
a new way of constructing a spherical cycloid, namely, the 
transition from manual construction to computer graphics 
construction.

3. The confirmation of our theoretical results is the 
construction of spherical curves; their application for apply-
ing grids with different shapes of cells to the sphere is also 
shown. This result is a qualitative indicator of the research 
as it makes it possible to construct spherical curves, which 
are analogs of flat ones, using modern methods involving 
computer graphics software products.
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