
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

6

MATHEMATICS AND CYBERNETICS – APPLIED ASPECTS

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license

How to Cite: Hryha, V., Dzundza, B., Melnychuk, S., Manuliak, I., Terletsky, A., Deichakivskyi, M. (2023). Design of va­

rious operating devices for sorting binary data. Eastern-European Journal of Enterprise Technologies, 4 (4 (124)), 6–18.

doi: https://doi.org/10.15587/1729-4061.2023.285997

Received date 14.06.2023

Accepted date 18.08.2023

Published date 31.08.2023

DESIGN OF VARIOUS
OPERATING DEVICES

FOR SORTING
BINARY DATA

V o l o d y m y r H r y h a
Corresponding author

PhD, Associate Professor*
E-mail: volodymyr.gryga@pnu.edu.ua

B o g d a n D z u n d z a
PhD, Associate Professor*

S t e p a n M e l n y c h u k
Doctor of Technical Sciences, Professor**

I r y n a M a n u l i a k
PhD, Associate Professor**
A n d r i y T e r l e t s k y
PhD, Associate Professor*

M y k h a i l o D e i c h a k i v s k y i
Postgraduate Student*

*Department of Computer 	
Engineering and Electronics

Vasyl Stefanyk Precarpathian National University
Shevchenko str., 57, Ivano-Frankivsk, 	

Ukraine, 76018
**Department of Computer Systems and Networks

Ivano-Frankivsk National 	
Technical University of Oil and Gas

Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

The object of research is the process of designing hardware
devices for sorting arrays of binary data using the methodolo-
gy of space-time graphs.

The main task that is solved in the work is the develop-
ment and research of multi-cycle operating devices for sort-
ing binary data in order to choose the optimal structure with
predetermined technical characteristics for solving the sorting
problem. As an example, the development of different types
of structures of multi-cycle operating sorting devices by the
method of «even-odd» permutation is shown and their system
characteristics are determined.

New structures of multi-cycle operating devices have been
designed for a given sorting algorithm, and analytical expres-
sions for calculating equipment costs and their performance
have been given. A comparative analysis of the hardware
and time complexity of the developed structures of devices for
sorting binary numbers of various types with known imple-
mentations of algorithmic and pipeline operating devices was
carried out. As a result, the proposed structures, when sorting
large arrays of binary data (N>128), have an order of mag-
nitude less hardware complexity due to sequential execution
of the same type of operations. The time complexity of multi-
cycle operating devices of combined and sequential types with
large values of input data is 2.3 and 3.4 times less than that of
known pipeline operating devices.

A feature of the research results is the possibility of find-
ing the optimal ratio between the hardware and time characte
ristics of the resulting structures of sorting devices. Owing to
this, the designer will be able to choose the necessary type of
device for the implementation of the corresponding task with
optimal system characteristics.

The field of application of the designed sorting devices is
the tasks of digital processing of signals and images. The prac-
tical use of the developed sorting devices can be carried out in
the form of their synthesis on software integrated logic circuits

Keywords: «even-odd» permutation method, multi-cycle
operating device, space-time graph, flow graph, algorithm,
synthesis, functional operator, sorting device, binary data,
simulation

UDC 621.518
DOI: 10.15587/1729-4061.2023.285997

1. Introduction

Sorting is one of the typical tasks of data processing [1, 2]
and is usually understood as the task of arranging elements
of an unordered set of values of data arrays in monotonically
increasing or decreasing order [3, 4]. The sorting operation
takes an average of 25 % of machine time [1] and is most
often used in digital signal and image processing tasks and
distributed wireless sensor networks [5]. There are software
and hardware techniques of implementing the sorting ope
ration [6, 7]. Software methods of implementing sorting
algorithms are currently fairly well described and researched
in literary sources [1, 4, 6]. As for the hardware techniques
of implementing sorting algorithms, the structures of sorting
devices with the use of spatial and temporal parallelism are
currently quite well described in [8, 9].

Spatial parallelism is understood as parallel execution
of sorting algorithm operations by several operating devi
ces (ODs) at the same time, which significantly speeds up
the execution time of the algorithm [8, 10, 11]. It should be
noted that parallel execution of operations is used for al-
gorithms in which the sequence of performed operations
depends only on the number of input data.

Time parallelism is understood as combining the opera-
tions of the sorting algorithm in time by dividing operational
blocks by conveyor registers, which significantly speeds up
the performance of the operating device [8, 12].

However, the use of algorithmic and conveyor sorting de-
vices for multi-bit arrays of binary data has important draw-
backs – high hardware and structural complexity of OD.
Also, in the case of one-time use of such devices for the im-
plementation of the sorting algorithm, a significant part of

Mathematics and Cybernetics – applied aspects

7

the equipment may have a low percentage of use and remain
unused for a long time.

Therefore, the simultaneous combination of spatial and
temporal parallelism for the purpose of choosing the optimal
structure relative to the system characteristics is an urgent
issue for the construction of sorting ODs.

Thus, an important scientific and applied task is the
development of various types of binary data sorting devices
and the study of their system characteristics using space-time
parallelism. It should be noted that with non-critical time
parameters, the hardware complexity of the device can be
significantly reduced, as a result of which the area of FPGA
crystal will decrease.

The task set is solved by applying the methodology of
space-time graphs (STG) [13, 14], which allows obtaining
different types of structures of multi-cycle operating sorting
devices [15, 16]. The evaluation of the system characteristics
of the resulting hardware structures will allow the designer
to choose the optimal structure relative to the given techni-
cal parameters to solve the necessary problem.

Therefore, research aimed at developing hardware devic-
es for sorting arrays of binary data based on STG is relevant
in the field of designing computer systems and their compo-
nents with improved system characteristics.

2. Literature review and problem statement

In [9], a comparison of parallel sorting networks based on
parallel sorting algorithms was considered, and their compa
rative analysis was carried out. The dependences of the efficien-
cy of sorting network structures have been determined, based
on the results of which it is possible to choose one or another
sorting network for implementation. At the same time, the
traditional methodology for building such sorting networks
based on flow graphs of the algorithm was used, which have
limitations regarding the choice of the optimal structure.

In [10], various options for the synthesis of parallel
computing sorting devices are considered depending on the
amount of input data and the width of the parallel form of
the algorithm. With a fixed number of input values, with
a decrease in the width of the algorithm flow graph (AFG),
its height increases within the range from the minimum
height value (number of tiers) to the maximum value (num-
ber of functional operators) of AFG.

By changing the degree of parallelization of algorithms,
the complexity of their hardware implementation does not
change but only the algorithm execution time changes. The
disadvantage of this approach is the functional limitations
of using such algorithms. The given results do not provide
an opportunity to evaluate the data structure of the sorting
devices when the input data is fully loaded.

In [11], an analysis of methods for parallel sorting of arrays
of binary data was carried out. As a result of the research, it was
determined that the algorithm for implementing the method of
parallel sorting of data by merging, compared to the algorithms
for sorting numbers by counting, displacement, and insertion,
is more structured, more uniform, and more oriented towards
parallel-conveyor implementation. Merge sort algorithms are
based on the basic operation of combining two or more ordered
arrays into one ordered array. The hardware implementation
of the basic operation of combining three or more ordered ar-
rays into one ordered array is complex and requires significant
hardware costs. Simpler is the basic operation of merging two

ordered arrays into one ordered array, that is, a two-way merge.
The disadvantage of existing algorithms for implementing two-
way merging is low performance since they are all based on
operations of pairwise comparison of data elements.

In [12], highly efficient parallel structures were developed
for sorting intensive streams of binary data in real time using
an improved merge method. Due to the change in the number
of channels of the OD structure and the bit rate of the input
data, it was possible to achieve coordination of the intensity of
data arrival with the sorting ability, which increased the indi-
cator of the efficiency of equipment use. However, the devised
sorting method is focused on the architecture of graphics pro-
cessors, which requires additional resource-intensive costs.

In [17], a new adaptive OneByOne sorting algorithm is
proposed, which, compared to choice sorting and bubble sort-
ing algorithms, has a faster operating time for different array
sizes. The research results regarding the proposed algorithm
show its effectiveness in software implementation on a modern
element base. However, the issue of hardware implementa-
tion of such algorithms remains unresolved in the paper. The
study of the system characteristics of operating devices during
the hardware implementation of adaptive sorting algorithms
would provide an opportunity to reveal the depth of this issue.

In [18], a new algorithm for sorting n k-bit binary num-
bers is proposed and its hardware is described. The hardware
implementation of this algorithm is based on the use of shift
registers, counters, and logic elements. The disadvantage of
this algorithm is a significant number of iterations (cycles) –
(n+2k) clock cycles, which ultimately requires significant
hardware costs when implemented on FPGA. The issue of re-
ducing the number of cycles by changing the structure of the
algorithm is not given enough attention in the cited paper.

A new library for sorting binary data is described in [19].
The advantage of such a library is the ability to sort float-
ing point numbers. The hardware implementation of such
a library improves the throughput of the system. However,
the clock frequency does not have a significant increase, and
the hardware resources are twice as large as compared to the
known ones. However, the possibility of reducing the hard-
ware complexity of comparison and exchange blocks is not
considered in the work.

Paper [20] describes hardware sorting using parallel recur-
sive algorithms based on binary trees. The hardware imple-
mentation is carried out using memory blocks and finite state
automata, which ultimately requires significant hardware
costs when implemented on FPGA. The issue of reducing
hardware costs using a simpler element base is not considered
in the cited work.

In the analysis of available studies, the issue of research-
ing multi-cycle ODs for data sorting was not given enough
attention.

All this gives reason to assert that it is expedient to con-
duct a study of various structures of sorting devices, which
are focused on adaptive parallel algorithms using the metho
dology of space-time graphs [13, 14]. This methodology takes
into account the specificity of building multi-cycle operating
devices taking into account spatial and temporal characteris-
tics. That is why the implementation of highly efficient multi-
cycle devices for sorting arrays of binary numbers requires
extensive use of the modern element base, improvement of
existing and development of new device structures.

Therefore, the problem of building effective multi-cycle
ODs for sorting arrays of binary data, taking into account
the spatial and temporal characteristics of their operation,

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

8

remains unsolved. Solving this task could give the designer
the opportunity to choose the structure of multicycle OD
sorting that is optimal in terms of hardware costs and effi-
cient in terms of time characteristics.

3. The aim and objectives of the study

The purpose of this work is to design multi-cycle ope
rating devices for sorting binary data, which, given non-cri
tical time parameters, make it possible to reduce the hard-
ware complexity of the device and the area of the crystal
that the developed system will occupy. This would make it
possible to significantly reduce the costs of hardware imple-
mentation of such devices and, in some cases, to improve time
characteristics due to a combined approach.

To achieve the goal, the following tasks were solved:
– to perform a hardware implementation of the sorting

algorithm by the method of «even-odd» permutation by
building an algorithmic and pipeline structure based on the
algorithm flow graph and investigate their system characte
ristics using an improved comparison scheme;

– to perform a hardware implementation of the sorting al-
gorithm by the method of «even-odd» permutation by building
various types of multi-cycle operating devices (MOD) using
space-time graphs and investigate their system characteristics;

– to perform a practical implementation on FPGA for
various types of binary data sorting devices.

4. The study materials and methods

The object of our study is the process of designing
multi-cycle operational sorting devices using the methodolo-
gy of space-time graphs [13–15].

The hypothesis of the study assumed the possibility of
using the theory of algorithm flow graphs [8], with the help of
which the designer performs a direct mapping of the received
graph into the structure of the device, in order to develop
multi-cycle operating devices. In [9], it is proposed to use
a multi-channel sorting memory to combine functional opera-
tors of the same type. This memory has a number of advantages
in terms of speed when working with digital signal and image
processing algorithms. However, the assumptions were adop
ted that for the implementation of adaptive algorithms of ma
thematical operations, the use of sorting memory significantly
increases the hardware costs of the device. It is also necessary
to build a device for managing such memory, which in turn fur-
ther increases the hardware complexity of the resulting device.

In order to improve such shortcomings, it was decided to
use the methodology of space-time graphs in the construc-
tion of multi-clock operating sorting devices. This meth-
odology makes it possible to implement different types of
operating devices with an optimal ratio of hardware and time
complexity by combining operations of the same type. Simple
components are used to build multi-cycle ODs on the basis
of STG: multiplexers, demultiplexers, operational blocks and
delay elements of intermediate results (registers). The use of
simple components makes it possible to significantly reduce
hardware costs for the construction of the resulting device.

The theory of complexity [8] was applied to study the
system characteristics of operational sorting devices, in par-
ticular, the hardware and time complexity of various types
of ODs were analyzed. Analytical expressions for calculating

the hardware and time complexity of the presented structures
of single-cycle and multi-cycle ODs were derived. The de-
scription of the models of the implemented structures of the
sorting OD at the behavioral level was performed using the
hardware description language – VHDL. Modeling of the de-
veloped sorting OD structures was performed in the integra
ted Active-HDL environment of Aldec (USA). The synthesis
of single-cycle and multi-cycle ODs for binary data sorting
was carried out on the Xilinx (USA) FPGA [21–23], Artix7
family, in the Vivado Design Suite environment [21–23].
As a result of the research, the obtained theoretical calcula-
tions were compared with the results of practical implemen-
tation of various types of binary data sorting ODs.

5. Results of investigating hardware devices
for sorting arrays of binary data

5. 1. Studying the algorithmic and conveyor operatio­
nal sorting devices

Fig. 1 shows the graph of the algorithm for sorting «even-
odd» permutation for 6 input values [9, 10, 16].

Fig. 1. Graph of the algorithm for sorting 6 values 	

by the method of «even-odd» permutation

The sorting algorithm using the «even-odd» permutation
method requires N(N–1)/2 «compare and rearrange» ope
rations for N input values. The time complexity of sorting
by the «even-odd» method is N operations «compare and
rearrange» [1, 8–10, 16]. The width of FG of the sorting
algorithm by the method of «even-odd» permutation is N/2,
and the height is N of «compare and rearrange» operations.

Mathematics and Cybernetics – applied aspects

9

To build the structure of the algorithmic device, it is neces-
sary to perform a direct mapping of the graph elements of the
flow graph into the structure of the operating device. That is,
the vertices of the graph (functional operators) will correspond
to a hardware component or module, and to the arcs – lines for
transmitting input data, intermediate and final results.

Fig. 2 shows the structure of the algorithmic device for
sorting 6- and 8-digit numbers by the method of «even-odd»
permutation.

Fig. 2. The structure of the algorithmic operating

sorting device by the method of «even-odd»
permutation for 6 input values

Fig. 3 shows a block diagram of the basic «compare and
rearrange» operation used in binary data sorters. This ope
ration allows one to compare two numbers «by more» and
output the maximum and minimum value of the compared
numbers to the corresponding outputs [9, 13, 16].

Fig. 3. Block diagram of the basic operation 	

of the «even-odd» permutation

The structural diagram of the «compare and rearrange» ope
ration consists of a comparator (comparison circuit) and two
multiplexers (M1, M2). The comparator compares two numbers
according to the corresponding sign («by more»). If the num-
ber (X1>X2), «1» is formed, and if the number (X1<X2) – «0».
Depending on the received value of the output signal from the
output of the comparator («0» or «1»), the multiplexer (M1)
outputs a smaller number to the output (Y1), and the multi-
plexer (M2) outputs a larger number to the output (Y2).

The hardware complexity of a 2-input single-bit multi-
plexer is: AMux = 5 (gates), and the time complexity is equal
to: tMux = 3 (microclocks).

In [27], an improved structure of the «more than» com-
parison scheme using one-bit non-positive binary adders
is proposed.

The structure of the improved comparison scheme for
two 4-bit numbers is shown in Fig. 4.

The scheme for comparing multi-bit binary data works as
follows: direct multi-bit data codes from the input 2n-bit bus
are fed to the inputs of single-bit incomplete binary adders.
Signals from the first and second outputs of one-bit incom-
plete binary adders are fed to the corresponding inputs of
NAND logic elements. At the same time, if a logical «1» sig-
nal is formed at all inputs of one of the logical «NOT-AND»
elements, a logical «0» signal is formed at the output channel
of the device (),P+ which corresponds to the comparison
condition (A>B). Otherwise, a logical «1» signal is generated
at the output of the device, which corresponds to the compa
rison condition (A<B).

The hardware complexity of the above comparison
scheme is ACS = 13 (gates), and the time complexity is equal
to tCS = 2 (microcycles).

In comparison with the known comparison sche
me [9, 13, 16], the proposed scheme has 1.8 times lower hard-
ware complexity and 3 times faster performance.

The hardware complexity of the algorithmic operating
device for sorting by the method of «even-odd» permutation
will be calculated according to the following formula:

A N N A AAOD CS Mux= − × +() ()1 2 2/ ,	 (1)

where ACS is the hardware complexity of the n-bit compa
rison circuit, AMux is the hardware complexity of the 2-input
n-bit multiplexer, and N is the number of input data.

Fig. 4. The structure of the scheme for comparing 	
two 4-bit numbers «for more»

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

10

For example, with N = 8 and n = 4, the hardware com-
plexity of the algorithmic OD will be equal to AAOD =
= 28×(13+2×28) = 1932 (gates).

The time complexity of the algorithmic sorting device
will be equal to:

T N t tAOD CS Mux= × +(),	 (2)

where tCS is the time complexity of the n-bit comparison
circuit, tMux is the time complexity of the 2-input n-bit multi-
plexer, N is the number of input data.

For example, with N = 8 and n = 4, the time complexity of
the algorithmic OD will be equal to TAOD = 8×(2+3) = 40 (mi-
crocycles).

The throughput of the sorting algorithmic operating device
will be equal to the time complexity of the device ThAOD = TAOD.

Disadvantages of algorithmic ODs include high hard-
ware complexity and low utilization of equipment [8, 13, 16].
This is especially true in the case of one-time data transfer;
other elements of such devices remain idle and use significant
system resources.

The pipeline principle of processing involves the combi-
nation of operators of sorting algorithms on different data in
the execution time [8, 16].

Fig. 5 shows the pipeline structure of the device for sort-
ing 6- and 8-bit numbers by the method of «even-odd» per-
mutation, which contains pipeline registers. Input registers
are designed to record input data, registers placed between
hardware modules store intermediate calculation results, and
output registers record the final result.

The hardware complexity of the conveyor operating de-
vice sorting by the method of «even-odd» permutation will
be calculated according to the following formula:

A A N N ACOD AOD Rconv
= + +()1 ,	 (3)

where AAOD is the hardware complexity of the algorithmic
operating device, ARconv

 is the hardware complexity of the n-bit
pipeline register, and N is the number of input data.

For example, with N = 8 and n = 4, the hardware complexi-
ty of the conveyor OD will be equal to ACOD = 1932+(72×16) =
= 3084 (gates).

The time complexity of this sorting device will be equal to:

T T N tCOD AOD Rconv
= + − ×() 1 ,	 (4)

where TAOD is the time complexity of the algorithmic ope
rating device, tRconv

 is the time complexity of the n-bit pipeline
register, and N is the number of input data.

For example, with N = 8 and n = 4, the time complexity of
the pipeline OD will be equal to TCOD = 40+(7×2) = 54 (mi-
crocycles).

The throughput of the sorting conveyor operating device
will be equal to:

Th t t tCOD CS Mux Rconv
= + + .	 (5)

Disadvantages of pipeline ODs include high hardware
complexity due to the use of pipeline registers. The advantage
of pipeline ODs is high data processing performance [9, 16]
and low bandwidth, which is determined using formula (5).

Fig. 6 shows the plot of dependence of the number of lo
gical elements (gates) on the amount of input data for the al-
gorithmic and pipeline OD sorting algorithm by the method

of «even-odd» permutation, built on the basis of analytical
expressions (1) and (3).

Fig. 7 shows a plot of dependence of the total number
of microcycles on the amount of input data for algorithmic
and conveyor operational devices of the sorting algorithm by
the method of «even-odd» permutation built on the basis of
analytical expressions (2) and (4).

As can be seen from the graphic dependences, the pipe-
line OD has 1.2 times greater hardware complexity than the
algorithmic operating device due to the pipeline registers.
The time complexity of the conveyor OD is 1.5 times less
than that of the algorithmic OD, which allows one to signifi-
cantly speed up the execution of the operations of the sorting
algorithm when the conveyor is fully loaded.

Algorithmic and pipeline ODs have some significant li
mitations, which are that the designer can build only one type
of such devices, which will have stable system characteristics.

Fig. 5. The structure of the conveyor operating sorting

device by the method of «even-odd» permutation 	
for 6 input values

Mathematics and Cybernetics – applied aspects

11

Fig. 6. Dependence plot of the total number of gates M 	
on the amount of input data N for algorithmic (curve 1) 	

and pipeline (curve 2) operating devices

Fig. 7. Dependence plot of the total number of microcycles τ
on the amount of input data N for algorithmic (curve 1) 	

and pipeline (curve 2) operating devices

That is why the construction of various types of multi-cy-
cle ODs for data sorting gives the designer the opportunity
to analyze the dynamics of changes in system characteristics.
Namely, it becomes possible to find the optimal ratio between
hardware and time complexity, which allows one or another
type of device to be used to solve a problem with predeter-
mined conditions.

5. 2. Research of multi-cycle operating sorting devices
To implement various types of multi-cycle operating

devices (MODs) for sorting by the method of «even-odd»
permutation, it is necessary to transform AFG into the corre-
sponding space-time graphs that correspond to various types
of such MODs [8, 14–16].

Fig. 8 shows the structure of MOD of the combined
type of the sorting algorithm by the method of «even-odd»
permutation.

This MOD structure consists of input registers, 5 ope
rational units that perform the same basic operations of the
algorithm sequentially in time, multiplexers, demultiplexers,
delay registers for intermediate results, and output registers.
In the registers (Rg7, ..., Rg12), intermediate results are
delayed by the corresponding number of cycles. The multi-
plexers (M1–M6) sequentially pass the input data and inter-
mediate results to the inputs of the operational units using
the values of the control signals (sm1, …, sm6) generated by
the control device. Demultiplexers (Dm1–Dm6) distribute
the intermediate results to the inputs of the operational units
at the required time, and the final results are recorded in the
output registers (Rg13, ..., Rg18).

Equipment costs for the implementation of a combined
type MOD for a given sorting algorithm will be equal to:

A N A NA NA

NA NA NA

CMCOD BS Rin Mux

Dmux IRDE Rou

= −() + + +

+ + +

→

→

1 2 1

1 2

()

() tt , 	 (6)

where ABS is the hardware complexity of the n-bit binary
number comparison scheme; ARin is the hardware comple
xity of input n-bit registers; ARout – hardware complexity of
output n-bit registers; AMux – hardware complexity of multi
plexers; ADmux – hardware complexity of demultiplexers;
AIRDE is the hardware complexity of the intermediate result
delay registers.

According to formula (6), the combined MOD consists
of (N–1) computing units, N input and output n-bit registers.
Also, the MOD structure contains N intermediate n-bit re
gisters, N multiplexers with 2 inputs, and N demultiplexers
with 2 outputs.

Fig. 8. The structure of the multi-cycle sorting operating device of the combined type

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

12

The time complexity of the combined MOD sorting will
be equal to:

T k t t t tCMCOD BS Mux Dmux= × + + +() 1 Reg ,	 (7)

where tBS is the time complexity of the n-bit comparison
scheme, tMux is the time complexity of the multiplexer,
tDmux is the time complexity of the demultiplexer, tReg is the
time complexity of the delay registers of intermediate results,
k1 is the number of iterations, which is equal to:

k
N N

N N1

1 2

2 2 1
=

−()
+ −() .

For example, with N = 8 and n = 4, the time complexity of
the combined MOD will be equal to TCMCOD = 4×(9+3+2+2) =
= 64 (microcycles).

The throughput of the combined MOD sorting will be
equal to the time complexity of the device ThCMCOD = TCMCOD.

The methodology for obtaining this MOD structure us-
ing iterative STG is shown in [16].

Fig. 9 shows the structure of MOD of the iterative
type of the sorting algorithm by the method of «even-odd»
permutation.

Fig. 9. The structure of a multi-cycle sorting operating device

of the iterative type

This structure of MOD consists of input registers, one ope
rational unit that performs all the same operations of the algo-
rithm sequentially in time, multiplexers, demultiplexers, delay
registers for intermediate and final results, and output registers.

The hardware complexity of MOD of the iterative type
for the sorting algorithm by the «even-odd» permutation
method will be equal to:

A A A A

A

IMCOD BS
Mux

N Dmux

IR

= + +










+

+

+




→







→2
2

2 1
1 2()

DDE FRDE Rin Rout

N
N A NA+ −





+ −() +
2

1 2 2 / ,	 (8)

where ABS is the hardware complexity of the n-bit binary
number comparison scheme; ARout/Rin – hardware complexity
of n-bit input/output registers; AMux – hardware complexity

of multiplexers; ADmux – hardware complexity of demulti-
plexers; AIRDE = (2N–2) – hardware complexity of n-bit delay
registers for intermediate results; AFRDE is the hardware com-
plexity of n-bit final result delay registers.

According to formula (8), a MOD of the iterative type con-
sists of one computing unit, N input and output n-bit registers.
Also, the MOD structure contains (2N–2) intermediate result
delay registers, two (N/2+2)-input multiplexers, two demul-
tiplexers, and (N/2–1)+(N–2) final result delay registers.

The time complexity of the iterative sorting MOD will
be equal to:

T k t t t tIMCOD BS Mux Dmux Reg= × + + +() 2 ,	 (9)

where tBS is the time complexity of the n-bit binary number
comparison scheme; tMux – time complexity of multiplexers;
tDmux – time complexity of demultiplexers; tReg is the time
complexity of registers delaying intermediate results; k2 is the
number of iterations, which is equal to the number of algo-
rithm operations: k2 = N(N–1)/2.

For example, with N = 8 and n = 4, the time complexity of
the iterative MOD will be equal to TIMCOD = 28×(9+3+2+2) =
= 448 (microcycles).

The throughput of the iterative sorting MOD will be
equal to the time complexity of the device ThIMCOD = TIMCOD.

Fig. 10 shows the structure of the MOD of the sequen-
tial-iterative type of the sorting algorithm by the method of
«even-odd» permutation.

This structure of MOD consists of input registers, three
operational units that perform all the same type of algorithm
operations sequentially in time, multiplexers, demultiplexers,
delay registers for intermediate and final results, and output
registers.

Equipment costs for the implementation of sequential-
iterative MOD for a given sorting algorithm will be equal to:

A A N A A

N A A

SIMCOD BS Mux Mux

Dm Dm

= + −() + +

+ −() +
→ →

→

2

2

3 1 2 4 1

1 3

() (,)

() (11 2→ + +) / ,A AIRDE Rin Rout 	 (10)

where ABS is the hardware complexity of the n-bit binary
number comparison scheme; ARin/Rout – hardware complexity
of n-bit input/output registers; AMux – hardware complexity of
multiplexers; ADmux – hardware complexity of demultiplexers;
AIRDE is the hardware complexity of n-bit intermediate result
delay registers.

According to formula (10), a MOD of the iterative type
consists of N/2 computing units, N input and output n-bit
registers. Also, the MOD structure contains (N–2) 3-input
multiplexers, one 2-input and 4-input multiplexer, (N–2)
three-output demultiplexers, one two-output demultiplexer
and (2N–1) intermediate delay registers results.

The time complexity of sequential-iterative sorting MOD
will be equal to:

T k t t t tSIMCOD BS Mux Dmux Reg= × + + +() 3 2 ,	 (11)

where tBS is the time complexity of the n-bit binary number
comparison scheme; tMux – time complexity of multiplexers;
tDmux – time complexity of demultiplexers; tReg is the time
complexity of registers delaying intermediate results; k3 is the
number of iterations, which is equal to:

k
N N

N3

1 2

2
=

−()
.

Mathematics and Cybernetics – applied aspects

13

For example, with N = 8 and n = 4, the time complexity of
the sequentially iterative MOD will be equal to TSIMCOD =
= 7×(9+3+2+4) = 72 (microcycles).

The throughput of sequential-iterative sorting MOD will be
equal to the time complexity of the device ThSIMCOD = TSIMCOD.

Fig. 11 shows the structure of MOD of the sequential
type of the sorting algorithm by the method of «even-odd»
permutation.

This MOD structure consists of input registers, 6 ope
rational units that perform all operations of the same type
of the algorithm sequentially in time, multiplexers, demulti-
plexers, delay registers for intermediate and final results, and
output registers.

Equipment costs for the implementation of a sequential
type MOD for a given sorting algorithm will be equal to:

A NA NA NA

N A NA

SMCOD BS Rin Rout Mux N

Mux Dm

= + + +

+ −() +
→

→

2 2

2

2 1

2 1

/ (/)

() uux I FRDEA() / ,1 2→ + 	 (12)

where ABS is the hardware complexity of the n-bit binary
number comparison scheme; ARin/Rout – hardware complexity
of n-bit input/output registers; AMux – hardware complexity
of multiplexers; ADmux – hardware complexity of demul-
tiplexers; AIRDE is the hardware complexity of n-bit delay
registers for intermediate results; AFRDE is the hardware com-
plexity of n-bit final result delay registers.

According to formula (12), a MOD of the iterative type
consists of N computing units, N input and output n-bit re
gisters. Also, the MOD structure contains two (N/2)-input
multiplexers, (N–2) 2-input multiplexers, N demultiplexers,
(2N–3) intermediate result delay registers and (N–2) final
result delay registers.

The time complexity of sequential sorting MOD will be
equal to:

T Nt
N

t
N

t NtSMCOD BS Mux Dmux= + + +
2 2 Reg ,	 (13)

where tBS is the time complexity of the n-bit binary number
comparison scheme; tMux – time complexity of multiplexers;
tDmux – time complexity of demultiplexers; tReg is the time
complexity of registers delaying intermediate results; N is the
number of input data.

Fig. 11. The structure of a multi-cycle sorting operating

device of serial type

For example, with N = 8 and n = 4, the time complexity
of a sequential MOD will be equal to TSMCOD = (8×9+4×3+
+4×2+8×2) = 108 (microcycles).

Fig. 10. The structure of a multi-cycle sorting operating device of sequential-iteration type

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

14

The throughput of sequential sorting MOD will be equal
to ThSMCOD = tBS+tMux+tDmux+tReg.

Fig. 12 shows a plot of dependence of the total number of
gates on the amount of input data for various types of MOD
calculated on the basis of the obtained analytical expres-
sions (6), (8), (10), (12).

Fig. 12. Dependence plots of the total number of gates M 	
on the amount of input data N for different types of multi-

clock operating devices: MOD of the sequential type – 	
curve 1, MOD of the sequential-iterative type – curve 2,

MOD of the iterative type – curve 3, MOD of 	
the combined type – curve 4

As can be seen from the graphic dependences, the lowest
hardware complexity among different types of sorting MOD
is demonstraed by the iterative and combined MODs due
to the minimum number of hardware modules and registers.

Fig. 13 shows a plot of dependence of the total number
of microcycles on the amount of input data for various types
of MODs calculated on the basis of the obtained analytical
expressions (7), (9), (11), and (13).

As can be seen from the graphical dependences, the com-
bined MOD has the greatest time complexity among different
types of sorting MODs due to the regularity of the structure.

Iterative MOD has the lowest speed due to sequential execu-
tion of operations.

Fig. 13. Dependence plots of the total number 	

of microcycles t on the value of the input data N for
different types of multi-cycle operating devices: MOD of the
sequential type – curve 1, MOD of the sequential-iterative

type – curve 2, MOD of the iterative type – curve 3, MOD of
the combined type – curve 4

5. 3. Realization and research of obtained structures of
sorting devices on programmable integrated circuits

The designed structures of sorting devices were program-
matically described using the VHDL hardware description
language and synthesized on the Xilinx FPGA using the
Vivado automated design system. Fig. 14 shows the block
diagram of the combined-type MOD.

In this block diagram, one can see 6 input 8-bit bu-
ses (D_in1,…,D_in6), control signals of multiplexers (sel_
mux1,…,sel_mux6) and demultiplexers (sel_demux1,…,
sel_demux6), synchronization input (clk), reset input (rst),
and 6 output 8-bit buses (D_out1,…,D_out6).

Fig. 15 shows a diagram of the functional simulation of
the combined sorting MOD by the method of «even-odd»
permutation for 6 input data of 8 bits.

Fig. 14. Block diagram of a multi-clock sorting operating device of the combined type for N = 6

Mathematics and Cybernetics – applied aspects

15

In this diagram, we can see the input data and the
generation of control signals for multiplexers and demulti-
plexers at each iteration. The final result is formed on the
4th cycle (60 ns) since a MOD of the combined type at N = 6
performs 3 iterations. In each iteration, 3 comparison and
permutation operations are performed in parallel.

Table 1 gives the results of the synthesis of implemen
ted sorting devices for 16 input single-byte numbers on the
Xilinx FPGA of the Artix-7 family.

Table 1

Results of synthesis of sorting devices on FPGA

No. Type of sorting device
Number of
matching

tables, (LUT)

Clock
frequency,

(MHz)

1 Algorithmic OD 704 332

2 Conveyor OD 1043 393

3 MOD of sequential type 452 302

4 MOD of sequential-iterative type 274 315

5 MOD of combined type 279 352

6 MOD of iterative type 217 54

As can be seen from Table 1, the greatest hardware costs
are inherent in the conveyor OD and the smallest – in the
MOD of the iterative type, which is confirmed by analyti-
cal calculations. The best ratio between hardware and time
characteristics are demonstrated by MODs of sequential and
combined types.

6. Discussion of results of investigating different types
of binary sorting devices

On the basis of mathematical formulas (1) and (3), it is
possible to calculate the hardware complexity of the algo-
rithmic and pipeline ODs with any amount of input data (N).
As a result of our research on the hardware complexity of the
sorting OD data, with the use of an improved comparison
scheme, a plot of dependence of the total number of gates M
on the value of the input data N (Fig. 6) was built. It was es-
tablished that the pipeline OD has 1.4 times greater hardware
complexity than the algorithmic OD due to pipeline registers.

The use of an improved comparison scheme in the struc-
ture of the algorithmic OD made it possible to reduce its
hardware complexity by 1.2 times and increase its speed by
1.8 times compared to known implementations [8, 9, 13, 16].

On the basis of mathematical formulas (2) and (4), it is
possible to calculate the time complexity of algorithmic and
pipeline ODs with any amount of input data (N).

As a result of our research into the time complexity of
sorting OD data, with the use of an improved comparison
scheme, a plot of dependence of the total number of mi-
crotacts τ on the value of the input data N was construc
ted (Fig. 7). Fig. 7 shows that the time complexity of the
pipeline OD is 2 times less than that of the algorithmic OD.
Conveyor OD has a minimum bandwidth, due to which it
can be very effective in case of full filling of the conveyor
during multi-threaded data processing.

The use of an improved comparison scheme in the
structure of the pipeline OD made it possible to reduce its
hardware complexity by 1.1 times and increase its speed by
1.6 times compared to known implementations [8, 9, 13, 16].

Analytical expressions for the calculation of hardware
and time complexity were derived during the study of multi-

Fig. 15. Functional diagram of the operation of a multi-cycle sorting operating device 	

of the combined type for N = 6

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

16

cycle ODs for sorting binary data, which allow determining the
optimal ratio between these parameters for each MOD.

On the basis of mathematical formulas (6), (8), (10),
(12), it is possible to calculate the hardware complexity of
the corresponding MOD with any amount of input data (N).

Based on mathematical formulas (7), (9), (11), (13), it is
possible to calculate the time complexity of the correspond-
ing MOD with any number of input data (N).

The calculation of hardware complexity will allow one to
determine which type of MOD requires the least amount of
hardware resources, and which one requires the most. Calcu-
lation of the time complexity will make it possible to deter-
mine the speed of the corresponding MOD in microclocks.
Determining these parameters is important when designing
a corresponding MOD, when these parameters are set at the
initial design stage.

As a result of our studies of the hardware complexity of
the sorting MOD, a plot of dependence of the total number of
gates M on the value of the input data N was built (Fig. 12).
It was established that when the number of input data in-
creases (N ≥ 128), the hardware complexity of MOD of data
sorting decreases by an order of magnitude in comparison
with known implementations of single-cycle and conveyor
ODs [8, 9]. This gives reason to claim that the use of such
MODs has significant advantages and allows one to signifi-
cantly save hardware resources and the area of the crystal
when they are implemented on FPGA.

As a result of our research into the time complexity of
sorting MOD, a plot of dependence of the total number of
microtacts τ on the value of the input data N was construc
ted (Fig. 13). Fig. 13 demonstrates that the best time charac-
teristics are inherent in the MOD of the combined type due
to the incomplete merging of the vertices of the algorithm
flow graph. The iterative MOD has the worst indicators
of time complexity since all operations of the algorithm are
performed sequentially in time due to one operation. This
enables the designer to choose the appropriate MOD when
solving the given task. For example, with non-critical time
parameters, one can choose a slower type of device, and in the
case of the importance of this parameter, combined options
make it possible to significantly speed up the operation. The
MOD of the combined type has 1.25 times worse perfor-
mance compared to the performance of the conveyor OD.

When synthesizing the implemented VHDL models of
sorting ODs on the Artix-7 FPGA family, the results of equip-
ment costs and clock frequency were obtained (Table 1).
From Table 1, it can be seen that conveyor and algorithmic
ODs have the largest equipment costs, but their performance
indicators are the highest. Among the different types of
MODs sorting equipment, the iterative one has the lowest
costs, and the sequential sorting device has the highest costs.
The combined-type MOD has the best performance indi-
cators. The optimal ratio between hardware and time cha
racteristics during synthesis on a FPGA is demonstrated by
MODs of sequential and combined types. With an increase
in the amount of input data, the sorting MOD data approx-
imately reaches a speed that is 2.3 and 3.4 times lower than
that of known conveyor ODs, which is confirmed by theore
tical calculations.

Developed operational data sorting devices can be used
as components of specialized computer systems, arithmetic
logic devices, and coprocessors. The use of algorithmic and
pipeline sorting ODs makes it possible to speed up the data
sorting operation by increasing the number of equipment.

The use of multi-cycle ODs makes it possible to reduce the
number of equipment with a slight decrease in speed for cer-
tain types of MODs, which leads to a decrease in the area of
the FPGA crystal.

When designing a MOD for sorting binary data, certain
research limitations are revealed, which are the complexity
of designing such devices with a large amount of input data.
Therefore, at the next stage of research, it is planned to
develop an automated system for spatio-temporal transfor-
mation of the algorithm into the structure of the correspond-
ing MOD. This will make it possible to significantly save
the time of designing such devices and deepen the study of
their system characteristics.

Prospects for the further development of our research
are the development of methods for analyzing the structural
complexity and functional completeness of multi-clock oper-
ating devices for sorting binary data. Reducing the number
of MOD inputs and outputs and their intermediate signals
could make it possible to reduce the area of the crystal on
which such devices are implemented during their synthesis
on FPGA.

At the same time, an important task is also the improve-
ment of the scheme for comparing binary numbers and its
components, which would make it possible to improve the
system characteristics of various types of MODs for sorting
binary data.

7. Conclusions

1. When researching different ways of hardware repre-
sentation of the sorting algorithm by the method of «even-
odd» permutation based on the algorithm flow graph, the al-
gorithmic and conveyor devices for sorting binary data were
built, and the formulas for calculating the equipment costs
for their implementation were given. An improved scheme
for comparing binary data is proposed, which, when applied
in the structures of algorithmic and pipeline ODs, made it
possible to reduce their hardware complexity by 1.2 times
and increase their time complexity by 1.8 times.

2. As a result of our study of the hardware complexi-
ty of MODs built on the basis of STG, it was established
that the combined MOD has the fewest logic gates among
different types of MODs. When compared with known im-
plementations of single-cycle and conveyor ODs for sorting
a large amount of input data, the sorting MODs contain tens
of times fewer logic gates.

The results of our study of the time complexity showed
that multi-cycle ODs of the combined and sequential types
have a time complexity of about 2.3 and 3.2 times less than
that of the conveyor OD at large input values. The time
complexity of the iterative MOD is 7.8 times less than that
of the pipeline OD.

3. In the synthesis of OD for sorting on FPGA, an effec-
tive structure with an optimal ratio of hardware and time
costs is a combined MOD. Compared to the conveyor OD,
the combined MOD has 3.7 times lower hardware comple
xity and 1.1 times lower speed, which is characterized by
a small amount of input data. The speed of the iterative
MOD is 7.3 times lower than that of the pipeline OD, and the
hardware complexity of the pipeline OD is 4.8 times greater
than that of the iterative MOD. Thus, the results of practical
implementation on FPGA mostly confirm the authenticity of
theoretical calculations of system characteristics of various

Mathematics and Cybernetics – applied aspects

17

types of sorting ODs. Having determined the necessary
system characteristics, the designer can choose the optimal
structure that has the best ratio between hardware and time
characteristics for the implementation of the given task.

Conflicts of interest

The authors declare that they have no conflicts of interest
in relation to the current study, including financial, personal,

authorship, or any other, that could affect the study and the
results reported in this paper.

Funding

The work was carried out within the framework of the
project of the Ministry of Education of Ukraine «Elements
of hybrid sensor microsystems for biomedical applications»
(state registration number 0122U000858).

References

1.	 Knuth, D. E. (2011). The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1. Addison-Wesley Profes-

sional, 912. Available at: https://ia804701.us.archive.org/2/items/B-001-001-251/B-001-001-251.pdf

2.	 Siewiorek, D., Robert, S. (2017). Reliable Computer Systems: Design and Evaluation. CRC Press, 908. doi: https://doi.org/

10.1201/9781439863961

3.	 Dobre, C., Xhafa, F. (2013). Parallel Programming Paradigms and Frameworks in Big Data Era. International Journal of Parallel

Programming, 42 (5), 710–738. doi: https://doi.org/10.1007/s10766-013-0272-7

4.	 Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. (2009). Introduction to algorithms: third edition. Massachusetts Institute of

Technology. Available at: https://pd.daffodilvarsity.edu.bd/course/material/book-430/pdf_content

5.	 Hanyu, T., Endoh, T., Suzuki, D., Koike, H., Ma, Y., Onizawa, N. et al. (2016). Standby-Power-Free Integrated Circuits Using MTJ-

Based VLSI Computing. Proceedings of the IEEE, 104 (10), 1844–1863. doi: https://doi.org/10.1109/jproc.2016.2574939

6.	 Michailov, D. (2011). Hardware implementation of recursive sorting algorithms using tree-like structures and HFSM Models.

Tallin: TUT Press, 114. Available at: https://digikogu.taltech.ee/en/Download/eb5d073c-02e5-46b9-83de-71fa17bd572a

7.	 Akl, S. G. (1985). Parallel sorting algorithms. Academic Press. doi: https://doi.org/10.1016/c2013-0-10281-4

8.	 Melnyk, A. O. (2008). Arkhitektura kompiutera. Lutsk: Volynska oblasna drukarnia, 470.

9.	 Melnyk, A. O. (2014). Pamiat iz vporiadkovanym dostupom. Lviv: Vydavnytstvo NU «Lvivska politekhnika», 296.

10.	 Yakovlieva, I. D. (2008). Otsinka variantiv syntezu paralelnykh obchysliuvalnykh prystroiv sortuvannia. Visnyk Natsionalnoho

universytetu «Lvivska politekhnika», 630, 124–130. Available at: https://ena.lpnu.ua/handle/ntb/880

11.	 Tsmots, I. G., Antoniv, V. Ya. (2016). Algorithms and Parallel Structures for Data Sorting Using Insertion Method. Scientific Bul-

letin of UNFU, 26 (1), 340–350. doi: https://doi.org/10.15421/40260153

12.	 Tsmots, I. G., Antoniv, V. Y. (2020). Improvement of parallel sorting by method of merging. Scientific Bulletin of UNFU, 30 (4),

134–142. doi: https://doi.org/10.36930/40300422

13.	 Gryga, V., Nykolaichuk, Y., Vozna, N., Krulikovskyi, B. (2017). Synthesis of a microelectronic structure of a specialized processor

for sorting an array of binary numbers. 2017 XIIIth International Conference on Perspective Technologies and Methods in MEMS

Design (MEMSTECH). doi: https://doi.org/10.1109/memstech.2017.7937560

14.	 Dunets, R., Gryga, V. (2015). Spatio-temporal synthesis of transformation matrix of reverse fast cosine transformation. The Expe

rience of Designing and Application of CAD Systems in Microelectronics. doi: https://doi.org/10.1109/cadsm.2015.7230792

15.	 Gryga, V., Kolosov, I., Danyluk, O. (2016). The development of a fast iterative algorithm structure of cosine transform. 2016

13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET).

doi: https://doi.org/10.1109/tcset.2016.7452100

16.	 Gryga, V. (2018). Design and research of operational and pipelined binary number sorting devices. 18th International Multidis-

ciplinary Scientific GeoConference SGEM2018, Informatics, Geoinformatics and Remote Sensing. doi: https://doi.org/10.5593/

sgem2018/2.1/s07.036

17.	 Alotaibi, A., Almutairi, A., Kurdi, H. (2020). OneByOne (OBO): A Fast Sorting Algorithm. Procedia Computer Science, 175,

270–277. doi: https://doi.org/10.1016/j.procs.2020.07.040

18.	 Alaparthi, S., Gulati, K., Khatri, S. P. (2009). Sorting binary numbers in hardware - A novel algorithm and its implementation.

2009 IEEE International Symposium on Circuits and Systems. doi: https://doi.org/10.1109/iscas.2009.5118240

19.	 Kobayashi, R., Miura, K., Fujita, N., Boku, T., Amagasa, T. (2022). An Open-source FPGA Library for Data Sorting. Journal of

Information Processing, 30, 766–777. doi: https://doi.org/10.2197/ipsjjip.30.766

20.	 Mihhailov, D., Sklyarov, V., Skliarova, I., Sudnitson, A. (2011). Hardware implementation of recursive sorting algorithms. 2011

International Conference on Electronic Devices, Systems and Applications (ICEDSA). doi: https://doi.org/10.1109/icedsa.

2011.5959040

21.	 Deo, N. (1974). Graph theory with applications to engineering and computer science. Dover Publications. Available at: https://

www.shahucollegelatur.org.in/Department/Studymaterial/sci/it/BCS/FY/book.pdf

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/4 (124) 2023

18

22.	 Kogut, I. T., Druzhinin, A. A., Holota, V. I. (2011). 3D SOI Elements for System-on-Chip Applications. Advanced Materials Re-

search, 276, 137–144. doi: https://doi.org/10.4028/www.scientific.net/amr.276.137

23.	 Novosiadlyi, S., Kotyk, M., Dzundza, B., Gryga, V., Novosiadlyi, S., Mandzyuk, V. (2017). Formation of carbon films as the sub�-

gate dielectric of GaAs microcircuits on Si-substrates. Eastern-European Journal of Enterprise Technologies, 5 (5 (89)), 26–34.

doi: https://doi.org/10.15587/1729-4061.2017.112289

24.	 Kehret, O., Walz, A., Sikora, A. (2016). Integration of hardware security modules into a deeply embedded tls stack. International

Journal of Computing, 15 (1), 22–30. doi: https://doi.org/10.47839/ijc.15.1.827

25.	 Gryga, V., Dzundza, B., Dadiak, I., Nykolaichuk, Y. (2018). Research and implementation of hardware algorithms for multiplying

binary numbers. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer

Engineering (TCSET). doi: https://doi.org/10.1109/tcset.2018.8336427

26.	 Giachetti, R. (2016). Design of enterprise systems: Theory, architecture, and methods. CRC Press. doi: https://doi.org/10.1201/

9781439882894

27.	 Hryha, V. M., Nykolaichuk, Ya. M., Hryha, L. P. (2022). Pat. No. 151889. Prystriy porivniannia bahatorozriadnykh dviykovykh

danykh. No. u202200478; declareted: 07.02.2022, published: 28.09.2022. Available at: https://sis.ukrpatent.org/uk/search/

detail/1707803/

