
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/2 (124) 2023

6

transactions are enhanced, providing diverse and dynamic
interactions in the blockchain ecosystem. The emergence of
smart contracts significantly affected the field of analysis of
blockchain transactions, leading to the emergence of a sepa-
rate field – analysis of smart contracts. By reviewing smart
contracts, researchers and auditors can gain insight into the
behavior, security, and integrity of their work.

Blockchain analysis involves examining the data stored
on the blockchain, which requires careful collection and
organization for comprehensive evaluation. Analyzing block-
chain networks usually involves setting up personal block-
chain nodes and using the remote procedure call protocol
encoded in JSON (JSON-RPC), which requires a powerful
computing system. For full synchronization of nodes (Full
Nodes), the recommended characteristics include a sig-
nificant amount of RAM (random-access memory), a fast
Internet connection, and a large volume of solid-state
drive (SSD). The synchronization process can take days or
even weeks. Analyzing multiple blockchain networks simul-
taneously requires considerable effort and expense.

In certain situations, there may be a need for operational
analysis of several blockchain networks, especially when
comparing their general characteristics. In such cases, it
may be appropriate to use public nodes instead of setting
up private ones. Public blockchain nodes typically provide
a JSON-RPC interface for basic minimal interaction with

DEVISING A METHOD
FOR RAPID DATA

RETRIEVAL USING
EXPLORERS FOR

BLOCKCHAIN ANALYSIS

Y a r o s l a w D o r o g y y
Doctor of Technical Sciences, Associate Professor

Department of Information Systems and Technologies*
V a d y m K o l i s n i c h e n k o

Corresponding author
Postgraduate Student

Department of Computer Science 	
and Software Engineering*

E-mail: vadym.kolisnichenko@gmail.com
*National Technical University of Ukraine “Igor Sikorsky

Kyiv Polytechnic Institute”
Beresteiskyi (Peremohy) ave., 37, Kyiv, Ukraine, 03056

The object of this study is blockchain explorers and
their usefulness in efficiently gathering data for blockchain
network analysis. The process of blockchain analysis typically
involves deploying and synchronizing a blockchain node,
which requires significant computational resources and time
for synchronization. Analyzing multiple blockchain networks
simultaneously demands substantial effort and requires even
greater costs.

The developed method involves utilizing publicly
accessible blockchain explorers, which allows for rapid data
retrieval with minimal computational resources for further
analysis. Additionally, obtaining supplementary information
from blockchain explorers provides valuable details that may
be inaccessible using traditional data retrieval methods.

The efficiency of the proposed method was verified
through the development of a prototype system. Data was
collected for 14 specified blockchain networks to analyze smart
contracts within these networks. Information about accounts
(including balance statistics) was gathered, smart contracts
were identified among the accounts, data on existing tokens
owned by smart contracts was obtained, and bytecode and
source code (where available) of contracts were collected
and decompiled. The process took nearly 24 hours on a cloud
computing machine with minimal configuration.

Based on the collected data, an example smart contract
was analyzed to demonstrate the completeness of the process.
The results of this research minimize computational resource
expenses and allow for a simplified and rapid data gathering
process without manual configuration, enabling researchers
and analysts to concentrate on subsequent stages of analysis

Keywords: rapid data retrieval, blockchain analysis,
blockchain explorers, multithreaded data processing

UDC 004.4+004.9

DOI: 10.15587/1729-4061.2023.286079

How to Cite: Dorogyy, Y., Kolisnichenko, V. (2023). Devising a method for rapid data retrieval using ex-

plorers for blockchain analysis. Eastern-European Journal of Enterprise Technologies, 4 (2 (124)), 6–16.

doi: https://doi.org/10.15587/1729-4061.2023.286079

Received date 02.06.2023

Accepted date 18.08.2023

Published date 30.08.2023

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license

1. Introduction

Blockchain analysis is a fundamental and universal con-
cept that serves as a key tool for understanding the intricacies
of blockchain networks. Its scope encompasses a variety of
methodologies and methods aimed at extracting valuable de-
tails and meaningful interpretations from these decentralized
systems. Such analysis involves various aspects, including but
not limited to transaction analysis, network analysis, technical
analysis, etc.

Blockchain transaction analysis refers to the systemat-
ic study and interpretation of blockchain data in order to
gain an in-depth understanding of transaction dynamics,
recognize patterns, and identify anomalies. It is a powerful
analytical tool that improves understanding of user behavior
and important events in blockchain networks. As the fields
of blockchain and decentralized finance (DeFi) develop rap-
idly, so does the potential for the use of transaction analysis.

The introduction of smart contracts revolutionized the way
blockchain networks are used. Transactions that used to be
limited to basic fund transfers now act as triggers to execute
complex logic and transitions between different states. This
advanced functionality includes a wide range of activities that
go beyond financial transactions. Examples include actions
in games [1] or data verification from higher-level blockchain
networks. Smart contracts have ushered in a new era where

INFORMATION TECHNOLOGY

Information technology

7

node-as-service providers (the number of protocols support-
ed by the provider, minimum costs and other information).
Although the described methods are effective for obtaining
data from blockchain networks, they assume the deployment
of a node for each individual network, which may be ineffi-
cient when analyzing several networks at once.

In article [6], the authors present an open-source system
for blockchain analysis, with support for various networks.
The system involves the use of a deployed full blockchain node
from which it imports data. The developed system is quite ef-
fective in processing data uploaded by the blockchain node. In
addition to communication with the node through the JSON-
RPC interface, the system has a mode of direct parsing of the
database without the use of intermediate network interfaces.
In any case, the use of this system requires the deployment of
a full blockchain node. In addition, the presented system only
supports Bitcoin and derivative networks.

In [7], the authors develop a cluster-based system for
parallel construction of a distributed graph of transactions
for the application of various algorithms. The developed sys-
tem allows efficient analysis of graphs for a large number of
blockchain transactions. It is a sound approach for deep and
complex analysis where intensive calculations are performed.
The disadvantage of the presented method is the lack of em-
phasis on data collection and its application to a large num-
ber of blockchain networks. For a simpler but broad analysis,
including a general analysis of several blockchain networks,
this approach may be unreasonable and resource-consuming.

In [8], a system for analyzing blockchain transactions in
the form of a blockchain explorer for the Bitcoin network is
proposed. The system uses a number of methods for analysis,
including statistical methods, known address clustering,
pathfinding, and others. The limitation of the work is that it
focuses only on one specific network and does not involve the
analysis of several networks.

In [9], a method was developed to detect a financial
pyramid based on the analysis of the byte code of a smart
contract. To obtain the byte code of the smart contract,
the authors use a blockchain explorer. Using a blockchain
explorer is justified in this case, as it makes it possible to
save resources and get the bytecode of the contract without
deploying your own node. Although the described method
of detecting a financial pyramid can theoretically be applied
in many blockchain networks, the work does not indicate
how to scale it in this network, let alone for other networks.
Therefore, the limitation of the cited work is obtaining the
necessary data. Blockchain explorer is used only as a method
of obtaining information for a specific smart contract, not
a mass analysis of contracts of many blockchain networks.

A general review of the above literature [2, 3, 5–9]
allows us to state that scaling is an unsolved issue, and the
main drawback of the described methods and solutions is
their focus on a specific blockchain network (or derivatives
of the same network), as well as, in most cases, the use of
a deployed personal full node of a specific network. When
conducting blockchain analysis, it is important to support
several blockchain networks, since a typical situation is
when a user converts the cryptocurrency of one network into
the cryptocurrency of another and continues his activities in
the last network. Scaling of the examined solutions is mostly
resource-intensive and takes a significant part of the time
in terms of setting up and synchronizing nodes. This allows
us to state that it is appropriate to conduct a study aimed
at devising another method for collecting information from

the blockchain network. The interface makes it possible to
retrieve a variety of information, such as transaction and
account details, as well as send signed transactions, for ex-
ample, to smart contracts

Therefore, scientific research into this area is important
because it makes it possible to optimize and speed up the
processes of data collection from blockchain networks.

The results of such studies are needed in practice because
they minimize the cost of computing resources and allow for
a simplified and accelerated data collection process, giving
researchers the opportunity to focus on the next stages of
analysis.

2. Literature review and problem statement

In work [2], a comprehensive review of applications, tasks,
and methods of analysis of blockchain transactions was car-
ried out. The authors identify three main tasks of transaction
analysis: associating an address with an individual (establish-
ing account owners), understanding the flow of transactions
(processing massive sequences of transactions), and analyzing
smart contracts (understanding the business logic of smart
contracts). An integral part of any analysis is data collection,
and blockchain transaction analysis is no exception. The
work emphasizes the importance of cross-network blockchain
analysis but does not indicate the means of implementing such
analysis, including the part of data collection.

The analysis of blockchain transactions and smart con-
tracts is mainly related to the study of data stored on the
blockchain (on-chain data). These data require systematic
collection and organization for comprehensive analysis.
Once a blockchain node is deployed and synchronized, inter-
faces such as JSON-RPC can be used to retrieve the required
data [3]. In cases where a more thorough and extensive anal-
ysis is required, direct communication with a synchronized
database is preferred because of possible delays associated
with the use of intermediate interfaces. However, for this
study, the focus is on light but broad analysis scenarios that
do not require a high level of intensity and depth of analysis.

An example of the analysis of blockchain transactions is
given in [3]. The authors chose a blockchain network with
a small amount of data – PIVX. The size of all data on this
network was only 17 GB. The authors of the work upload
data from the blockchain network to the database using the
JSON-RPC interface and effectively analyze transactions in
this network. But the question remains unsolved, how to scale
this approach of transaction analysis for multiple networks.

Usually, blockchain analysis involves setting up a per-
sonal node. This approach requires the availability of suffi-
ciently powerful computer systems. For Ethereum nodes, it
is recommended [4] to have a minimum of 16 GB of RAM,
a download speed of more than 25 Mbps, an SSD with a
capacity of more than 650 GB for full node synchronization,
and a 12 TB SSD for the archive node. Also, the sync process
can take anywhere from a few days to a few weeks. Analyzing
multiple blockchain networks simultaneously requires sig-
nificant effort and comes with significant costs.

Techniques for accessing blockchain networks are de-
scribed in [5]. The greatest attention is paid to three ap-
proaches: running a local full node, executing requests to
the node as a service (node-as-service), and configuring a
lightweight node. The work presents the minimum system
requirements for different networks and compares different

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/2 (124) 2023

8

blockchain networks, which could be fast and resource-effi-
cient when analyzing several networks.

3. The aim and objectives of the study

The purpose of this study is to devise a method of rapid
data collection from blockchain explorers for the analysis of
blockchain networks. This will make it possible to obtain the
necessary data simultaneously from several blockchain net-
works for further analysis quickly, without manual configu-
ration of nodes and with minimal expenditure on computing
resources. It will also improve existing systems for analyzing
blockchain transactions.

To achieve the goal, the following tasks were set:
– to determine the main stages of the method of using

explorers to rapidly obtain data for blockchain analysis;
– to analyze existing blockchain explorers and choose

the most suitable one for use in further experiments;
– to propose the architecture of the system that will use

the proposed method;
– to develop a prototype system for data collection and

analysis of blockchain networks based on the designed ar-
chitecture;

– to check the effectiveness of the proposed method of
obtaining data for blockchain analysis.

4. The study materials and methods

The object of our research is blockchain explorers and
their use in rapid data collection for the analysis of block-
chain networks. The main hypothesis of the study is to
quickly collect the necessary blockchain data using minimal
computing resources.

14 blockchain networks based on the Ethereum virtual
machine (EVM) were selected to be used for the informa-
tion gathering experiment: Acala [10], Aves [11], Energy
Web [12], Era Swap [13], Karura [14], Kava [15], MCH-
verse [16], Nahmii [17], Neatiio [18], OASYS [19], Pup-
pynet [20], Rootstock [21], SmartBCH [22], Xiden [23] .

A cloud computing machine from the Vultr platform [24]
with the least possible configuration for the selected operat-
ing system was used for the study. This is a normal perfor-
mance machine with the following parameters:

– processor: 1 virtual processor (virtual CPU) Intel
Core;

– RAM: 1 GB;
– drive: 25 TB SSD;
– outbound bandwidth: 1 TB;
– operating system: Ubuntu 23.04.

5. Results of investigating the method of obtaining data
using blockchain explorers

5. 1. The main stages of the method of using explorers
to rapidly obtain data for blockchain analysis

The method of using blockchain explorers to rapidly
obtain data for analyzing blockchain networks includes the
following actions.

Step 1. Choosing a blockchain explorer. The choice of
the explorer is the first and main step and affects the ef-
fectiveness of the method. When choosing an explorer, it

is important to take into account the task that the current
blockchain analysis solves because this makes it clear what
information will be collected and with what intensity, which
will reveal potential limitations and feasibility of using the
method. Among the criteria that can influence the choice of
an explorer are:

– information provided by the explorer. Blockchain ex-
plorer is an intermediate interface between the blockchain
network and the end user, so the data it provides to the
end user is not completely identical to that stored on the
blockchain but is pre-processed before being sent to the user.
This is not necessarily a negative factor because during data
processing, useful information is separated and efficiently
aggregated, and can also be cached, which speeds up the
overall process. In addition, blockchain explorers can pro-
vide additional information that is not stored on the block-
chain, for example, source codes of verified smart contracts;

– availability of public explorer servers for selected net-
works in which the analysis is carried out;

– speed of communication with servers on which block-
chain explorers are deployed and limitations on the number
of requests;

– source code of the explorer. The open-source code of
the blockchain explorer allows for a better understanding
of its internal mechanisms, and as a result, allows for the
identification of potentially inefficient parts and limitations.
In addition, the source code of the explorer simplifies the
software implementation of the proposed method. Also, it
allows the integration of new blockchain networks that are
not currently supported by the blockchain explorer.

Step 2. Architecture analysis. An analysis of the archi-
tecture of the existing or new blockchain network analysis
system, into which the software implementation of the meth-
od will be integrated, is carried out. An important part of the
architecture analysis is the determination of opportunities
for scaling and parallelization of processes to simultaneously
collect information from many blockchain networks.

Step 3. Determination of the method of communication
with the blockchain explorer. It is determined exactly how
information will be obtained from the blockchain explorer:
using an application programming interface (API) or a reg-
ular web interface (which involves parsing web pages). The
endpoints of the blockchain explorer are also defined, which
will be used to obtain the necessary data.

Step 4. Software implementation of data collection. At
this stage, software tools are analyzed and development of
appropriate modules for communication with the blockchain
explorer to obtain data based on the developed architecture
taking into account parallelization is carried out.

5. 2. Choosing a blockchain explorer
Blockchain explorers are web tools designed to facil-

itate the exploration of blockchain networks. These tools
allow users to efficiently search, filter, and sort transactions,
blocks, accounts, and other information in the blockchain
ecosystem. They have a wide range of applications, ranging
from simple tasks such as verifying the existence of a token
transfer transaction to more complex ones such as investigat-
ing certain criminal activities. Although the functionality
of these tools is very similar to that provided by the JSON-
RPC interface (mainly because explorers use this interface),
they collect and provide additional information.

Owing to blockchain explorers, users get access to a
number of functions that greatly simplify the process of inter-

Information technology

9

acting with blockchain data. For basic use cases, blockchain
explorers allow users to quickly verify transactions, check
balances, and track confirmations of specific transactions or
blocks. More sophisticated explorers provide a list of smart
contract methods and make it possible to interact with smart
contracts. Moreover, some of the explorers provide informa-
tion such as verified smart contracts [25], which means access
to the source code associated with the deployed bytecode.

This study focuses on EVM compatible explorers. An open-
source explorer is also preferred because it is easier for new
blockchain networks to integrate them than to create their own
explorers. Table 1 gives a comparison of different blockchain
explorers according to the characteristics that are important
for this study in order to choose the most suitable one.

Explorers usually have a similar interface. Fig. 1 shows
the main page of the Blockscout explorer.

After analyzing various blockchain networks and explor-
ers, it was concluded that Blockscout is the best candidate
for further research purposes, although it may not be optimal
for other tasks.

5. 3. System architecture for obtaining data for ana-
lyzing blockchain networks

This study focuses on the rapid acquisition of data si-
multaneously from many blockchain networks. The general
structure of the system is quite simple and is shown in Fig. 2.
It implies the sequence of data acquisition and payment
functions.

The general approach works as follows. A list of block-
chain networks (addresses of blockchain explorers) is provid-
ed at the input. The data is then retrieved from the explorers
and processed. Based on the processed data and defined

logic, additional information is obtained, which is
also subject to processing. At the final stage, the
obtained data and information are submitted for
further analysis (manual or automated).

In this study, the scheme has a more complex
structure (Fig. 3) and is focused on collecting
information about existing smart contracts in
blockchain networks. After each stage of acqui-
sition, the response is processed to extract the
necessary information and save it in a convenient
format for offline access. First, the account infor-
mation is obtained, then the smart contracts are
filtered, the available tokens are obtained, the
source code of the contracts is extracted if avail-
able, and the deployed bytecode is decompiled.

During the analysis phase, selected smart
contract source codes are additionally pre-ana-
lyzed using the ChatGPT system [42] to provide
a brief overview that may be useful during large-
scale analysis. For this purpose, the API of the
ChatGPT system is used [43]. Although other
Large Language Models (LLM) can be used for
this purpose, their detailed analysis, comparison,
and selection is beyond the scope of this study.
Here it serves to demonstrate a possible compo-
nent of a large-scale analysis system.

Table 1

Comparison of different blockchain explorer solutions

Explorer name
Open-source

code
Supported
networks

Smart
contract
bytecode

Verified source
code of a smart

contract

Blockchair [26] No 17 No No

Blockscout [27] Yes 200+ Yes Yes

Blockchain [28] No 3 No No

Bitquery [29] Yes 50+ No No

Etherscan [30] No 19 Yes Yes

Unmarshal Xscan [31] No 18 No No

Ethereum Beacon
Chain [32]

Yes 4+ No No

Otterscan [33] Yes – No Yes

Blockhead [34] Yes – No No

Ethernal [35] Yes – No No

3xpl [36] No 20 No No

EthVM [37] Yes 2 No No

BlockCypher [38] Yes 7 No No

BlockExplorer.one [39] No 10 No No

Tokenview [40] No 120+ Yes Yes

CoinMarketCap [41] No 2 No No

 Fig. 1. Main page of Blockscout explorer

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/2 (124) 2023

10

This study uses the gpt-3.5-turbo model, which is the
most efficient among the GPT-3.5 models. Models are
non-deterministic, which means they produce different re-
sults for the same inputs. The value of the temperature
parameter indicates the degree of randomness of the result,
where 0 gives the most deterministic result, and 2 – the most
random. A value of 0.3 is used in this study. As for the re-
quest sent to ChatGPT, it has the following structure: “Give
a brief summary of the next Smart Contract:” and the source
code of the smart contract is attached.

5. 4. Development of a prototype system for data col-
lection and analysis of blockchain networks

The system prototype is built on the basis of the architec-
ture developed in the previous subchapter. The architecture
provides for the simultaneous acquisition of data from sever-
al blockchain networks for the analysis of smart contracts.

The Python programming language was used for the
prototype, as well as the Beautiful Soup library [44] for pars-
ing HyperText Markup Language (HTML). These tools are
effective for prototyping and hypothesis testing.

As part of this data collection process, it is clear that
there may be situations where the source code of contracts
may not be available. In such cases, a method known as by-
tecode decompilation is used to produce pseudocode.

Bytecode decompilation is the process of reverse engi-
neering the executable bytecode that represents the low-lev-
el instructions of a smart contract. By applying specialized
tools and algorithms, the bytecode is transformed back into

a more human-readable form that resembles the structure
and logic of the original source code. This makes it possible
to get details about the core functionality, implementation
details, and possible vulnerabilities of a smart contract, de-
spite not having the original source code.

The decompiler Panoramix decompiler [45] was selected
because it is actively supported, open-source, stable, and
produces acceptable results. Panoramix converts EVM by-
tecode into Python pseudocode.

In order to get data from Blockscout, the links that are
responsible for providing certain data should be determined.
Only three Blockscout explorer endpoints are used in this
study:

– /accounts – to get account addresses, cryptocurrency
balances and account types, be it smart contract or Exter-
nally Owned Account (EOA). This endpoint provides only
top accounts whose cryptocurrency balance exceeds 0. It is
worth noting that native contracts (native smart contracts –
integrated into the blockchain system, and not deployed in
it) can be recognized as EOA and not as smart contracts;

– /address/{address}/contracts – to get the smart con-
tract source code (if available) and the deployed bytecode.
Also, if the contract is a proxy contract [46], Blockscout
detects it and provides the implementation address;

– /address/{address}/token-balances – to get the tokens
owned by the account and their quantity.

Data retrieval, parsing, and processing can be paral-
lelized using a thread pool or process pool [47]. A simplified
process of parallel data acquisition is shown in Fig. 4.

 Fig. 2. General scheme of obtaining and processing data

 Fig. 3. Data collection and processing scheme for the proposed solution

 Fig. 4. Parallel acquisition of data using a thread pool

Information technology

11

This will avoid various bottlenecks,
among which the main ones are network
latency and smart contract bytecode de-
compilation.

5. 5. Checking the effectiveness of the
proposed method

During the first stage, information
about accounts and cryptocurrency balance
for each individual account in the network
was obtained from blockchain explorers
(via the/accounts endpoint). Table 2 dis-
plays the total number of accounts with a
positive cryptocurrency balance received
on the network, as well as account bal-
ance statistics. The total balance of all
accounts is calculated as the sum of the
balances of each network account. The
maximum balance value is the largest
balance among all network accounts. The
average value of the balance is the arith-
metic mean, that is, the ratio of the total
balance to the number of received net-
work accounts. Median balances are the
value located in the middle of the sorted
series of balances of all received network
accounts. Balances are represented in
the currency of the network and cannot
be directly compared without prior con-
version.

After receiving account data, smart
contracts are selected for further process-
ing. Table 3 displays the same information
as the previous table but only for a subset
of accounts – for smart contracts. The
values are calculated in the same way as
for Table 2 but, in this case, the values are
taken only for smart contracts.

The next step involves getting the
bytecodes of the deployed smart con-
tracts from the blockchain explorers
(via the /address/{address}/contracts
endpoint), as well as their source code,
if available. All bytecodes are then
decompiled using the selected decompiler. Table 4
shows the number of deployed bytecodes in each net-
work, their average size, and the number of received
source codes. It also indicates how many bytecodes
were successfully decompiled.

The average size of a smart contract is calculated as
the ratio of the sum of the sizes of all received bytecodes
to their number received in a given blockchain network.
Source codes are available only for those smart contracts
that have been submitted to the blockchain explorer for
verification. All received bytecodes are subject to the
decompilation process, even when the corresponding
source code is available. Successfully decompiled smart
contract bytecode refers to the successful execution of
the decompiler program and does not take into account
the quality of the decompilation result.

At the next stage, information is obtained from
the explorer (via the endpoint /address/{address}/
token-balances) about tokens that belong to smart
contracts.

Table 2

Account information (including smart contracts) and cryptocurrency 	
balance statistics

Network
Number of
accounts

Balance of all accounts

Total Maximum Average Median

Acala 1224 171484729.48 168607898.02 140101.90 28.82

Aves 2352 6673004.30 1760963.98 2837.16 0.06

Energy Web 50110 74200897.13 12580691.64 1480.76 0.19

Era Swap 16121 9100000000.00 5433176313.50 564481.11 10.35

Karura 5858 1164149.56 378459.08 198.73 0.29

Kava 1581668 120557035.14 54867879.90 76.22 0.00

MCH-verse 942 447838.61 201359.23 475.41 1.45

Nahmii 698 285.31 63.60 0.41 0.01

Neatiio 787 2679038.77 1077002.95 3404.12 100.00

OASYS 24140 10012023660.41 3557500019.90 414748.29 1.00

Puppynet 2362175 249907117.84 220266275.52 105.80 0.31

Rootstock 70371 21000141.98 20996519.35 298.42 0.00

SmartBCH 32289 20999852.15 20931686.58 650.37 0.00

Xiden 7218 300006996.32 299864128.00 41563.73 0.05

Table 3

Smart contract information and cryptocurrency balance statistics

Network
Number of
accounts

Smart contract balance

Total Maximum Average Median

Acala 5 723.74 705.09 144.75 2.00

Aves 20 1639250.45 1638909.31 81962.52 3.99

Energy Web 159 29609148.74 9420942.57 186221.06 0.11

Era Swap 1514 7429415264.35 5433176313.50 4907143.50 26221.50

Karura 3 4560.32 4417.80 1520.11 130.01

Kava 63 1988393.73 1915785.34 31561.81 1.09

MCH-verse 4 276566.01 201359.23 69141.50 37603.39

Nahmii 604 278.09 63.60 0.46 0.01

Neatiio 1 1.00 1.00 1.00 1.00

OASYS 20 939600812.54 912738642.13 46980040.63 111558.39

Puppynet 5 8117.42 7668.42 1623.48 200.00

Rootstock 528 2849.93 1603.85 5.40 0.00

SmartBCH 152 16215.19 15171.61 106.68 0.01

Xiden 6 13169.73 12230.20 2194.96 212.07

Table 4

Smart contract information

Network
Average contract

size (bytes)
Received
contracts

Resulting
source codes

Decompiled
successfully

Acala 5398.20 5 1 4

Aves 5495.06 17 2 14

Energy
Web

3940.60 159 26 123

Era Swap 353.15 1509 1457 1255

Karura 940.33 3 1 2

Kava 9403.30 63 20 57

MCH-verse 5425.25 4 0 4

Nahmii 1854.62 604 0 513

Neatiio 6649.00 1 0 1

OASYS 1817.90 20 6 17

Puppynet 8159.78 5 0 5

Rootstock 1193.87 528 23 427

SmartBCH 10246.34 152 10 127

Xiden 2534.00 6 0 4

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/2 (124) 2023

12

To demonstrate the effectiveness of the proposed ap-
proach, the time of data acquisition for further analysis
was measured. The data acquisition time for each of the
above-described stages and the total time are given in Ta-
ble 5.

Table 5

Data acquisition time

Network
Loading time (sec)

Total (sec)
Accounts Contracts Tokens

Acala 58.62 12.99 6.69 78.30

Aves 67.53 19.68 12.45 99.74

Energy Web 889.63 92.88 53.21 1035.94

Era Swap 687.97 7559.63 1453.06 9700.73

Karura 252.03 5.97 3.50 261.56

Kava 48526.23 63.46 34.23 48628.76

MCH-verse 52.05 10.95 5.86 68.85

Nahmii 18.48 426.28 295.44 740.32

Neatiio 2100.09 131.61 130.85 2362.55

OASYS 644.77 23.35 14.11 682.37

Puppynet 86831.80 23.28 3.91 86869.73

Rootstock 1254.55 563.12 166.25 1984.23

SmartBCH 868.84 134.77 96.04 1099.85

Xiden 349.87 6.48 4.26 360.64

After receiving and processing all data, the analysis
process was carried out. To demonstrate the process, a
random smart contract was chosen from the set of verified
contract source codes obtained – a contract from the Aves
network with the address 0x75fA5fecE2A9783e28856c1A-
7EA3Af544690ebc8 [48]. Fig. 5 demonstrates a part of the
obtained source code [49]. Fig. 6 shows its corresponding
decompiled bytecode version [50].

Before conducting a manual analysis of the contract
source code, the ChatGPT assistant was asked to provide a
brief overview. The answer is given below:

«The next smart contract is called StakeAVS. It allows
users to stake aves tokens and receive rewards based on the
amount staked and the duration of the stake. The contract is
initialized with an owner address.

The contract includes a struct called Staker, which stores
information about each staker, including the staked amount,
the block number at which the stake was made, the staker’s
address, and the reward earned.

The contract has several functions. The calculate_re-
ward function calculates the reward for a staker based
on the number of blocks since the stake was made. The
check_balance function allows users to check the balance of
the contract. The withdraw function allows stakers to with-
draw their staked aves tokens and their earned rewards. The
premature_withdraw function allows stakers to withdraw
their staked aves tokens before the required number of blocks
have passed, but they will not receive any rewards. The stake
function allows users to stake aves tokens. The check_re-
ward function allows users to check their earned rewards.
The check_staked function allows users to check the amount
of aves tokens they have staked. The check_block_number
function allows users to check the block number at which
they made their stake. The change_owner function allows
the owner to change the owner address. The withdraw_aves
function allows the owner to withdraw aves tokens from the
contract. The stop_staking function allows the owner to stop
staking, while the start_staking function allows the owner to
resume staking.

The contract also includes a receive function, which
allows the contract to receive aves tokens as funds from
stakers.»

Fig. 5. The source code of the received smart contract

Information technology

13

The next stage involves manual analysis. The calculate_
reward function provides a reward of 1 % of the stake for
every 30,000 blocks. According to information from explor-
er [51], the current average block time is 10.3 seconds, which
means that a 1 % reward is given every 309,000 seconds.
This means that within a year (31536000 seconds), the bet
owner will receive almost 100 % profit from his investment.

Another important aspect of this contract is the with-
draw_aves function, which allows the contract owner to
withdraw all funds at any time, thereby creating a situation
where all depositors lose their investment. In addition, if
the balance of the contract is formed only from investments,
then it is not known where the contract takes the funds to
cover the rewards. These details make the contract very
risky to use.

6. Discussion of results of research on the method of
obtaining data using blockchain explorers

The method of using blockchain explorers to rapidly
obtain data from many blockchain networks includes 4 stag-
es: choosing a blockchain explorer; analysis of the system
architecture into which the software implementation of
data collection will be integrated; determining the method
of communication with the blockchain explorer; software
implementation of data collection from blockchain explorers.

For data collection, it is possible to use ordinary public
nodes and JSON-RPC interface but blockchain explorers
provide significant advantages over a simple JSON-RPC
interface. They provide additional information that con-
tributes to a more complete analysis, especially for under-
standing smart contracts in the blockchain networks under
investigation. Tables 2, 3 give general statistical information
on received top-accounts and their balances, which can be
used, for example, to determine priorities in further man-

ual or automated analysis. Table 4 presents the number of
received source codes of smart contracts for different types
of networks. The source codes of smart contracts are the
information that cannot be obtained using the usual JSON-
RPC interface of the blockchain node since the nodes do not
store the source codes. In addition, Table 4 gives information
about deployed smart contracts.

Some explorers are designed specifically for certain net-
works [52], while others support different types of net-
works [53]. Although explorers have different characteristics,
functionality, and limitations [54], in most cases they can be
used interchangeably. Among possible explorers, Blockscout
was chosen for this study. Blockscout is a platform designed
for in-depth research into blockchain systems. Multi-block-
chain support, extensive customization, and open source pro-
vide users with full access to all data and functions for various
blockchain networks. Thus, Blockscout provides users with a
wide range of opportunities to deeply explore and understand
the blockchain space. One important feature is that Blocks-
cout provides verified contract source codes and its corre-
sponding deployed bytecode to be used in further analysis.

Although Blockscout provides an API for use by third-par-
ty applications [55], in many cases it is disabled or restricted
for public use. Because of these limitations, it is reasonable to
perform web scraping and parsing [56]. Fig. 1 shows the web
interface, the main page of Blockscout Explorer. It is the web
interface that is subject to web scraping and parsing. There are
two main potential problems with this approach. First, web
scraping depends on the specific structure and layout of the
website. Any changes or updates to the website design may
interfere with the scraping process, requiring constant main-
tenance and updating of the scraping code. A second potential
problem could be imposed speed limits or blocked IP addresses
when excessive scraping activity is detected on web servers.
This can disrupt the data collection process and possibly lead
to problems accessing the server.

Fig. 6. Decompiled code of the received smart contract

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/2 (124) 2023

14

The developed architecture of the system (Fig. 3) is aimed
at obtaining data and analyzing blockchain networks, name-
ly, smart contracts. A list of networks is given to the system
input, and all the necessary information for smart contract
analysis is given to the analysis phase, including a summary of
the smart contract generated by the ChatGPT assistant. This
architecture is just an example of what a system might look
like. In fact, it can be much more complex and include even
more components for a more complete analysis but the con-
struction of such a system is beyond the scope of this study.

Based on this architecture, a multi-threaded (Fig. 4)
system prototype was designed for further experiments.
Although decompilation and the ChatGPT assistant are not
part of information retrieval step, they are part of informa-
tion processing. Therefore, to demonstrate a full-fledged ex-
ample of blockchain analysis, we included these components
in the current work.

As regards decompilation, online solutions such as Dedaub’s
EVM Bytecode Decompiler [57] and Online Solidity Decom-
piler [51] provide the best results. But for this analysis, the
offline version was chosen since the priority is the speed of
obtaining results, and not the readability or accuracy of the
resulting pseudocode. However, even poorly decompiled by-
tecode can be improved. To preserve overall processing speed
and obtain improved decompilation results, online versions of
decompilers can be used only for selected contracts.

The multi-threaded implementation (Fig. 4) made it
possible to collect data from several blockchain systems at
the same time. Table 5 gives the total time of information
collection for each investigated network, and the time spent
at each stage of collection: obtaining information about
accounts, obtaining smart contracts, obtaining information
about tokens owned by the contract. The amount of time
spent collecting information depends on the amount of infor-
mation in a specific blockchain network and the limitations
of the server from which the data is received. Due to the
multi-threaded implementation, the total time of the entire
data acquisition process is the largest total data acquisition
time from a single network. In this experiment, it took the
most time (Table 5) to receive data from the Puppynet net-
work – 86869.73 seconds, which is almost 24 hours. There-
fore, the whole process lasted up to 24 hours.

Using minimal resources, it became possible to collect
the necessary information, available smart contract source
codes, and deployed bytecodes from several blockchain
networks for further analysis. After that, as an example, an
analysis of the contract was carried out based on the col-
lected data and the source code of the contract (Fig. 5). The
analysis of the smart contract provided information about its
behavior and role, as well as the risks of its use.

It can be argued that the use of blockchain explorers is
a justified method for obtaining data and useful information
in a short period of time using a small amount of resources.
To be precise, there is no need to rent powerful servers and
manually configure nodes for each blockchain network and
synchronize them for days or weeks.

The proposed method has drawbacks. If the server on
which the explorer is deployed is slow or artificially limits
the speed, you will have to spend more time collecting the
necessary data. Sometimes the blockchain node used by the
explorer may not be fully synchronized and, as a result, may
provide out-of-date data. In addition, not all blockchain
networks may have a publicly available instance of the
chosen explorer.

If some network in the research area has the listed prob-
lems, it may be reasonable to deploy a local blockchain node
and explorer. This will allow using the same approach and
avoid different implementations.

The main limitation of this approach is large blockchain
networks, as they involve an extremely large amount of data.
In this case, the blockchain explorer will be another interme-
diate interface that introduces delay. Therefore, it is rational
to choose another data retrieval technique or to download
only a previously limited set of data.

The development of this research may consist in expanded
types of public data sources, including other types of block-
chain explorers. This will make it possible to support an even
larger number of blockchain networks, receive data faster, and
have backup sources, in case of restrictions or disconnection of
the main ones. In addition, another area of development of this
research may be its application, namely, in continuous scanning
and data retrieval. This will make it possible to observe the
defined parameters of many blockchain networks in real time
and, in case of any, to receive notifications about these changes.
In the further development of this research, possible technical
difficulties are associated with the limitations of information
sources and the servers on which they are located.

7. Conclusions

1. The main stages of the method of using blockchain
explorers for rapid simultaneous retrieval of data from many
blockchain networks for blockchain analysis have been de-
fined, namely:

– choosing a blockchain explorer;
– analysis of the architecture of the existing or new

blockchain network analysis system, into which the software
implementation of the method will be integrated;

– determination of the communication technique with
the blockchain explorer;

– software implementation of data acquisition from
blockchain explorers.

2. Existing blockchain explorers were analyzed and
Blockscout was selected as the optimal one for use in this
study. This explorer is available for more than 200 block-
chain networks, is open-source, and can provide data about
a deployed EVM smart contract, including its bytecode,
source code (if available), and proxy contract details.

3. The system architecture is proposed for obtaining data
from blockchain explorers about deployed smart contracts in
the blockchain network, and for their further analysis. The
system includes a series of blocks for data acquisition, pro-
cessing, and storage. The architecture provides for the use of
ChatGPT as an assistant for the analysis of smart contracts.

4. Based on the given architecture, a multi-threaded sys-
tem prototype has been developed that makes it possible to
receive data simultaneously from many blockchain networks
using publicly available instances of blockchain explorers.
The system collects data about smart contracts for their fur-
ther analysis. The bytecodes of the deployed smart contracts
are decompiled in the process.

5. The effectiveness of the proposed method was tested
using the developed system prototype. For the given 14 block-
chain networks, data was collected for the analysis of smart
contracts of the networks. Account data was collected (includ-
ing balance statistics), smart contracts were selected among
the accounts, data was obtained on existing tokens (owned by

Information technology

15

smart contracts), bytecodes of contracts and their source codes
(where available) were collected, and their decompilation was
carried out. The process took almost 24 hours and cost up to
USD 1 for a selected cloud computing machine with minimal
configuration. Based on the collected data, a random smart
contract was analyzed to illustrate the completeness of the
process.

Conflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial,

personal, authorship, or any other, that could affect the study
and the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

The manuscript has associated data in the data ware-
house.

References

1.	 Iyer, K., Dannen, C. (2018). Building Games with Ethereum Smart Contracts. Apress Berkeley, 269. doi: https://doi.org/

10.1007/978-1-4842-3492-1

2.	 Dorogyy, Y., Kolisnichenko, V. (2023). Blockchain Transaction Analysis: A Comprehensive Review of Applications, Tasks and

Methods. System research and information technologies. (In Press)

3.	 Werner, R., Lawrenz, S., Rausch, A. (2020). Blockchain Analysis Tool of a Cryptocurrency. Proceedings of the 2020 The 2nd

International Conference on Blockchain Technology. doi: https://doi.org/10.1145/3390566.3391671

4.	 Hardware requirements. Go-Ethereum. URL: https://geth.ethereum.org/docs/getting-started/hardware-requirements

5.	 Luo, Z., Murukutla, R., Kate, A. (2022). Last Mile of Blockchains: RPC and Node-as-a-service. arXiv. doi: https://doi.org/10.48550/

arXiv.2212.03383

6.	 Kalodner, H., Möser, M., Lee, K., Goldfeder, S., Plattner, M., Chator, A., Narayanan, A. (2020). BlockSci: Design and applications

of a blockchain analysis platform. 29th USENIX Security Symposium, 2721–2738. URL: https://www.usenix.org/system/files/

sec20-kalodner.pdf

7.	 Kılıç, B., Özturan, C.Sen, A. (2022). Parallel analysis of Ethereum blockchain transaction data using cluster computing. Cluster

Computing, 25 (3), 1885–1898. doi: https://doi.org/10.1007/s10586-021-03511-0

8.	 Kuzuno, H., Karam, C. (2017). Blockchain explorer: An analytical process and investigation environment for bitcoin. 2017 APWG

Symposium on Electronic Crime Research (ECrime). doi: https://doi.org/10.1109/ecrime.2017.7945049

9.	 Wen, X., Yeo, K. S., Wang, Y., Cheng, L., Zhu, F., Zhu, M. (2023). Code Will Tell: Visual Identification of Ponzi Schemes

on Ethereum. Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems. doi: https://

doi.org/10.1145/3544549.3585861

10.	 Acala chain explorer. Acala.network. URL: https://blockscout.acala.network/

11.	 Aves explorer. Avescan.io. URL: https://avescan.io

12.	 Energy web chain energy web foundation explorer. Energyweb.org. URL: https://explorer.energyweb.org

13.	 Eraswap explorer. Eraswap.Info. URL: https://eraswap.info

14.	 Karura chain explorer. Karura.network. URL: https://blockscout.karura.network

15.	 Kava Ethereum Co-Chain Explorer. Kava.io. URL: https://explorer.kava.io

16.	 MCH verse explorer. Mycryptoheroes.net. URL: https://explorer.oasys.mycryptoheroes.net

17.	 Nahmii explorer. Nahmii.io. URL: https://explorer.nahmii.io

18.	 Neatio. Neatio.net. URL: https://scan.neatio.net

19.	 Oasys explorer. Oasys.Games. URL: https://scan.oasys.games

20.	 BONE BONE explorer. Shib.io. URL: https://puppyscan.shib.io

21.	 Rootstock (RBTC) explorer. Blockscout.com. URL: https://blockscout.com/rsk/mainnet

22.	 SmartBCH explorer. Sonar.Cash. URL: https://sonar.cash

23.	 Xiden explorer. Xiden.com. URL: https://explorer.xiden.com

24.	 SSD VPS Servers, Cloud Servers and Cloud Hosting. Vultr.com. URL: https://www.vultr.com/

25.	 Ethereum. Verified Contracts. Etherscan.io. URL: https://etherscan.io/contractsVerified/

26.	 Blockchair - Universal blockchain explorer and search engine. Blockchair.com. URL: https://blockchair.com/

27.	 Chains & projects using blockscout. Blockscout.com. URL: https://docs.blockscout.com/about/projects

28.	 Blockchain Explorer - Bitcoin Tracker & More. Blockchain.com. URL: https://www.blockchain.com/explorer

29.	 Blockchain Explorer By Bitquery. Bitquery Explorer. URL: https://explorer.bitquery.io/

30.	 Etherscan Explorer Services. Etherscan.io. URL: https://etherscan.io/eaas

31.	 Unmarshal Blockchain Explorer. Xscan.io. URL: https://xscan.io/

32.	 Open source Ethereum blockchain explorer. Beaconcha.In. URL: https://beaconcha.in/

33.	 otterscan: A blazingly fast, local, Ethereum block explorer built on top of Erigon. URL: https://github.com/otterscan/otterscan

34.	 Blockhead - track, visualize & explore all of crypto, DeFi & web3. Blockhead.Info. URL: https://blockhead.info/explorer

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/2 (124) 2023

16

35.	 ethernal: Ethernal is a block explorer for EVM-based chains. URL: https://github.com/tryethernal/ethernal

36.	 3xpl. URL: https://3xpl.com/

37.	 ethVM: An Open Source Block Explorer for Ethereum with Users In Mind. URL: https://github.com/EthVM/EthVM

38.	 explorer: Block explorer showcasing the BlockCypher APIs. URL: https://github.com/blockcypher/explorer

39.	 Search for block, transaction, address. Blockexplorer.One. URL: https://blockexplorer.one/

40.	 The General Multi-chain Explorer and Blockchain API. Tokenview.io. URL: https://tokenview.io/

41.	 Blockchain Explorer. Coinmarketcap.com. URL: https://blockchain.coinmarketcap.com/

42.	 OpenAI (2023). GPT-4 Technical Report. arXiv. doi: https://doi.org/10.48550/arXiv.2303.08774

43.	 OpenAI platform. Openai.com. URL: https://platform.openai.com/docs/api-reference

44.	 Beautifulsoup4. PyPI. URL: https://pypi.org/project/beautifulsoup4/

45.	 palkeo. panoramix: Ethereum decompiler. URL: https://github.com/palkeo/panoramix

46.	 Meisami, S., Bodell, W. E. (2023). A Comprehensive Survey of Upgradeable Smart Contract Patterns. arXiv. doi: https://doi.org/

10.48550/arXiv.2304.03405

47.	 multiprocessing - Process-based parallelism. Python Documentation. URL: https://docs.python.org/3/library/multiprocessing.html

48.	 StakeAVS (0x75fA5fecE2A9783e28856c1A7EA3Af544690ebc8) - explorer. Avescan.Io. URL: https://avescan.io/address/0x75fA5

fecE2A9783e28856c1A7EA3Af544690ebc8

49.	 Stake.Sol. URL: https://gist.github.com/VaWheel/072250e3b419fb9ad8e5c9b411776579

50.	 StakeDecompiled.Py. URL: https://gist.github.com/VaWheel/ad80df2f8b15067388876e92d8b80901

51.	 Online Solidity Decompiler. URL: https://ethervm.io/decompile

52.	 RSK explorer. Rsk.Co. URL: https://explorer.rsk.co/

53.	 Blockchair - Crunchbase Company Profile & Funding. Crunchbase.com. URL: https://www.crunchbase.com/organization/blockchair

54.	 Block Explorers. Alchemy.com. URL: https://www.alchemy.com/best/block-explorers

55.	 API - Blockscout. Blockscout.com. URL: https://docs.blockscout.com/for-users/api

56.	 Brenning, A., Henn, S. (2023). Web scraping: a promising tool for geographic data acquisition. arXiv. doi: https://doi.org/10.48550/

arXiv.2305.19893

57.	 EVM Bytecode Decompiler. Dedaub.com. URL: https://library.dedaub.com/decompile

