
Information technology

17

the test. The presence of infinite loops adds to the problem
of stopping test generation [3].

The increase in computational complexity when scaling
the functionality of the software results in a corresponding
increase in the costs of using this testing method. This limits
the practical application of symbolic execution to individual
modules and programs with a minimal amount of function-
ality. The time spent on generating tests for software with a
significant amount of functionality is sometimes measured
in hours [4].

Considering the need to improve the efficiency of calcu-
lations for the method of symbolic execution, research aimed
at achieving this goal should be considered relevant.

2. Literature review and problem statement

Work [4] describes the current state of symbolic execu-
tion, namely, the features of its application and its results for
the Klee tool. These results demonstrate that test generation
requires significant computing time and resources. To solve
this problem, static analysis methods are used in [5] to sim-
plify the abstract syntactic tree and optimize predicates for
logical expressions. This increases the efficiency of calcula-
tions, but the possibility of their parallel execution remains.
In the course of research [6] and similar, the increase in
efficiency from the use of parallel computing is significant
and allows for a limited scaling of the method of symbolic

IMPROVING THE
EFFICIENCY OF

SYMBOLIC EXECUTION
BY CLUSTERING THE

INPUT DATA BASED ON
THE COMPLEXITY OF

TEST GENERATION
R o m a n B a z y l e v y c h

Doctor	of	Technical	Sciences,	Professor*
A n d r i i F r a n k o
Corresponding author

Postgraduate	Student*
E-mail:	andrii.v.franko@lpnu.ua

*Department	of	Software
Lviv	Polytechnic	National	University

S.	Bandery	str.,	12,	Lviv,	Ukraine,	79013

The object of research is means to increase
computational effectiveness for automatic unit test
generation process. It provides arguments for developing
new method to achieve wider use of symbolic execution
in commercial software development. The main task of
the research is to create adaptive code clustering method
that considers test generation complexity for structural
source code elements and available computational
resources that will increase effectiveness of computations.
It is achieved by estimating test generation complexity and
balancing the it for produced clusters during clusterization.
As a result, proposed clustering method is adaptive to
hardware and source code variability. It is shown that
developed approach provides up to 30 % increase in
computation effectiveness compared to clustering based
on code structural properties alone for selected samples
and up to 250 % in separate cases. This is caused by
balanced estimated test generation complexity within
generated clusters. It limits path explosion to expected
levels that match computational resources for every
cluster. Estimate of test generation complexity makes it
possible to stop the computation when the spent time
exceeds the corresponding complexity limit. Consequently,
it makes it possible to prevent performing unnecessary
computations. Proposed method makes it possible to use
symbolic execution in commercial software development
due to higher adaptability for source code and hardware
variations. It will allow to reduce expenses on early-
stage software testing and provide means for determining
feasibility of symbolic execution for commercial projects

Keywords: unit testing, effective computations,
dynamic code analysis, static code analysis

UDC 004.41

DOI: 10.15587/1729-4061.2023.286160

How to Cite: Bazylevych, R., Franko, A. (2023). Improving the efficiency of symbolic execution by clustering the input

data based on the complexity of test generation. Eastern-European Journal of Enterprise Technologies, 4 (2 (124)), 17–25.

doi: https://doi.org/10.15587/1729-4061.2023.286160

Received date 01.06.2023

Accepted date 18.08.2023

Published date 30.08.2023

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license

1. Introduction

Automated test generation is one of the key tasks for
advancing the software development industry. Solving
this problem is necessary for the further development of
means of generating software code and increasing the ef-
ficiency of the early stages of testing and development of
software products. Heuristic algorithms [1] and artificial
intelligence tools [2] are used to generate tests. One of the
methods of automated unit testing is symbolic execution
[1]. This method interprets the program code that is the
object of the test, manipulating the value of the variables
marked as symbolic in order to achieve all possible states
of the test program execution. This makes it possible to
detect errors related to memory usage, division by zero,
and others corresponding to an unexpected state of the
software [1].

The main limitation of the symbolic execution method
is the high computational complexity of the test generation
process. To achieve 100 % coverage of the code with the
generated tests, it is necessary to bypass all possible ways
of executing the program. This leads to the problem of
explosive growth in the number of paths. As a result, their
number grows exponentially depending on the existing con-
ditions and cycles, which leads to a corresponding increase
in the size of the data for processing by means of symbolic
execution. Increasing the length of the path leads to the
complexity of SMT/SAT tasks for generating input data for

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/2 (124) 2023

18

ability and computational efficiency. It will also provide the
following benefits:

1) estimation of the execution time of full testing of the
program code by the method of symbolic execution, which
makes it possible to quickly assess the feasibility of conduct-
ing this type of testing for selected input data with available
computing resources;

2) the ability to balance the complexity of generating
tests for the formed clusters after dividing the input data,
which will make it possible to quickly obtain test results.

All this allows us to state that it is appropriate to con-
duct a study aimed at improving the efficiency of calcula-
tions for automated unit testing due to clustering based on
the assessment of the complexity of test generation.

3. The aim and objectives of the study

The purpose of this study is to improve the computation-
al efficiency of the symbolic execution method by increasing
its adaptability to variations in input data and computing
systems. This will reduce costs for the software testing
process. The adaptability of the symbolic execution method
to input data will make it more widely used in commercial
software development.

To achieve the goal, the following tasks were solved:
– to devise a method for assessing the complexity of gen-

erating tests for a given
software code on available computing resources, which

will provide an opportunity to limit the explosive growth of
the number of paths;

– to construct a method for clustering the software code,
which will ensure a balanced complexity of generating tests
for each cluster.

4. The study materials and methods

4. 1. Basic hypothesis, research assumptions, materi-
als and methods

The object of research is methods for improving the
efficiency of calculations for automated unit testing. The
main hypothesis assumes an increase in the computational
efficiency of the symbolic execution method due to the
clustering of the input data, which will limit the explosive
growth of the number of paths according to the hardware
capabilities of each cluster. To this end, the method of assess-
ing the complexity of test generation and clustering based on
it will be used, which should provide appropriate results. To
apply the proposed method, a dynamic analysis of test gen-
eration time for hardware using samples will be conducted.
To test the hypothesis, computational experiments will be
conducted to generate tests for selected samples of software
code and a comparison of the efficiency of calculations will
be performed.

Sample programs were designed to evaluate the influence
of the type and number of C language operators on symbolic
execution. They consist of one condition containing as a logi-
cal expression symbolic variables combined with an operator
of the C language. The dependence of the time required for
automated testing of the condition and the number of opera-
tors of the selected type is evaluated. Such an approximation
must be performed for the symbolic execution tool and the
hardware platform as a unique combination. It can only be

execution. However, given the non-linear growth in the num-
ber of operations, simple speed-ups due to the use of more
powerful computing systems and parallel computing cannot
compensate for the explosive growth in the number of paths.

In study [1], it is proposed to divide the code into seg-
ments when analyzing loops and external calls. It also sug-
gests using the unit testing approach for selected segments.
This approach solves the problem of the exploding number of
paths for loops but not for conditional statements contained
in the program code. Also, a separate analysis of each cycle
can lead to the problem of stopping automated unit testing.
To solve the stopping problem, [3] suggests using an incre-
mental approach to the symbolic analysis of cycles. This
is achieved by analyzing the variables and selecting only
those paths that lead to changing the results of the symbolic
execution of the loop, which makes it possible to reduce the
number of paths and partially solve the stopping problem
for loops. In study [7], it is proposed to combine paths to
reduce their number, which leads to a partial solution to
the problem of explosive growth in the number of paths but
does not guarantee its solution in all cases. In order to limit
the explosive growth of the number of paths depending on
the cycles and conditions, an approach [8, 9] aimed at using
clustering to divide the software into modules by structural
characteristics is proposed at the same time. This helps limit
the growth of the number of paths by the number of condi-
tions and cycles that belong to the selected cluster (module).
This approach divides the set of functions as structural units
of the software code into clusters. Clustering is based on the
relationship of a feature to other features and data outside
its local scope. This makes it possible to dynamically change
the sizes of clusters by changing the similarity threshold for
combining functions into clusters [8]. The division into clus-
ters [8] based on structural characteristics is not adaptive to
the characteristics of a specific computer system and to the
peculiarities of the source code but requires the determina-
tion of a similarity threshold for clustering. This leads to the
selection of such a value by the method of expert evaluation,
and not on the basis of data on the capabilities of the com-
puter system and the characteristics of the input data. That,
in turn, leads to:

1) overhead costs in the form of memory allocation and
freeing, reading data from the disk, and performing initial-
ization when testing individual structural units;

2) the calculation time will grow exponentially (due to
the explosive growth of the number of paths), as a result of
which they will be ineffective.

For each specific combination of computing resources
and software code, a set of possible divisions into clusters
can be proposed. Each of them will give different calculation
efficiency. This will be expressed in tests covering a greater
percentage of the statements of the program code per unit of
time. To improve the efficiency of calculations, you should
choose the best options from the available set. Manipulation
of the clustering parameters will allow the calculation to be
adapted to the hardware and the given software code for
testing. The task arises to estimate the complexity of gen-
erating tests for a cluster, taking into account variations in
input data (program code for testing) and properties of the
computing system.

The ability to estimate the complexity of generating
tests for a selected computer system will make it possible to
more widely implement the method of symbolic execution in
commercial software development by increasing its adapt-

Information technology

19

valid within the limits close to the range of samples used.
This makes it possible to evaluate the impact of logical ex-
pressions as a component of conditions and cycles that affect
the time of generating tests for given computing resources.

Samples are used for computational experiments in or-
der to determine the relationship between execution time
and test generation complexity estimated by the proposed
method for selected hardware. They contain a loop with a
given number of iterations and an appropriate termination
condition (the number of iterations varies from 100 to 2000
in steps of 100) that produces the appropriate number of
paths. This will allow the estimated complexity to be related
to the hardware platform resources.

Samples from GitHub were used to evaluate the efficien-
cy of calculations. 10 samples representing utilities (parsers,
console games, compilers) and Git code are used. To perform
computational experiments, the Klee (USA) symbol exe-
cution tool was chosen [4]. It generates tests for the input
program code written in the C language, which has been
converted to byte code [10]. Before performing clustering,
the capabilities of the computer system are determined. To
do this, tests are generated on reference samples and polyno-
mial approximation of the time spent on each type of oper-
ator in the C language is performed. Based on the obtained
data and the complexity assessment method, the relationship
between complexity and execution time is formed for a given
computer system. Based on this ratio, the complexity limit
for future clusters is chosen. To determine the maximum
complexity, the test generation complexity is first calcu-
lated for all the software code to be tested. Then, the time
corresponding to the obtained complexity is determined. If
the obtained score corresponds to the expected time limits
of the test (determined by the expert), then the determined
maximum difficulty is used. If the resulting estimate of
execution time is too high, it is divided by two and a new
maximum complexity is determined. Based on it, clustering
is performed, and the new execution time is determined
as the sum of the execution times for all obtained clusters.
This step is repeated until either the expected execution
time satisfies the expert, or the testing is deemed inadvis-
able. The following utilities cflow (building a call tree) and
pycparser (building and manipulating an abstract syntactic
tree) were used to divide the program code into clusters.
We implemented software that, using the specified utilities,
divides the program code into clusters according to struc-
tural characteristics, evaluates the complexity of generating
tests and balances the complexity for existing clusters. The
complexity assessment is based on data on the capabilities of
the computing system and static analysis of the code (data
on the number of cycles, conditions and operators). Separate
files are created from the formed clusters for their symbolic
execution. Each of the generated files contains only the
functions belonging to the corresponding cluster. Tests are
generated for them, the generation time and operator coverage
metrics are measured, and the ratio of time to coverage is calcu-
lated. The program code of each sample is divided into clusters
and tested by the Klee tool. The calculation was performed on
an Intel-I5-11320H processor (USA).

4. 2. Evaluating the effectiveness of calculations
Evaluation of the results of test generation is possible

according to the parameters of the number of found de-
fects and coverage metrics. Comparing defects requires
analysis of each, so such results cannot be used to evaluate

computational efficiency. There are several metrics of code
coverage [11]. Path and condition coverage metrics are not
comparable when the number of elements in the cluster
changes. Only operator coverage by tests can be compared
for different clustering options. Operator coverage is com-
pared as percentage coverage multiplied by the ratio of the
number of operators within the cluster to the total number.
Thus, it is possible to compare the results of generating tests
for different clustering options. To evaluate the efficiency
of calculations, it is suggested to evaluate the coverage of
operators achieved per unit of time. Such an assessment will
make it possible to compare the efficiency of calculations for
different clustering options using one parameter.

5. Results of improving the efficiency of calculations due
to the clustering of input data based on the complexity of

generating tests

5. 1. Results of the development of a method for as-
sessing the complexity of generating tests for structural
units of the program code

The first task concerns the development of a method for
estimating the complexity of symbolic execution for a clus-
ter. Available metrics do not reflect the complexity of gen-
erating tests [12]. The new complexity metric should reflect
the number of operations that the symbolic execution tool
would need to generate tests based on the sample code. This
includes the operations necessary to cover all available paths
and the selection of input data to satisfy the relevant con-
ditions. The condition can be characterized by the number
of operators and the size of the operands. For standard op-
erators, operand size can be neglected because there are no
operators in a typical programming language that perform a
function on an array of data at once. Therefore, to evaluate
the complexity, it is necessary to determine the number of
paths and the number of operators.

To obtain the necessary information, it is suggested to
perform an analysis of the instructions for each element
(function, as a structural unit of the program code) in the
cluster. This is achieved by bypassing the AST (Abstract
Syntax Tree). It contains information about each condition,
cycle, and the parameters used in them. The complexity of
generating tests for a function that is an element of a cluster
should be the sum of the complexity of all high-level condi-
tions/loops (at the first level in its AST). The complexity of
the node can be calculated using formula (1):

1
.

n

i
i

С с
=

= ∑

 (1)

In formula (1), ci is the estimated complexity of the
high-level cycle/condition belonging to the node, n is the
number of conditions and cycles at the top level of the ab-
stract syntax tree of the function. The explosive growth in
the number of paths is taken into account when calculating
ci for each cycle/high-level condition. Formula (1) also
describes the complexity estimation for nested conditions/
loops and can be applied recursively.

It is assumed that items with higher test generation com-
plexity would require more CPU time to be processed by the
symbolic execution tool. The number of paths to test increas-
es with each additional condition or cycle contained in the
cluster. A condition can be independent (when the condition
depends on a unique set of variables) or dependent (when at

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/2 (124) 2023

20

least one variable is used in more than one condition). Each
additional independent condition multiplies the number
of paths by two. Each dependent multiplies by a number
from two to one. This is a consequence of the fact that some
conditions may be mutually exclusive. For example, if one
condition out of five is mutually exclusive to two conditions
and does not apply to the other two, then the number of
paths would be 24 instead of 32. Parsing and analyzing de-
pendences between conditions requires symbolic execution.
To avoid the recursive problem, the worst-case number of
paths should be used (all conditions are independent of each
other). As a result, the actual number of paths for which it is
necessary to generate tests may be less than the estimated
number.

A loop in conditional similarity increases the number
of paths by at least two times. The first when the loop body
was executed once and the second when the loop body was
skipped. Loops increase the number of paths similarly to
conditions, but the range of the multiplier can be from 1 to
infinity, due to the large number of iterations. There can be
a definite loop that always executes a fixed number of iter-
ations, and an indefinite loop that depends on the symbolic
value (potentially an infinite number of paths). Loops con-
tribute to the increasing complexity of test generation more
than conditions. If the number of iterations is undefined, a
stalling problem occurs. To combat the deadlock problem,
a limit on the number of paths through the loop body is
proposed. The limit prevents long or infinite symbolic exe-
cution of the loop body at the expense of detecting potential
errors. This happens due to the analysis of a limited number
of paths, which does not affect the code coverage indicators.
A symbolic execution of the loop could potentially detect
only a few defects but process thousands of paths, resulting
in corresponding time costs. The constraint introduced will
allow the symbolic execution to analyze alternative paths.
This will increase the code coverage metric of the tests and
potentially increase the number of detected defects. Limit-
ing the number of paths for the loop body must be defined
by the user as a parameter of the test generation algorithm.

A final factor affecting the complexity of test genera-
tion is the statements and operands used in conditions and
loops to control the flow of execution. A set of operators and
conditions creates a SAT/SMT problem [4]. By traditional
means, it is impossible to predict the execution time of heu-
ristic algorithms for solving the above-mentioned problems.
It is proposed to approximate with a polynomial function
the test generation time for the condition containing the
selected type of operator. Given the large number of possible
combinations of operators, it is only possible to estimate the
increase in execution time for their type. The proposal is
based on the following assumptions:

1) one condition or loop usually uses only a small number
of statements;

2) cases where SMT or SAT problems present in the code
are insoluble for heuristics are rare;

3) clustering will limit the size of SMT and SAT tasks;
4) some operators are more complex for symbolic execu-

tion than others;
5) several nested conditions can be represented as a set

of logical expressions, which are combined by the logical
operator &&.

The above statements show that a practical and simple
way to account for the impact of statements on the genera-

tion time of unit tests is to estimate the execution time for
each statement type based on the number of times they are
repeated in a condition. This model will ignore potential
combinations of operators whose running time growth will
differ from the approximated polynomials for each.

It is proposed to estimate the complexity of the condi-
tion/cycle according to the following formula:

() ()
1

2 .
n

l
j j

j
c k r a s

=
= ⋅ + ⋅∑ (2)

In it, r represents the number of operators of type j. The
function k represents an approximate polynomial that de-
scribes the expected time for the symbolic execution of an
operator of type j, l is the number of conditions, a is the num-
ber of cycles, s is the limit of iterations per loop body. Such
an estimate of the complexity of generating tests involves the
product of the maximum amount of time for generating input
data for the most difficult path by the maximum possible
number of paths for a cluster element. This approach aims to
identify and separate potential sites with high complexity.
The complexity estimate is not the same as the execution
time estimate. It cannot detect infinite loops or unsolvable
SAT/SMT problems.

However, with each additional operator in the boolean
expression and each additional condition/loop within the
cluster, they are more likely to occur.

5. 2. Results of clustering method development based
on estimation of complexity of generating tests

The previously proposed clustering algorithm [8] should
be improved as follows:

1) grouping by location. This means that close clusters
should be merged to reduce the number of clusters and to
avoid clusters from individual elements;

2) division and exchange of elements between clusters to
achieve balanced test generation complexity for each cluster.

The first proposed improvement requires tracking the
structural relationships between cluster elements. A cluster
with one element should be included in another cluster if it is
structurally related to it. If it is connected to several clusters
at the same time, the one with the largest number of struc-
tural connections is chosen. If it is the same, the selection is
made randomly. This is shown schematically in Fig. 1. This is
necessary to reduce the number of clusters and simplify the
further process of their balancing.

Calculating the complexity of generating tests for each
element of a cluster makes it possible to exchange elements
between clusters for balancing [13]. For this purpose, it is
proposed to apply the following approach:

1. Set limits on the complexity of generating tests for the
cluster. Calculate it for each of the available clusters.

2. If the limit is exceeded, transfer the element for which
the complexity of generating tests is the highest within the
cluster to one of the neighboring clusters. The cluster with
the largest number of connections to the required element
will be selected. If the estimated test generation complexity
exceeds the limit, the cluster with the next highest number
of connections will be selected. This is shown in Fig. 2.

3. If there is no cluster that can accept the element, then
it is separated to a new cluster. This is shown in Fig. 3.

4. The procedure of transferring elements to neighbors
and dividing clusters is repeated iteratively.

Information technology

21

a

b

Fig.	1.	Inclusion	of	a	cluster	containing	one	element	into	the	cluster	with	the	largest	number	of	common	structural	connections:		
a	–	a	cluster	of	one	element	exists;	b	–	clusters	are	combined

a

b

Fig.	2.	Balancing	the	complexity	of	generating	tests	between	two	clusters:	a	–	the	complexity	of	generating	tests	is	not	balanced;	
b	–	the	difficulty	is	balanced

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/2 (124) 2023

22

The results of the assessment of the influence of the type
and number of C language operators on the symbolic exe-
cution time are given in Table 1. According to the proposed
methodology, operators were divided into equivalent groups.
For each of them, an approximation of the execution time
was carried out depending on the number of operators under
the condition by way of dynamic analysis of the results of
generating tests using Klee.

Symbolic execution for memory access operators can
take a significant amount of time. This occurs when the
variable used for indexing depends on character data. In this
case, it is suggested to use a polynomial obtained for a sim-
ilar case in the absence of dependence of the index on char-
acter data. The resulting score will limit the complexity and
execution time for the cluster. This will solve the problem of
stopping test generation for this case.

There is a task to determine the maximum complexity for
the cluster. It depends on the characteristics of the computing
system and the input data in the form of the software code
under test. The complexity limit will be unique to the com-
bination of software and hardware tested. By symbolically
executing the loop with a variable number of iterations, the
relationship between execution time and complexity is estab-
lished. As a result, each cluster can have a time limit for execu-

tion. This will help solve the problem
of «freeze» in symbolic execution.

Fig. 4 shows the relationship
between test generation time and
estimated test generation com-
plexity when changing the number
of paths in the program code. This
parameter must be entered into
the algorithm manually. Accord-
ing to the calculated ratio, the
maximum complexity should be
chosen based on the relationship

with the symbolic execution time. It is proposed to be de-
termined based on the capabilities of the computer system
and the needs of the user. Complexity increases non-lin-
early from formula (2) through the use of conditions/
loops. The measured execution time increases similarly.
The maximum complexity is chosen to limit the non-linear
growth of execution time. The maximum execution time
for a cluster is defined as a constant by the user of symbol-

a

b

Fig.	3.	Balancing	the	complexity	of	generating	tests	by	creating	a	new	cluster:	a	–	the	complexity	of	generating	tests	is	not	
balanced;	b	–	the	complexity	is	balanced	by	the	formation	of	a	new	cluster

Table	1

C	language	operators	and	polynomials	approximating	them	for	Klee	symbolic	execution	
tool,	IntelI5-11300H	processor	in	the	range	from	0	to	100	operators	per	condition

Operator Type of polynomial Polynomial

+, –, Polynomial of the first power 0.0012*x+0.015

*, /, <<, >> Polynomial of the first power 0.016*x+0.037

&, |, ||, &&, <, >, ==, !=, <=, >= Polynomial of the second power 0.00004*x2+0.00012*x+0.004

*,[],−> Polynomial of the second power −0.1686*x2+13.558*x+6.2909

% Polynomial of the second power 0.851*x2–1.85*x–7.71

Information technology

23

ic execution. Then the corresponding difficulty is chosen
as the maximum difficulty.

The results of code execution with clustering by com-
plexity in comparison with the previously proposed clus-
tering method and standard symbolic execution are given
in Table 2 below. The value corresponding to 21 minutes
of execution time was chosen as the maximum difficulty.
This value was obtained by expert evaluation. For the
samples used, taking into account the number of clusters
from 7 to 20, the maximum expected execution time
would be from 147 to 420 minutes. This calculation time
will allow the research to be performed, so the chosen
value is acceptable.

Table	2

Comparison	of	the	efficiency	of	calculations	for	generating	
tests	using	the	Klee	tool	for	the	IntelI5-11300H	processor	

when	using	the	proposed	clustering	method	and	other	
methods

Program code

Results of implementation

Method
Code coverage
generated per

minute

Git tool
program code

Standard symbolic execution [4] 0.013 %

Clustering by structural code
elements [7]

0.018 %

Clustering by structural code el-
ements to balance the complexity

of generating tests for clusters
0.023 %

Average for 10
code samples

Standard symbolic execution [4] 0.69 %

Clustering by structural code
elements [7]

1.24 %

Clustering by structural code el-
ements to balance the complexity

of generating tests for clusters
1.64 %

The proposed methods make it possible to perform cal-
culations 2.5 times more efficiently than standard symbolic

execution, and 30 % more efficient than
symbolic execution with code clustering
by properties.

6. Discussion of results of clustering
input data based on the assessment of

the complexity of generating tests

Our results are explained by the ap-
plication of the devised method for as-
sessing the complexity of test generation
and the clustering method based on it.
Complexity assessment makes it possible
to perform clustering of input data taking
into account the features of the comput-
ing system and software code. This is
shown in Fig. 4. There, the relationship
is established between the complexity
estimated by formula (2) using the data
in Table 1 and execution time. The rela-
tionship is characterized by a power-law
function, which allows estimation of exe-
cution time based on complexity for a giv-
en hardware platform. For each hardware
platform combination, such calculations
will be unique and may be performed us-
ing samples. This makes it possible to use

the developed clustering method, which will be adaptive to
computing resources and input data. The proposed cluster-
ing method in Fig. 1−3 has made it possible to improve the
efficiency of calculations by 30−250 % compared to [8] and
the usual symbolic execution.

As a result of evaluating the complexity of test gener-
ation, the problem of stalling for symbolic execution can
be solved. The established correlation between execution
time and test generation complexity for a combination of
hardware platform and symbolic execution engine allows us
to limit the explosive growth of the number of paths within
clusters according to the input data. Thus, it is possible to
set a time limit for the symbolic execution of each cluster,
which will correspond to the features of the software code
included in it. From the obtained results, it can be seen
that in a significant number of cases, adaptability makes it
possible to improve the efficiency of calculations for various
input data. This makes it possible to reduce the overhead of
calculations and avoid the increase in the calculation time of
the exponential function.

In comparison with [8, 9], where only structural con-
nections are taken into account, the complexity of generat-
ing tests for the distribution of elements between clusters
is used. In comparison with studies [5, 6], a different
approach is used to reduce the number of operations, and
the proposed clustering makes it possible to limit the num-
ber of paths for analysis within the cluster. Compared to
study [1], the selected segments refer to the entire program
code, not only cycles, and the division is adaptive to the
capabilities of the computer system. In comparison with 3,
the stopping problem can be solved not only for loops but
also for difficult to analyze logical expressions by means of
symbolic execution.

y = 1,0718x1,6982

0

50

100

150

200

250
0,

41
6

0,
83

2
1,

24
8

1,
66

4
2,

08
2,

49
6

2,
91

2
3,

32
8

3,
74

4
4,

16
4,

57
6

4,
99

2
5,

40
8

5,
82

4
6,

24
6,

65
6

7,
07

2
7,

48
8

7,
90

4
8,

32

Ex
ec

ut
io

n
tim

e,
 s

Complexity of test generation based on formula (2)

Dependence of execution time on the complexity of test generation
based on formula (2)
Power (dependence of execution time on the complexity of test
generation based on formula (2))

Fig.	4.	Dependence	between	the	time	of	generating	tests	by	the	Klee	tool	and	the	
complexity	of	their	generation	and	its	approximation	by	a	power	function	for	the	

IntelI5-11300H	processor

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/2 (124) 2023

24

In general, unlike the considered approaches, our study
offers an adaptive approach to the problem of explosive
growth in the number of paths, which uses data about the
computing system and takes into account the peculiarities
of the input data. The developed methods make it possible to
improve the efficiency of calculations for symbolic execution
tools, taking into account possible software variations. The
devised method of assessing the complexity makes it possible
to estimate how long it takes to generate tests and perform
clustering of input data on this basis, which in turn increases
the efficiency of calculations.

The use of the proposed methods has limitations. Op-
tions such as the maximum test generation complexity
for the cluster make it possible to choose between quickly
checking the code with symbolic execution tools and ana-
lyzing more paths to increase the probability of detecting
defects. However, lowering the test generation complexity
limit could lead to detection of states that would be impossi-
ble during program execution and marking them as defects.
Computational performance improvements may differ from
actual results due to the limited number of samples for hy-
pothesis testing and the high variability of input data and
computing systems. In some cases, symbolic execution of the
entire program code, or using clustering and segmentation
methods that are not adaptive to the peculiarities of the
input data, can give better results. However, for widespread
use in the commercial development of software products,
adaptability is necessary.

The study has flaws. In particular, the use of computing
resources for tasks other than test generation can affect the
dynamic analysis of the system’s capabilities and lead to an
incorrect estimate of the complexity. The use of operator
samples is designed for one type of operator only, so there
may be deviations when evaluating a combination of opera-
tors based on this data.

The application of the methods reported in [3] will
make it possible to improve the estimation of the complex-
ity of generating tests for loops in the future. The use of
parallel computing methods will make it possible to scale
the approach. Improving the accuracy of runtime estima-
tion based on the complexity of test generation and running
computational experiments on more hardware platforms
will improve the method.

7. Conclusions

1. The methods of dividing input data of symbolic execu-
tion and their preliminary processing were analyzed. It was
determined that the use of static and dynamic analysis for
this could improve the efficiency of symbolic execution. To
improve the efficiency of calculations, it is proposed to use
clustering of the software code based on the assessment of
the complexity of generating tests. The proposed method is
an improvement of the previously described clustering meth-
od for symbolic execution.

2. A method has been devised for evaluating the com-
plexity of generating tests for software code by analyzing
its instructions. We used static analysis of conditions,
instructions, and loops along with dynamic analysis of
test generation times for reference code samples. The
maximum complexity is determined based on the correla-
tion between execution time and complexity determined
by dynamic analysis for a given hardware platform. This
allows balancing the complexity of generating tests for
selected modules. Symbolic execution of complexity-bal-
anced clusters generates 20 % more code coverage per
minute of execution than without balancing, with up to
a 45 % efficiency gain compared to computing without
input splitting.

Conflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial,
personal, authorship, or any other, that could affect the study
and the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

The data will be provided upon reasonable request.

References

1. Le, W. (2013). Segmented symbolic analysis. 2013 35th International Conference on Software Engineering (ICSE). doi: https://

doi.org/10.1109/icse.2013.6606567

2. Shen, S., Shinde, S., Ramesh, S., Roychoudhury, A., Saxena, P. (2019). Neuro-Symbolic Execution: Augmenting Symbolic Execution

with Neural Constraints. Proceedings 2019 Network and Distributed System Security Symposium. doi: https://doi.org/10.14722/

ndss.2019.23530

3. Yi, Q., Yang, G. (2022). Feedback-Driven Incremental Symbolic Execution. 2022 IEEE 33rd International Symposium on Software

Reliability Engineering (ISSRE). doi: https://doi.org/10.1109/issre55969.2022.00055

4. Cadar, C., Nowack, M. (2020). KLEE symbolic execution engine in 2019. International Journal on Software Tools for Technology

Transfer, 23 (6), 867–870. doi: https://doi.org/10.1007/s10009-020-00570-3

5. Vishnyakov, A., Fedotov, A., Kuts, D., Novikov, A., Parygina, D., Kobrin, E. et al. (2020). Sydr: Cutting Edge Dynamic Symbolic

Execution. 2020 Ivannikov Ispras Open Conference (ISPRAS). doi: https://doi.org/10.1109/ispras51486.2020.00014

6. Singh, S., Khurshid, S. (2020). Parallel Chopped Symbolic Execution. Lecture Notes in Computer Science, 107–125. doi: https://

doi.org/10.1007/978-3-030-63406-3_7

7. Păsăreanu, C. S., Kersten, R., Luckow, K., Phan, Q.-S. (2019). Symbolic Execution and Recent Applications to Worst-Case Execution,

Load Testing, and Security Analysis. Advances in Computers, 289–314. doi: https://doi.org/10.1016/bs.adcom.2018.10.004

Information technology

25

8. Bazylevych, R. P., FrankoА. V. (2022). Hierarchical model of automated test generation system. Scientific Bulletin of UNFU, 32 (4),

77–83. doi: https://doi.org/10.36930/40320412

9. Bazylevych, R., Franko, A. (2022). Input decomposition by clusterization for symbolic execution. 2022 IEEE 17th International

Conference on Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/csit56902.2022.10000433

10. Poeplau, S., Francillon, A. (2019). Systematic comparison of symbolic execution systems. Proceedings of the 35th Annual Computer

Security Applications Conference. doi: https://doi.org/10.1145/3359789.3359796

11. Mues, M., Howar, F. (2022). GDart: An Ensemble of Tools for Dynamic Symbolic Execution on the Java Virtual Machine

(Competition Contribution). Lecture Notes in Computer Science, 435–439. doi: https://doi.org/10.1007/978-3-030-99527-0_27

12. Peitek, N., Apel, S., Parnin, C., Brechmann, A., Siegmund, J. (2021). Program Comprehension and Code Complexity Metrics: A

Replication Package of an fMRI Study. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion). doi: https://doi.org/10.1109/icse-companion52605.2021.00071

13. Bazylevych, R., Palasinski, M., Bazylevych, L., Yanush, D. (2013). Partitioning optimization by iterative reassignment of the

hierarchically built clusters with border elements. 2013 2nd Mediterranean Conference on Embedded Computing (MECO). doi:

https://doi.org/10.1109/meco.2013.6601362

