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the test. The presence of infinite loops adds to the problem 
of stopping test generation [3].

The increase in computational complexity when scaling 
the functionality of the software results in a corresponding 
increase in the costs of using this testing method. This limits 
the practical application of symbolic execution to individual 
modules and programs with a minimal amount of function-
ality. The time spent on generating tests for software with a 
significant amount of functionality is sometimes measured 
in hours [4].

Considering the need to improve the efficiency of calcu-
lations for the method of symbolic execution, research aimed 
at achieving this goal should be considered relevant.

2. Literature review and problem statement

Work [4] describes the current state of symbolic execu-
tion, namely, the features of its application and its results for 
the Klee tool. These results demonstrate that test generation 
requires significant computing time and resources. To solve 
this problem, static analysis methods are used in [5] to sim-
plify the abstract syntactic tree and optimize predicates for 
logical expressions. This increases the efficiency of calcula-
tions, but the possibility of their parallel execution remains. 
In the course of research [6] and similar, the increase in 
efficiency from the use of parallel computing is significant 
and allows for a limited scaling of the method of symbolic 
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1. Introduction 

Automated test generation is one of the key tasks for 
advancing the software development industry. Solving 
this problem is necessary for the further development of 
means of generating software code and increasing the ef-
ficiency of the early stages of testing and development of 
software products. Heuristic algorithms [1] and artificial 
intelligence tools [2] are used to generate tests. One of the 
methods of automated unit testing is symbolic execution 
[1]. This method interprets the program code that is the 
object of the test, manipulating the value of the variables 
marked as symbolic in order to achieve all possible states 
of the test program execution. This makes it possible to 
detect errors related to memory usage, division by zero, 
and others corresponding to an unexpected state of the 
software [1].

The main limitation of the symbolic execution method 
is the high computational complexity of the test generation 
process. To achieve 100 % coverage of the code with the 
generated tests, it is necessary to bypass all possible ways 
of executing the program. This leads to the problem of 
explosive growth in the number of paths. As a result, their 
number grows exponentially depending on the existing con-
ditions and cycles, which leads to a corresponding increase 
in the size of the data for processing by means of symbolic 
execution. Increasing the length of the path leads to the 
complexity of SMT/SAT tasks for generating input data for 
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ability and computational efficiency. It will also provide the 
following benefits:

1) estimation of the execution time of full testing of the 
program code by the method of symbolic execution, which 
makes it possible to quickly assess the feasibility of conduct-
ing this type of testing for selected input data with available 
computing resources;

2) the ability to balance the complexity of generating 
tests for the formed clusters after dividing the input data, 
which will make it possible to quickly obtain test results.

All this allows us to state that it is appropriate to con-
duct a study aimed at improving the efficiency of calcula-
tions for automated unit testing due to clustering based on 
the assessment of the complexity of test generation.

3. The aim and objectives of the study

The purpose of this study is to improve the computation-
al efficiency of the symbolic execution method by increasing 
its adaptability to variations in input data and computing 
systems. This will reduce costs for the software testing 
process. The adaptability of the symbolic execution method 
to input data will make it more widely used in commercial 
software development.

To achieve the goal, the following tasks were solved:
– to devise a method for assessing the complexity of gen-

erating tests for a given
software code on available computing resources, which 

will provide an opportunity to limit the explosive growth of 
the number of paths;

– to construct a method for clustering the software code, 
which will ensure a balanced complexity of generating tests 
for each cluster.

4. The study materials and methods

4. 1. Basic hypothesis, research assumptions, materi-
als and methods

The object of research is methods for improving the 
efficiency of calculations for automated unit testing. The 
main hypothesis assumes an increase in the computational 
efficiency of the symbolic execution method due to the 
clustering of the input data, which will limit the explosive 
growth of the number of paths according to the hardware 
capabilities of each cluster. To this end, the method of assess-
ing the complexity of test generation and clustering based on 
it will be used, which should provide appropriate results. To 
apply the proposed method, a dynamic analysis of test gen-
eration time for hardware using samples will be conducted. 
To test the hypothesis, computational experiments will be 
conducted to generate tests for selected samples of software 
code and a comparison of the efficiency of calculations will 
be performed.

Sample programs were designed to evaluate the influence 
of the type and number of C language operators on symbolic 
execution. They consist of one condition containing as a logi-
cal expression symbolic variables combined with an operator 
of the C language. The dependence of the time required for 
automated testing of the condition and the number of opera-
tors of the selected type is evaluated. Such an approximation 
must be performed for the symbolic execution tool and the 
hardware platform as a unique combination. It can only be 

execution. However, given the non-linear growth in the num-
ber of operations, simple speed-ups due to the use of more 
powerful computing systems and parallel computing cannot 
compensate for the explosive growth in the number of paths.

In study [1], it is proposed to divide the code into seg-
ments when analyzing loops and external calls. It also sug-
gests using the unit testing approach for selected segments. 
This approach solves the problem of the exploding number of 
paths for loops but not for conditional statements contained 
in the program code. Also, a separate analysis of each cycle 
can lead to the problem of stopping automated unit testing. 
To solve the stopping problem, [3] suggests using an incre-
mental approach to the symbolic analysis of cycles. This 
is achieved by analyzing the variables and selecting only 
those paths that lead to changing the results of the symbolic 
execution of the loop, which makes it possible to reduce the 
number of paths and partially solve the stopping problem 
for loops. In study [7], it is proposed to combine paths to 
reduce their number, which leads to a partial solution to 
the problem of explosive growth in the number of paths but 
does not guarantee its solution in all cases. In order to limit 
the explosive growth of the number of paths depending on 
the cycles and conditions, an approach [8, 9] aimed at using 
clustering to divide the software into modules by structural 
characteristics is proposed at the same time. This helps limit 
the growth of the number of paths by the number of condi-
tions and cycles that belong to the selected cluster (module). 
This approach divides the set of functions as structural units 
of the software code into clusters. Clustering is based on the 
relationship of a feature to other features and data outside 
its local scope. This makes it possible to dynamically change 
the sizes of clusters by changing the similarity threshold for 
combining functions into clusters [8]. The division into clus-
ters [8] based on structural characteristics is not adaptive to 
the characteristics of a specific computer system and to the 
peculiarities of the source code but requires the determina-
tion of a similarity threshold for clustering. This leads to the 
selection of such a value by the method of expert evaluation, 
and not on the basis of data on the capabilities of the com-
puter system and the characteristics of the input data. That, 
in turn, leads to:

1) overhead costs in the form of memory allocation and 
freeing, reading data from the disk, and performing initial-
ization when testing individual structural units;

2) the calculation time will grow exponentially (due to 
the explosive growth of the number of paths), as a result of 
which they will be ineffective.

For each specific combination of computing resources 
and software code, a set of possible divisions into clusters 
can be proposed. Each of them will give different calculation 
efficiency. This will be expressed in tests covering a greater 
percentage of the statements of the program code per unit of 
time. To improve the efficiency of calculations, you should 
choose the best options from the available set. Manipulation 
of the clustering parameters will allow the calculation to be 
adapted to the hardware and the given software code for 
testing. The task arises to estimate the complexity of gen-
erating tests for a cluster, taking into account variations in 
input data (program code for testing) and properties of the 
computing system.

The ability to estimate the complexity of generating 
tests for a selected computer system will make it possible to 
more widely implement the method of symbolic execution in 
commercial software development by increasing its adapt-
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valid within the limits close to the range of samples used. 
This makes it possible to evaluate the impact of logical ex-
pressions as a component of conditions and cycles that affect 
the time of generating tests for given computing resources.

Samples are used for computational experiments in or-
der to determine the relationship between execution time 
and test generation complexity estimated by the proposed 
method for selected hardware. They contain a loop with a 
given number of iterations and an appropriate termination 
condition (the number of iterations varies from 100 to 2000 
in steps of 100) that produces the appropriate number of 
paths. This will allow the estimated complexity to be related 
to the hardware platform resources.

Samples from GitHub were used to evaluate the efficien-
cy of calculations. 10 samples representing utilities (parsers, 
console games, compilers) and Git code are used. To perform 
computational experiments, the Klee (USA) symbol exe-
cution tool was chosen [4]. It generates tests for the input 
program code written in the C language, which has been 
converted to byte code [10]. Before performing clustering, 
the capabilities of the computer system are determined. To 
do this, tests are generated on reference samples and polyno-
mial approximation of the time spent on each type of oper-
ator in the C language is performed. Based on the obtained 
data and the complexity assessment method, the relationship 
between complexity and execution time is formed for a given 
computer system. Based on this ratio, the complexity limit 
for future clusters is chosen. To determine the maximum 
complexity, the test generation complexity is first calcu-
lated for all the software code to be tested. Then, the time 
corresponding to the obtained complexity is determined. If 
the obtained score corresponds to the expected time limits 
of the test (determined by the expert), then the determined 
maximum difficulty is used. If the resulting estimate of 
execution time is too high, it is divided by two and a new 
maximum complexity is determined. Based on it, clustering 
is performed, and the new execution time is determined 
as the sum of the execution times for all obtained clusters. 
This step is repeated until either the expected execution 
time satisfies the expert, or the testing is deemed inadvis-
able. The following utilities cflow (building a call tree) and 
pycparser (building and manipulating an abstract syntactic 
tree) were used to divide the program code into clusters. 
We implemented software that, using the specified utilities, 
divides the program code into clusters according to struc-
tural characteristics, evaluates the complexity of generating 
tests and balances the complexity for existing clusters. The 
complexity assessment is based on data on the capabilities of 
the computing system and static analysis of the code (data 
on the number of cycles, conditions and operators). Separate 
files are created from the formed clusters for their symbolic 
execution. Each of the generated files contains only the 
functions belonging to the corresponding cluster. Tests are 
generated for them, the generation time and operator coverage 
metrics are measured, and the ratio of time to coverage is calcu-
lated. The program code of each sample is divided into clusters 
and tested by the Klee tool. The calculation was performed on 
an Intel-I5-11320H processor (USA).

4. 2. Evaluating the effectiveness of calculations
Evaluation of the results of test generation is possible 

according to the parameters of the number of found de-
fects and coverage metrics. Comparing defects requires 
analysis of each, so such results cannot be used to evaluate 

computational efficiency. There are several metrics of code 
coverage [11]. Path and condition coverage metrics are not 
comparable when the number of elements in the cluster 
changes. Only operator coverage by tests can be compared 
for different clustering options. Operator coverage is com-
pared as percentage coverage multiplied by the ratio of the 
number of operators within the cluster to the total number. 
Thus, it is possible to compare the results of generating tests 
for different clustering options. To evaluate the efficiency 
of calculations, it is suggested to evaluate the coverage of 
operators achieved per unit of time. Such an assessment will 
make it possible to compare the efficiency of calculations for 
different clustering options using one parameter.

5. Results of improving the efficiency of calculations due 
to the clustering of input data based on the complexity of 

generating tests

5. 1. Results of the development of a method for as-
sessing the complexity of generating tests for structural 
units of the program code

The first task concerns the development of a method for 
estimating the complexity of symbolic execution for a clus-
ter. Available metrics do not reflect the complexity of gen-
erating tests [12]. The new complexity metric should reflect 
the number of operations that the symbolic execution tool 
would need to generate tests based on the sample code. This 
includes the operations necessary to cover all available paths 
and the selection of input data to satisfy the relevant con-
ditions. The condition can be characterized by the number 
of operators and the size of the operands. For standard op-
erators, operand size can be neglected because there are no 
operators in a typical programming language that perform a 
function on an array of data at once. Therefore, to evaluate 
the complexity, it is necessary to determine the number of 
paths and the number of operators.

To obtain the necessary information, it is suggested to 
perform an analysis of the instructions for each element 
(function, as a structural unit of the program code) in the 
cluster. This is achieved by bypassing the AST (Abstract 
Syntax Tree). It contains information about each condition, 
cycle, and the parameters used in them. The complexity of 
generating tests for a function that is an element of a cluster 
should be the sum of the complexity of all high-level condi-
tions/loops (at the first level in its AST). The complexity of 
the node can be calculated using formula (1):

1
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In formula (1), ci is the estimated complexity of the 
high-level cycle/condition belonging to the node, n is the 
number of conditions and cycles at the top level of the ab-
stract syntax tree of the function. The explosive growth in 
the number of paths is taken into account when calculating 
ci for each cycle/high-level condition. Formula (1) also 
describes the complexity estimation for nested conditions/
loops and can be applied recursively.

It is assumed that items with higher test generation com-
plexity would require more CPU time to be processed by the 
symbolic execution tool. The number of paths to test increas-
es with each additional condition or cycle contained in the 
cluster. A condition can be independent (when the condition 
depends on a unique set of variables) or dependent (when at 
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least one variable is used in more than one condition). Each 
additional independent condition multiplies the number 
of paths by two. Each dependent multiplies by a number 
from two to one. This is a consequence of the fact that some 
conditions may be mutually exclusive. For example, if one 
condition out of five is mutually exclusive to two conditions 
and does not apply to the other two, then the number of 
paths would be 24 instead of 32. Parsing and analyzing de-
pendences between conditions requires symbolic execution. 
To avoid the recursive problem, the worst-case number of 
paths should be used (all conditions are independent of each 
other). As a result, the actual number of paths for which it is 
necessary to generate tests may be less than the estimated 
number.

A loop in conditional similarity increases the number 
of paths by at least two times. The first when the loop body 
was executed once and the second when the loop body was 
skipped. Loops increase the number of paths similarly to 
conditions, but the range of the multiplier can be from 1 to 
infinity, due to the large number of iterations. There can be 
a definite loop that always executes a fixed number of iter-
ations, and an indefinite loop that depends on the symbolic 
value (potentially an infinite number of paths). Loops con-
tribute to the increasing complexity of test generation more 
than conditions. If the number of iterations is undefined, a 
stalling problem occurs. To combat the deadlock problem, 
a limit on the number of paths through the loop body is 
proposed. The limit prevents long or infinite symbolic exe-
cution of the loop body at the expense of detecting potential 
errors. This happens due to the analysis of a limited number 
of paths, which does not affect the code coverage indicators. 
A symbolic execution of the loop could potentially detect 
only a few defects but process thousands of paths, resulting 
in corresponding time costs. The constraint introduced will 
allow the symbolic execution to analyze alternative paths. 
This will increase the code coverage metric of the tests and 
potentially increase the number of detected defects. Limit-
ing the number of paths for the loop body must be defined 
by the user as a parameter of the test generation algorithm.

A final factor affecting the complexity of test genera-
tion is the statements and operands used in conditions and 
loops to control the flow of execution. A set of operators and 
conditions creates a SAT/SMT problem [4]. By traditional 
means, it is impossible to predict the execution time of heu-
ristic algorithms for solving the above-mentioned problems. 
It is proposed to approximate with a polynomial function 
the test generation time for the condition containing the 
selected type of operator. Given the large number of possible 
combinations of operators, it is only possible to estimate the 
increase in execution time for their type. The proposal is 
based on the following assumptions:

1) one condition or loop usually uses only a small number 
of statements;

2) cases where SMT or SAT problems present in the code 
are insoluble for heuristics are rare;

3) clustering will limit the size of SMT and SAT tasks;
4) some operators are more complex for symbolic execu-

tion than others;
5) several nested conditions can be represented as a set 

of logical expressions, which are combined by the logical 
operator &&.

The above statements show that a practical and simple 
way to account for the impact of statements on the genera-

tion time of unit tests is to estimate the execution time for 
each statement type based on the number of times they are 
repeated in a condition. This model will ignore potential 
combinations of operators whose running time growth will 
differ from the approximated polynomials for each.

It is proposed to estimate the complexity of the condi-
tion/cycle according to the following formula:

( ) ( )
1
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In it, r represents the number of operators of type j. The 
function k represents an approximate polynomial that de-
scribes the expected time for the symbolic execution of an 
operator of type j, l is the number of conditions, a is the num-
ber of cycles, s is the limit of iterations per loop body. Such 
an estimate of the complexity of generating tests involves the 
product of the maximum amount of time for generating input 
data for the most difficult path by the maximum possible 
number of paths for a cluster element. This approach aims to 
identify and separate potential sites with high complexity. 
The complexity estimate is not the same as the execution 
time estimate. It cannot detect infinite loops or unsolvable 
SAT/SMT problems.

However, with each additional operator in the boolean 
expression and each additional condition/loop within the 
cluster, they are more likely to occur.

5. 2. Results of clustering method development based 
on estimation of complexity of generating tests

The previously proposed clustering algorithm [8] should 
be improved as follows:

1) grouping by location. This means that close clusters 
should be merged to reduce the number of clusters and to 
avoid clusters from individual elements;

2) division and exchange of elements between clusters to 
achieve balanced test generation complexity for each cluster.

The first proposed improvement requires tracking the 
structural relationships between cluster elements. A cluster 
with one element should be included in another cluster if it is 
structurally related to it. If it is connected to several clusters 
at the same time, the one with the largest number of struc-
tural connections is chosen. If it is the same, the selection is 
made randomly. This is shown schematically in Fig. 1. This is 
necessary to reduce the number of clusters and simplify the 
further process of their balancing.

Calculating the complexity of generating tests for each 
element of a cluster makes it possible to exchange elements 
between clusters for balancing [13]. For this purpose, it is 
proposed to apply the following approach:

1. Set limits on the complexity of generating tests for the 
cluster. Calculate it for each of the available clusters.

2. If the limit is exceeded, transfer the element for which 
the complexity of generating tests is the highest within the 
cluster to one of the neighboring clusters. The cluster with 
the largest number of connections to the required element 
will be selected. If the estimated test generation complexity 
exceeds the limit, the cluster with the next highest number 
of connections will be selected. This is shown in Fig. 2.

3. If there is no cluster that can accept the element, then 
it is separated to a new cluster. This is shown in Fig. 3.

4. The procedure of transferring elements to neighbors 
and dividing clusters is repeated iteratively.
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Fig.	1.	Inclusion	of	a	cluster	containing	one	element	into	the	cluster	with	the	largest	number	of	common	structural	connections:		
a	–	a	cluster	of	one	element	exists;	b	–	clusters	are	combined
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Fig.	2.	Balancing	the	complexity	of	generating	tests	between	two	clusters:	a	–	the	complexity	of	generating	tests	is	not	balanced;	
b	–	the	difficulty	is	balanced
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The results of the assessment of the influence of the type 
and number of C language operators on the symbolic exe-
cution time are given in Table 1. According to the proposed 
methodology, operators were divided into equivalent groups. 
For each of them, an approximation of the execution time 
was carried out depending on the number of operators under 
the condition by way of dynamic analysis of the results of 
generating tests using Klee.

Symbolic execution for memory access operators can 
take a significant amount of time. This occurs when the 
variable used for indexing depends on character data. In this 
case, it is suggested to use a polynomial obtained for a sim-
ilar case in the absence of dependence of the index on char-
acter data. The resulting score will limit the complexity and 
execution time for the cluster. This will solve the problem of 
stopping test generation for this case.

There is a task to determine the maximum complexity for 
the cluster. It depends on the characteristics of the computing 
system and the input data in the form of the software code 
under test. The complexity limit will be unique to the com-
bination of software and hardware tested. By symbolically 
executing the loop with a variable number of iterations, the 
relationship between execution time and complexity is estab-
lished. As a result, each cluster can have a time limit for execu-

tion. This will help solve the problem 
of «freeze» in symbolic execution.

Fig. 4 shows the relationship 
between test generation time and 
estimated test generation com-
plexity when changing the number 
of paths in the program code. This 
parameter must be entered into 
the algorithm manually. Accord-
ing to the calculated ratio, the 
maximum complexity should be 
chosen based on the relationship 

with the symbolic execution time. It is proposed to be de-
termined based on the capabilities of the computer system 
and the needs of the user. Complexity increases non-lin-
early from formula (2) through the use of conditions/
loops. The measured execution time increases similarly. 
The maximum complexity is chosen to limit the non-linear 
growth of execution time. The maximum execution time 
for a cluster is defined as a constant by the user of symbol-
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Fig.	3.	Balancing	the	complexity	of	generating	tests	by	creating	a	new	cluster:	a	–	the	complexity	of	generating	tests	is	not	
balanced;	b	–	the	complexity	is	balanced	by	the	formation	of	a	new	cluster

Table	1

C	language	operators	and	polynomials	approximating	them	for	Klee	symbolic	execution	
tool,	IntelI5-11300H	processor	in	the	range	from	0	to	100	operators	per	condition

Operator Type of polynomial Polynomial

+, –, Polynomial of the first power 0.0012*x+0.015

*, /, <<, >> Polynomial of the first power 0.016*x+0.037

&, |, ||, &&, <, >, ==, !=, <=, >= Polynomial of the second power 0.00004*x2+0.00012*x+0.004

*,[],−> Polynomial of the second power −0.1686*x2+13.558*x+6.2909

% Polynomial of the second power 0.851*x2–1.85*x–7.71



Information technology

23

ic execution. Then the corresponding difficulty is chosen 
as the maximum difficulty.

The results of code execution with clustering by com-
plexity in comparison with the previously proposed clus-
tering method and standard symbolic execution are given 
in Table 2 below. The value corresponding to 21 minutes 
of execution time was chosen as the maximum difficulty. 
This value was obtained by expert evaluation. For the 
samples used, taking into account the number of clusters 
from 7 to 20, the maximum expected execution time 
would be from 147 to 420 minutes. This calculation time 
will allow the research to be performed, so the chosen 
value is acceptable.

Table	2

Comparison	of	the	efficiency	of	calculations	for	generating	
tests	using	the	Klee	tool	for	the	IntelI5-11300H	processor	

when	using	the	proposed	clustering	method	and	other	
methods

Program code

Results of implementation

Method
Code coverage 
generated per 

minute

Git tool  
program code

Standard symbolic execution [4] 0.013 %

Clustering by structural code 
elements [7]

0.018 %

Clustering by structural code el-
ements to balance the complexity 

of generating tests for clusters
0.023 %

Average for 10 
code samples

Standard symbolic execution [4] 0.69 %

Clustering by structural code 
elements [7]

1.24 %

Clustering by structural code el-
ements to balance the complexity 

of generating tests for clusters
1.64 %

The proposed methods make it possible to perform cal-
culations 2.5 times more efficiently than standard symbolic 

execution, and 30 % more efficient than 
symbolic execution with code clustering 
by properties.

6. Discussion of results of clustering 
input data based on the assessment of 

the complexity of generating tests

Our results are explained by the ap-
plication of the devised method for as-
sessing the complexity of test generation 
and the clustering method based on it. 
Complexity assessment makes it possible 
to perform clustering of input data taking 
into account the features of the comput-
ing system and software code. This is 
shown in Fig. 4. There, the relationship 
is established between the complexity 
estimated by formula (2) using the data 
in Table 1 and execution time. The rela-
tionship is characterized by a power-law 
function, which allows estimation of exe-
cution time based on complexity for a giv-
en hardware platform. For each hardware 
platform combination, such calculations 
will be unique and may be performed us-
ing samples. This makes it possible to use 

the developed clustering method, which will be adaptive to 
computing resources and input data. The proposed cluster-
ing method in Fig. 1−3 has made it possible to improve the 
efficiency of calculations by 30−250 % compared to [8] and 
the usual symbolic execution.

As a result of evaluating the complexity of test gener-
ation, the problem of stalling for symbolic execution can 
be solved. The established correlation between execution 
time and test generation complexity for a combination of 
hardware platform and symbolic execution engine allows us 
to limit the explosive growth of the number of paths within 
clusters according to the input data. Thus, it is possible to 
set a time limit for the symbolic execution of each cluster, 
which will correspond to the features of the software code 
included in it. From the obtained results, it can be seen 
that in a significant number of cases, adaptability makes it 
possible to improve the efficiency of calculations for various 
input data. This makes it possible to reduce the overhead of 
calculations and avoid the increase in the calculation time of 
the exponential function.

In comparison with [8, 9], where only structural con-
nections are taken into account, the complexity of generat-
ing tests for the distribution of elements between clusters 
is used. In comparison with studies [5, 6], a different 
approach is used to reduce the number of operations, and 
the proposed clustering makes it possible to limit the num-
ber of paths for analysis within the cluster. Compared to 
study [1], the selected segments refer to the entire program 
code, not only cycles, and the division is adaptive to the 
capabilities of the computer system. In comparison with 3, 
the stopping problem can be solved not only for loops but 
also for difficult to analyze logical expressions by means of 
symbolic execution.
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In general, unlike the considered approaches, our study 
offers an adaptive approach to the problem of explosive 
growth in the number of paths, which uses data about the 
computing system and takes into account the peculiarities 
of the input data. The developed methods make it possible to 
improve the efficiency of calculations for symbolic execution 
tools, taking into account possible software variations. The 
devised method of assessing the complexity makes it possible 
to estimate how long it takes to generate tests and perform 
clustering of input data on this basis, which in turn increases 
the efficiency of calculations.

The use of the proposed methods has limitations. Op-
tions such as the maximum test generation complexity 
for the cluster make it possible to choose between quickly 
checking the code with symbolic execution tools and ana-
lyzing more paths to increase the probability of detecting 
defects. However, lowering the test generation complexity 
limit could lead to detection of states that would be impossi-
ble during program execution and marking them as defects. 
Computational performance improvements may differ from 
actual results due to the limited number of samples for hy-
pothesis testing and the high variability of input data and 
computing systems. In some cases, symbolic execution of the 
entire program code, or using clustering and segmentation 
methods that are not adaptive to the peculiarities of the 
input data, can give better results. However, for widespread 
use in the commercial development of software products, 
adaptability is necessary.

The study has flaws. In particular, the use of computing 
resources for tasks other than test generation can affect the 
dynamic analysis of the system’s capabilities and lead to an 
incorrect estimate of the complexity. The use of operator 
samples is designed for one type of operator only, so there 
may be deviations when evaluating a combination of opera-
tors based on this data.

The application of the methods reported in [3] will 
make it possible to improve the estimation of the complex-
ity of generating tests for loops in the future. The use of 
parallel computing methods will make it possible to scale 
the approach. Improving the accuracy of runtime estima-
tion based on the complexity of test generation and running 
computational experiments on more hardware platforms 
will improve the method.

7. Conclusions 

1. The methods of dividing input data of symbolic execu-
tion and their preliminary processing were analyzed. It was 
determined that the use of static and dynamic analysis for 
this could improve the efficiency of symbolic execution. To 
improve the efficiency of calculations, it is proposed to use 
clustering of the software code based on the assessment of 
the complexity of generating tests. The proposed method is 
an improvement of the previously described clustering meth-
od for symbolic execution.

2. A method has been devised for evaluating the com-
plexity of generating tests for software code by analyzing 
its instructions. We used static analysis of conditions, 
instructions, and loops along with dynamic analysis of 
test generation times for reference code samples. The 
maximum complexity is determined based on the correla-
tion between execution time and complexity determined 
by dynamic analysis for a given hardware platform. This 
allows balancing the complexity of generating tests for 
selected modules. Symbolic execution of complexity-bal-
anced clusters generates 20 % more code coverage per 
minute of execution than without balancing, with up to 
a 45 % efficiency gain compared to computing without 
input splitting.
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