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Rule interpolation-based methods are used when the rule 
base is sparse. This frequently being the case, as information 
relevant to real-world problems is not usually comprehensive. 
At the same time, relevant information is often characterized 
by both fuzziness and partial reliability. To deal with such 
kind of information, the concept of Z-number was introduced 
by Zadeh. This paper is devoted to an extension of the general 
interpolation method for fuzzy rules to the case of if-then rules 
with Z-number-valued antecedents and consequents. The 
proposed approach relies on the determination of the distance 
between the current observation vector and vectors of rules 
antecedents. By determining the distance between the cur-
rent vector and the antecedents of the rules, decisions can be 
made based on the nearest antecedents. In this context, rule 
antecedents are vectors that represent certain conditions.  
The resulting output is computed as a weighted sum of rules 
consequents. Weighting factors are used to account for the 
importance of each rule in the interpolation. Weights of inter-
polations are found on the basis of mentioned distance values.  
The results of this study are aimed at developing an approach 
to decision-making in terms of Z-valued information. The 
method is characterized by relatively low computational  
complexith. Regarding the application of the proposed 
approach, the job satisfaction evaluation problem is con
sidered. Consequently, the obtained results confirm the effi-
ciency of the proposed approach. The proposed method can 
be a useful tool for decision-making in various applications, 
especially where high computational complexity is unaccept-
able or impractical
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1. Introduction

In recent years, fuzzy systems and fuzzy data analysis 
methods have become increasingly popular in various fields 
of science and technology. One of the key components of such 
systems is the fuzzy rule base itself, which describes the depen-
dencies between input and output parameters. However, in real 
applications, a situation may arise when the rule base contains 
an insufficient number of rules to fully describe all possible 
variants of input parameters. Such a base is called sparse, that 
is, not all possible variants of input parameters are provided for 
in the rules. In this case, it becomes necessary to use reasoning 
methods based on fuzzy rule interpolation (FRI). Fuzzy rule 
interpolation reasoning methods allow to use several different 
rules that can interact with each other to determine the result. 
Thus, this method allows more efficient use of the rule base, 
which can contain only a small number of rules, while still en-
suring the accuracy and reliability of the result. 

In situations with high levels of uncertainty, information 
is often characterized by both fuzziness and partial reliability. 
The concept of Z-number was introduced by Zadeh to deal 
with this issue [1]. A Z-number is an ordered pair Z = (A, B) 
of fuzzy numbers A and B. A is used as a fuzzy restriction on 
a value of a variable of interest, whereas B plays a role of reli-
ability described as a probability measure of A [2]. 

At the same time, it is not always necessary to consider all 
combinations of linguistic terms to form an adequate model of 
a considered phenomenon. Zadeh’s Z-numbers are a key ele-
ment in the interpolation of fuzzy rules, which is widely used in 
fuzzy control systems for decision-making based on fuzzy logic.

In the interpolation of fuzzy rules, Zadeh’s Z-numbers are 
used to determine the degree of membership of an element 
to a fuzzy set that describes the state of the system. Based 
on these values and a rule base containing fuzzy statements 
about how to control the system depending on its state, an 
output value is formed.

The values of Zadeh’s Z-numbers can be used to aggre-
gate statements from different rules and determine the out-
put value of the system. Interpolation of fuzzy rules can use 
various methods, such as minimum or maximum operators, 
or the weighted average of Zadeh’s Z-numbers to calculate 
the final result.

In general, Zadeh Z-numbers and fuzzy rule interpolation 
are key components of fuzzy control systems and allow work-
ing with uncertainty and fuzziness in decision-making. They 
allow to make decisions based on fuzzy logic and achieve 
optimal results in the face of uncertainty. 

Thus, Zadeh’s Z-numbers play an important role in the 
interpolation of fuzzy rules and are a key element in fuzzy 
control systems. By using Z-numbers to model the uncer-
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tainty and imprecision of real-world problems, fuzzy logic, 
and fuzzy control have proven to be useful in a wide range 
of applications in various fields such as control engineering, 
decision-making, pattern recognition, and machine learning.

2. Literature review and problem statement

A systematic analysis of state-of-the-art FRI is pro-
posed in [3]. According to the analysis, existing approaches 
are divided into two categories: FRI with non-weighted 
rules and with weighted rules. In the first category-based 
approach, it is assumed that all rule antecedents are of 
equal importance for computing the conclusion. The second 
category-based approaches rely on the assumption that an-
tecedents are of different importance levels. This allows to 
improve the interpolation performance. The authors conduct 
intra-category and inter-category comparative analyses of 
the approaches and uncover their advantages and limitations 
for different problems. Determining the levels of importance 
of antecedents can be subjective and depend on the views and 
expertise of researchers, which can lead to ambiguous results. 
The use of categories can increase the complexity of calcula-
tions, especially if it is necessary to process a large amount of 
data or a large number of categories.

In [4] an updated and extended version of the original 
FRI toolkit is described, as well as the analysis of various 
fuzzy rule interpolation (FRI) methods (KH, KH Stabilized, 
MACI, IMUL, CRF, VKK, GM, FRIPOC, LESFRI, and 
SCALEMOVE) based on various features, using unified nu-
merical reference examples, and their classification in accor-
dance with the conditions of anomaly and linearity. At the same 
time, it should be noted that the classification of data by lineari-
ty can ignore non-linear relationships between variables, which 
can be important for understanding complex relationships in 
data. In addition, the unified numerical reference examples 
may only cover certain types of data and conditions, which may 
limit their applicability to various tasks and situations.

As described in [5] the D-FRI system is an efficient me
thod for selecting, combining, and generalizing informative 
interpolated rules to combine with an existing rule base and 
perform interpolation reasoning. Numerous experiments by 
the author show that D-FRI is superior to traditional FRI 
methods in accuracy and reliability. As an example, the article 
explores the use of D-FRI for network security analysis and 
the development of an intrusion detection system (IDS) 
that integrates with Snort software, one of the most common 
open-source IDS. In this article, it should be noted that fuzzy 
logic rules can be ambiguous in interpretation, which can 
make it difficult to determine precise and unambiguous ac-
tions when threats or attacks are detected. Network security 
analysis using fuzzy rules can be computationally intensive, 
especially when processing large amounts of data, which can 
slow down the process of detecting and responding to threats.

A novel approach to FRI based on fuzzy geometry is 
proposed in [6]. The motivation is to derive a closed mathe
matical form of interpolation. The proposed approach in-
cludes two different stages. Firstly, all the fuzzy rules are 
transformed into higher-dimensional fuzzy points and joined 
with a class of fuzzy line segments. It is then considered as 
the problem of the identification of the interpolated piece-
wise linear fuzzy polynomial which allows mapping a given 
observation to the desired conclusion. The approach provides 
a strong mathematical basis and geometrical visualization of 

FRI. Interpolation may be a good strategy for exact match-
ing data, but may not be able to generalize to unknown data 
outside of the interpolation nodes.

A comprehensive analysis of interpolation and extra
polation techniques is conducted in [7]. Such criteria as 
applicability, complexity reduction, and logic are considered. 
The authors propose a standard for the analysis of existing 
techniques based on a unified set of criteria and a framework 
for classification and comparison. A single set of criteria may 
not always be universal and applicable to different types of 
data and tasks. Conducting an analysis based on a single set 
of criteria can be complex and time-consuming, especially 
when analyzing a large amount of data and different methods.

A series of studies on rule interpolation under high levels 
of uncertainty were proposed in [8–10], and other works. 
For example, the main motivation of work in [8] relies on 
the difficulty to construct precise membership functions. As 
a result, a systematic approach to interpolation for rules with 
rough fuzzy sets is proposed. Rough fuzzy sets can be limited 
in representing complex and dynamic data, and in the ability 
to interpolate data, especially in non-linear scenarios. Seve
ral benchmark problems are used to illustrate the efficacy 
of the proposed approach. In [9], a new approach to fuzzy 
interpolation is presented, which uses fuzzy sets of interval 
type 2 (second order). By calculating the ranking values of 
the upper and lower membership functions of these fuzzy 
sets, the authors propose to efficiently process fuzzy interpo-
lation reasoning in sparse fuzzy systems. This approach pro-
vides a more flexible and intelligent way to work with fuzzy 
data, allowing to better account for uncertainty and fuzziness 
in the data. Note that fuzzy sets of the second order may be 
less universal and applicable to some types of data and tasks.

In [10], an approach to fuzzy rule interpolation based on 
scale and displacement transformation (T-FRI) is presented, 
which supports sparse rule bases (transformation-based rule 
interpolation). T-FRI provides the ability to get a ballpark 
inference when an observation does not match any of the 
rules in the existing rule base. The authors also popularize the 
FRI approach, which allows interpolation and extrapolation 
with multiple rules and antecedents. However, the difficulty 
lies in determining the exact values of the membership func-
tions required to represent fuzzy rules or observations, which 
limits its application. To solve this problem, the authors pro-
pose to use fuzzy sets of interval type 2, since the membership 
functions of such fuzzy sets are fuzzy in themselves. This pro-
vides more flexible modeling tools and solves the problem of 
determining the exact membership functions. However, the 
use of second-order fuzzy sets may be less able to generalize 
data to unknown regions or beyond interpolation nodes.

All of the above allows to assert the expediency of conduct-
ing a study for Z-numeric if-then rules. This is supported by 
the presence of relevant factors and arguments that point to the 
potential benefits and relevance of such research. In particular, 
giving the combination of various aspects and requirements 
associated with Z-numbers and numerical rules, it is expected 
that research in this area may lead to the development of more 
efficient interpolation methods, contributing to more accurate 
and reliable results when working with such numerical rules.

3. The aim and objectives of the study

The aim of the study is to develop a method for interpola-
tion with Z-number-valued if-then rules (Z-rules). The con-
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sidered concept of distance forms the basis for the processing 
of imperfect information in decision making and inference.

To achieve this aim, let’s accomplish the following ob-
jectives: 

– to formalize a way to measure the ‘closeness’ of new 
Z-valued input with rules antecedents;

– to develop a technique for Z-valued output as the 
weighted mean of rule consequents (based on the mea-
sured ‘closeness’);

– to present the decision of practical problem on reason-
ing with Z-rules on the example of job satisfaction evalua-
tion problem.

4. Materials and methods of research

The object of research is a theoretical analysis of Z-value 
if-then rules and an experimental study on real data in order 
to better understand the logical relationships and applicabi
lity of Z-value rules in various contexts.

The main hypothesis of the study is the assumption that 
the uncertainty of information can be adequately described 
using Z-numbers. The article discusses aspects of using 
Z-numbers for modeling and assessing the degree of uncer-
tainty, which can contribute to the development of theory 
and practice in this area.

This article is supposed to identify probabilistic and fuzzy 
categories that are suitable for the subsequent formation of 
understandable rules for a person.

When using linear interpolation, intermediate values are 
calculated based on already-known data or conditions. In the 
context of reasoning and inferring with Z-value if-then rules, 
this can mean using linear interpolation to predict inferences 
or outcomes based on known conditions, creating smoother 
transitions between different scenarios or states.

The concept of Z-numbers, proposed by L. Zadeh, plays 
an important role in the theory of fuzzy logic and fuzzy sys-
tems, allowing more flexible and adaptive work with fuzzy 
data and uncertainty, which is used in various fields such as 
artificial intelligence, management, decision making, control 
systems, and others.

The use of Z-number distance in approximate reasoning 
with if-then rules allows more accurate and flexible data 
analysis, which makes this approach promising for further re-
search and application in various fields where the processing 
of fuzzy and uncertain information is important.

For the computational implementation of the problem 
presented in the work, the MATLAB package was used.

5. Results of the study on developing a method of general 
interpolation for Z-number-valued if-then rules

5. 1. Formalization of a way to measure the ‘closeness’ 
of new Z-valued input with rules antecedents

Definition 1. A discrete Z-number. 
A discrete Z-number is an ordered pair Z = (A, B) where  

A is a discrete fuzzy number playing a role of a fuzzy con-
straint on values that a random variable X may take:

X is A, 

and B is a discrete fuzzy number with a membership  
function μB: {b1,…,bm} → [0, 1], {b1,…,bm} Ì [0, 1], playing  

the role of a fuzzy constraint on the probability measure 
P A x p xAx X

( )= ( ) ( )Î∑ μ  of A:

P(A) is B.

This implies that information on probability distribu-
tion (or probability density function in continuous case) p is 
imprecise [11].

Definition 2. A distance between Z-numbers.
As a Z-number Z = (A, B) is characterized by fuzzy num-

ber A, fuzzy number B, and an underlying set of probability 
distributions G, let’s propose to define the distance between 
Z-numbers D(Z1, Z2) as follows.

Distance between A1 and A2 is computed as:

D A A D A A1 2 0 1 1 2, sup , ,( , ]( ) = ( )Îα
α α 	 (1)

D A A
A A A A

1 2
11 12 21 22

2 2
α α

α α α α

, ,( ) =
+

−
+

	 (2)

where A1
α and A2

α denote α-cuts of A1 and A2 respectively, 
A11

α , A12
α  denote lower and upper bounds of A1

α (A21
α , A22

α are 
those of A2

α). The distance between B1 and B2 is computed 
analogously.

It is also have to find the distance between the sets G1 and 
G2 of probability density functions p1 and p2 underlying Z1 
and Z2. The distance between p1 and p2 can be expressed as:

D G G p p dxp G p G R1 2 1 2

1
2

1 1 2 2

1
2

1, inf ( .,( ) = − ( )





















Î Î ∫ 	 (3)

In (3), the expression in figure brackets is the Heellinger 
distance between two pdfs p1 and p2. The inf operator is used 
to determine distance between the closest two pdfs p1 ÎG1 
and p2 ÎG2. In other words, the pair of the closest p1 ÎG1  
and p2 ÎG2 is found among all the possible pairs of distribu-
tions to define distance D(G1, G2).

Given D(A1, A2), D(B1, B2) and D(G1, G2), the distance 
between Z-numbers is defined as:

D Z Z D A A D B Btotal1 2 1 2 1 21, , , ,( ) = ( ) + −( ) ( )β β 	 (4)

Dtotal(G1, G2) is computed as:

D B B wD B B w D G Gtotal 1 2 1 2 1 21, , , ,( ) = ( ) + −( ) ( ) 	 (5)

where β, wÎ(0, 1) are the user’s assigned degrees used to 
measure the importance of A, B, and G sets for the computa-
tion of the distance between Z-numbers [12].

Definition 3. Ranking of Z-numbers.
For Z-numbers Z, Z’ it holds:

Z Z≤ ′, if D Z Z D Z Z, , ,* *( ) ≥ ′( )
where D is distance defined as in Definition 2 by equa-
tions (1)–(5). The components of Z-number Z* = (A, B) are 
fuzzy singletons: 

1) A a= , a is the upper bound of the universe of discourse 
XÎR, R is the set of real numbers; 

2) B = 1. Thus, Z* is the ideal (highest) Z-number –  
A takes its extremal value and the reliability is 100 %. Thus, 
Z-number Z′ is higher than Z if Z ′ is closer to the ideal 
Z-number Z*.
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The considered relation ≤ is a partial order [13].
The problem of interpolation of Z-rules is formula- 

ted below.
Given the following Z-rules:
– rule 1: if X1 is Z A BX X X1 1 11 1 1, , ,( , )=  and, …, and Xm is 

Z A BX X Xm m m, , ,( , )1 1 1=  then Y is ZY = (AY,1, BY,1;
– rule 2: if X1 is Z A BX X X1 1 12 2 2, , ,( , )=  and, …, and Xm is 

Z A BX X Xm m m, , ,( , )2 2 2=  then Y is ZY = (AY,2, BY,2;
– rule n: if X1 is Z A BX n X n X n1 1 1, , ,( , )=  and, …, and Xm is 

Z A BX n X n X nm m m, , ,( , )=  then Y is ZY = (AY,n, BY,n).
And a current observation:

X1 is ′ = ′ ′Z A BX X X1 1 1
( , ) and, …, and Xm is ′ = ′ ′Z A BX X Xm m m

( , ),

find the Z-value of Y.
Let’s propose an extension of the method of general in-

terpolation for fuzzy rules to the case of Z-valued rules. The 
main idea remains the same: if components of the current 
observation vector ′ = ′ ′Z ( ,... )Z ZX Xm1

 are «in-between» the 
components of vectors of antecedents Z1 1 11

= ( ,..., ),, ,Z ZX Xm
 

Z2 2 21
= ( ,..., ), ,Z ZX Xm

 (unfortunately, it is impossible to write 
this complex index by tools of MS Word) of two rules then 
the corresponding output is computed as a linear combina-
tion of consequents. Coefficients of this combination reflect 
influence of each rule consequent on resulting output [14].

5. 2. Development of a technique for Z-valued output 
as the weighted mean of rule consequents (based on the 
measured ‘closeness’)

The proposed method of general interpolation for Z-num-
ber-valued rules includes the stages described below:

Stage 1. It is needed to check if the ordering conditions are 
satisfied for current observation ′ = ′ ′Z ( ,... )Z ZX Xm1

 and vectors of 
rules antecedents Z1 1 11

= ( ,..., ),, ,Z ZX Xm
 Z2 2 21

= ( ,..., ), ,Z ZX Xm
 (un- 

fortunately, it is impossible to write this complex index by 
tools of MS Word):

Z Z Z Z Z Z

Z Z Z

X X X X X X

X X Xm m m

1 1 1 1 1 11 2 2 1

1 2

, , , ,

, ,

, ...,≤ ′ ≤ ≤ ′ ≤( )
≤ ′ ≤

or

orr Z Z ZX X Xm m m, , .2 1≤ ′ ≤( )
By using definition 3, these conditions are described as 

follows:

or D Z Z D Z Z D Z Z

D Z Z D

X X X

X mm

1 1 11 1 1 2 1

1

,
* *

,
*

,
*

, , , , ...,

,

( ) ≤ ′( ) ≤ ( )
( ) ≥ ′′( ) ≥ ( )















( ) ≤ ′( )
Z Z D Z Z

D Z Z D Z Z

X m X m

X m X m

m m

m m

, ,

, ,

*
,

*

,
* *

2

1or ≤≤ ( )( )D Z ZX mm ,
*, ,2 	 (6)

references to the formulas in the text have the form (1),  
(2)–(4), where Z1

*, …, Zm
*  are ideal Z-numbers.

Stage 2. If conditions of (6) are satisfied then the values 
of distance between the current observation vector Z ′ and 
the vectors of the antecedents of two rules, Dv(Z ′, Z1) and  
Dv(Z ′, Z2) are computed:

D D Z Z D Z Zv X X X Xm m
′( ) ′( )+ + ′( )=Z Z, , ... , ,, ,1

2
1

2
11 1

D D Z Z D Z Zv X X X Xm m
′( ) ′( ) + + ′( )=Z Z, , ... , ,, ,2

2
2

2
21 1

	 (7)

where D is distance between Z-numbers.
Stage 3. Given Dv(Z ′, Z1) and Dv(Z ′, Z2) computed at 

Stage 2, it is needed to compute the interpolation coeffi-

cients (weights) wj, j = 1, 2. The lower the distance of current 
observation vector Z’ to rule antecedents vector Zj, the higher 
weight wj, j = 1, 2 is. At the same time, weights wj, j = 1, 2 should 
satisfy w1, w2 Î[0, 1] and w1+w2 = 1. In view of this, the follow-
ing formula can be used:

w
D

D D
jj

v j

v v

= −
′( )

′( )+ ′( ) =1 1 2
1 2

Z Z
Z Z Z Z

,

, ,
, , .	 (8)

Surely, w1, w2 Î[0,1] and w1+w2 = 1.
Stage 4. A resulting output is computed as the weighted 

sum of the consequents of rules 1 and 2:

′ = +Z w Z w ZY Y1 1 2 2, , ,	 (9)

where ZY,j is the Z-valued consequent of the j-th rule, wj,  
j = 1, 2 are weights of linear interpolation computed at Stage 3. 

Further let’s consider two examples to illustrate the pro-
posed approach.

Example 1. Consider the following Z-rules:
– rule 1: if X1 is ZX L P

1 1, ,= ( ) and X2 is ZX L U
2 1, ,= ( ) and X3 

is ZX H P
3 1, ,= ( ) then Y is ZY L U, , ;1 = ( )

– rule 2: if X1 is ZX M U
1 2, ,= ( ) and X2 is ZX H R

2 2, ,= ( ) and 
X3 is ZX L U

3 2, ,= ( ) then Y is Z VH PY , , .2 = ( )
The codebooks of the linguistic terms described by trian-

gular fuzzy numbers (TFN) are given in Tables 1, 2.

Table 1

The encoded linguistic terms A part of Z-number

Level of Satisfaction Linguistic value

Very low (VL) {0/1, 1/1, 0/2}

Low (L) {0/1, 1/2, 0/3}

Medium (MS) {0/2, 1/3, 0/4}

High (H) {0/3, 1/4, 0/5}

Very high (VH) {0/4, 1/5, 1/5}

Table 2
The encoded linguistic terms for B part 	

of Z-number (Reliability)

Level of Satisfaction Linguistic value

Rare (R) {0/0.05, 1/0.25, 0/0.5} 

Plausible (P) {0/0.25, 1/0.5, 0/0.85}

Usual (U) {0/0.5, 1/0.85, 0/1}

Let the current observation be described by Z-numbers 
using TFN-based parts:

X1 is ′ = ( )( )( )ZX1
1 5 2 5 3 5 0 35 0 65 0 95. . . . . . , 

X2 is ′ = ( )( )( )ZX2
2 5 3 5 4 5 0 2 0 4 0 6. . . . . . ,

and

X3 is ′ = ( )( )( )ZX3
2 5 3 5 4 5 0 35 0 65 0 95. . . . . . .

Let the current observation vector be:

′

′ = ( )( )( )
′ = ( )Z = 

Z

Z

X

X

1

2

1 5 2 5 3 5 0 35 0 65 0 95

2 5 3 5 4 5 0 2 0

. . . . . . ,

. . . . .44 0 6

2 5 3 5 4 5 0 35 0 65 0 95
3

. ,

. . . . . .

,( )( )
′ = ( )( )( )















ZX
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the vectors of rules antecedents are:

Z1 1 1 11 2 3
= = ( ) = ( ) = ( )( )Z L P Z L U Z H PX X X, , ,, , , , , ,

Z2 2 2 21 2 3
= = ( ) = ( ) = ( )( )Z M U Z H R Z L UX X X, , ,, , , , , .

Let’s find the Z-value of Y.
According to Stage 1, satisfaction of the ordering condi-

tions is verified by using (6):

D Z Z D Z Z

D Z Z

X X

X

1 1

1

2

1

1 17

1 6 1 99

,

,

, * . , *

. , * . ,

( ) = ≤ ′( ) =

= ≤ ( ) =

D Z Z D Z Z

D Z Z

X X

X

2 2

2

2

1

0 69

1 6 1 87

,

,

, * . , *

. , * . ,

( ) = ≤ ′( ) =

= ≤ ( ) =

D Z Z D Z Z

D Z Z

X X

X

3 3

3

1

2

0 59

0 9 1 87

,

,

, * . , *

. , * . .

( ) = ≤ ′( ) =

= ≤ ( ) =

Thus, the ordering conditions are satisfied.
At Stage 2, distance values Dv ′( )Z Z, 1  and Dv ′( )Z Z, 2  are 

computed by (7):

D

D Z Z D Z Z D Z Z

v

X X X

′( ) =

= ′ ′( ) + ′ ′( ) + ′ ′( ) =

=

Z Z,

, , ,, , ,

1

1 1

2

2 1

2

3 1

2

1 2 3

0.. . . . ,43 1 24 0 43 1 382 2 2+ + =

D

D Z Z D Z Z D Z Z

v

X X X

′( ) =

= ′ ′( ) + ′ ′( ) + ′ ′( ) =

=

Z Z,

, , ,, , ,

2

1 2

2

2 2

2

3 2

2

1 2 3

0.. . . . .43 0 45 1 13 1 292 2 2+ + =

At Stage 3, interpolation weights are found by (8):

w
D

D D
v

v v
1

1

1 2

1 1
1 38

1 38 1 29
0 48= −

′( )
′( )+ ′( ) = −

+
=

Z Z
Z Z Z Z

,

, ,
.

. .
. ,

w
D

D D
v

v v
2

2

1 2

1 1
1 29

1 38 1 29
0 52= −

′( )
′( )+ ′( ) = −

+
=

Z Z
Z Z Z Z

,

, ,
.

. .
. .

At Stage 4, the resulting output is found by using (9):

Z w Z w Z L U VH Py y y= + = ( ) + ( ) =

= ( )
1 1 2 2 0 48 0 52

0 48 1 2 3 0 5 0 85

, , . * , . * ,

. * . . 11

0 52 4 5 5 0 25 0 5 0 85

0 48 0 96 1 44 0 5 0 85 1

( )( ) +

+ ( )( )( ) =

= ( )(
. * . . .

. . . . . )) +

+( )( ) =

= ( )( )
2 08 2 6 2 6 0 25 0 5 0 85

2 56 3 56 4 04 0 43 0 7 0 79

. . . . . .

. . . . . . ..

This Z-number can be labeled as (M, BU).
Example 2. Let Z-number-based rules be given as follows:

If X1 is ZX M U
1 1, ,= ( ) and X2 is ZX H R

2 1, ,= ( ) and X3  
is ZX L U

3 1, ,=( ) then Y1 is Z VH PY , , .1 = ( )

If X1 is ZX H U
2 2, ,= ( ) and X2 is ZX L U

2 2, ,= ( ) and ZX X
3 2 3, =  

is M U,( ) then Y2 is Z M UY , , .2 = ( )

The codebooks of the linguistic terms are given in Tables 1, 2.
The current observation:

X1 is ′ = ( )( )( )ZX1
2 5 3 5 4 5 0 5 0 85 1. . . . . ,

X2 is ′ = ( )( )( )ZX2
2 3 4 0 2 0 4 0 6. . . ,

X3 is ′ = ( )( )( )ZX3
1 5 2 5 3 5 0 5 0 85 1. . . . . .

Then find the Z-value of Y.
Analogously to what is done in Example 1, satisfaction 

of ordering conditions in (6) is verified (Stage 1), distance 
values between current observation vector and vectors of 
rule antecedents are computed (Stage 2) and interpolation 
weights are found (Stage 3):

w1 = 0.52, w2 = 0.48. 

At Stage 4, the resulting output is computed by using (9):

Z w Z w Z VH R M Uy y y= + = ( )+ ( ) =

= ( )
1 1 2 2 0 52 0 48

3 04 4 04 4 52 0 4

, , . * , . * ,

. . . . 44 0 7 0 79. . .( )

This Z-number can be labeled as (H, U).

5. 3. Presentation of the decision of practical problem 
on reasoning with Z-rules on the example of job satisfac­
tion evaluation problem

A job satisfaction evaluation is an essential problem. It is 
characterized by imprecise and partially reliable information 
related to dependence between overall job satisfaction level 
and its facets. The issue is that information reflects psycholo
gical, perceptional, mental and other aspects. As a result, such 
information is usually described linguistically. Let’s consider 
the following Z-number valued If-Then rules describing in-
fluence of 20 factors on job satisfaction [10] (Table 3). As the 
source for construction of a Z-valued If-Then rules base, the 
questionnaires completed by experts are used.

The codebooks of the terms used in the rules are given  
in Tables 4, 5.

Assume the following observation of facets is given:

X1 is ′ ( )( )( )Z = X1
3 5 4 5 5 0 5 0 75 1. . . . ,

X2 is ′ = ( )( )ZX2
3 4 5 0 5 0 75 1. . ,

X3 is ′ = ( )( )ZX3
3 5 4 5 5 0 5 0 75 1. . . . ,

X4 is ′ ( )( )( )ZX4
3 5 4 5 5 0 5 0 75 1. . . . ,

X5 is ′ ( )( )( )Z = X5
2 5 3 5 4 5 0 5 0 75 1. . . . . ,

X6 is ′ ( )( )( )Z = X6
2 5 3 5 4 5 0 5 0 75 1. . . . . ,

X7 is ′ ( )( )( )ZX7
2 3 4 0 5 0 75 1. . ,

X8 is  Z′ = ( )( )( )X8
2 3 4 0 5 0 75 1. . ,

X9 is ′ = ( )( )( )ZX9
3 5 4 5 5 0 5 0 75 1. . . . ,

X10 is ′ = ( )( )( )ZX10
3 4 5 0 5 0 75 1. . ,

X11 is ′ ( )( )( )Z = X11
3 5 4 5 5 0 5 0 75 1. . . . ,

X12 is ′ = ( )( )( )ZX12
1 5 2 5 3 5 0 35 0 65 0 95. . . . . . ,
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X13 is ′ = ( )( )( )ZX13
2 5 3 5 4 5 0 35 0 65 0 95. . . . . . ,

X14 is ′ = ( )( )( )ZX14
2 5 3 5 4 5 0 5 0 75 1. . . ( . . ,

X15 is ′ = ( )( )( )ZX15
2 5 3 5 4 5 0 5 0 75 1. . . . . ,

X16 is ′ = ( )( )( )ZX16
2 5 3 5 4 5 0 5 0 75 1. . . . . ,

X17 is ′ ( )( )( )Z = X17
2 5 3 5 4 5 0 35 0 65 0 95. . . . . . ,

X18 is ′ = ( )( )( )ZX18
2 3 4 0 5 0 75 1. . ,

X19 is ′ ( )( )( )Z = X19
2 5 3 5 4 5 0 5 0 75 1. . . . . ,

X20 is ′ = ( )( )( )ZX20
2 5 3 5 4 5 0 5 0 75 1. . . . . .

Let’s compute the corresponding value of job satisfaction 
by using the method described in the previous section. 

At Stage 1, conditions of (6) are checked. The results 
show that Rules 1 and 2 can be used for interpolation.

The values of distance computed at Stage 2 are as follows:

D

D D D

v

X X X

′( ) =

= ′ ′( ) + ′ ′( ) + + ′ ′

Z Z,

, , ... ,, , ,

1

1 1

2

2 1

2

20 11 2 20
Z Z Z Z Z Z(( ) =

= + + + + =

2

2 2 2 20 23 0 23 0 23 0 43 1 93. . . ... . . ,

D

D D D

v

X X X

( , )

, , ... ,, , ,

′ =

= ′ ′( ) + ′ ′( ) + + ′ ′

Z Z2

1 2

2

2 2

2

20 21 2 20
Z Z Z Z Z Z(( ) =

= + + + + =

2

2 2 2 20 23 0 23 0 23 1 15 1 96. . . ... . . .

The corresponding interpolation weights computed at 
Stage 3 are w1 » 0.5, w2 » 0.5.

Table 3
The encoded linguistic terms for Job Satisfaction Inscriptions in the table are horizontal only 	

(unfortunately, in horizontal presentation

JOB FACTORS/FACETS 1 2 3 4 5 6

1 Activity (VS, H) BHH) (S, H) (QS, H) (S, H) (QS, H) (S, H)

2 Independence (S, H) (S, H) (S, H) (S, H) (QS, H) (QS, H)

3 Variety (VS, H) (S, H) (S, H) (LS, M) (QS, H) (LS, M)

4 Social status (VS, H) (S, H) (QS, H) (S, H) (QS, H) (S, H)

5 Supervision-Human relations (VS, H) (QS, H) (S, H) (US, M) (S, H) (S, H)

6 Supervision-technical (S, H) (QS, H) (S, H) (US, M) (S, H) (S, H)

7 Moral values (QS), H) (QS, H) (S, H) (US, M) (QS, H) (LS, M)

8 Security (QS, H) (QS, H) (QS, H) (S, H) (QS, H) (LS, M)

9 Social service (VS, H) (S, H) (S, H) (QS, H) (QS, H) (S, H)

10 Authority (S, H) (S, H) (QS, H) (US, M) (QS, H) (S, H)

11 Ability (VS, H) (S, H) (S, H) (LS, M) (QS, H) (S, H)

12 Company policies and practices (QS, H) (LS, M) (QS, H) (LS, M) (LS, M) (S, H)

13 Compensation (S, H) (LS, M) (QS, H) (QS, H) (LS, M) (LS, M)

14 Advancement (VS, H) (QS, H) (QS, H) (S, H) (QS, H) (QS, H)

15 Responsibility (VS, H) (S, H) (QS, H) (LS, M) (S, H) (S, H)

16 Creativity (VS, H) (S, H) (S, H) (LS, M) (QS, H) (S, H)

17 Working conditions (S, H) (LS, M) (QS, H) (QS, H) (LS, M) (QS, H)

18 Co-workers (QS, H) (S, H) (QS, H) (S, H) (S, H) (S, H)

19 Recognition (VS, H) (QS, Bh) (S, H) (VS, H) (QS, H) (S, H)

20 Achievement (VS, H) (QS, H) (QS, H) (S, H) (QS, H) (S, H)

21 Overall Job Satisfaction (S, H) (QS, H) (QS, H) (LS, M (QS, H) (S, H)

Table 4
The encoded linguistic terms for Job Satisfaction

Level of Satisfaction Linguistic value

Unsatisfied (U) {0/1, 1/1, 0/2}

Less Satisfied (LS) {0/1, 1/2, 0/3}

Quite Satisfied (QS) {0/2, 1/3, 0/4}

Satisfied (S) {0/3, 1/4, 0/5}

Very Satisfied (VS) {0/4, 1/4, 0/5}

Table 5
The encoded linguistic terms for B (Reliability)

Level of Satisfaction Linguistic value

Low (L) {0/0.05,1/0.25, 0/0.05}

Medium (M) {0/0.25, 1/0.5, 0/0.75}

High (H) {0/0.5, 1/0.75, 0/1}
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At Stage 4, the overall level of job satisfaction is compu
ted by using (9):

Z w Z w Z S H QS Hy y y= + = ( ) + ( ) =

= ( )( )
1 1 2 2 0 5 0 5

0 5 3 4 5 0 5 0 75 1
, , . * , . * ,

. * . .(( ) +

+ ( )( )( ) =
= ( )( ) + ( )

0 5 2 3 4 0 5 0 75 1

1 5 2 2 5 0 5 0 75 1 1 1 5 2 0 5

. * . .

. . . . . . 00 75 1

2 5 3 5 4 5 0 36 0 62 0 96

.

. . . . . . .
( ) =

= ( )( )
According to the codebooks, the overall level can be labe

led as (QS, H).
Consider another case of information concerning the facets:

X1 is ′ = ( )( )( )ZX1
3 4 5 0 5 0 75 1. . ,

X2 is ′ = ( )( )( )ZX2
3 4 5 0 5 0 75 1. . ,

X3 is ′ = ( )( )( )ZX3
2 5 3 5 4 5 0 35 0 65 0 95. . . . . . ,

X4 is ′ ( )( )( )Z = X4
3 4 5 0 5 0 75 1. . ,

X5 is ′ = ( )( )( )ZX5
1 5 2 5 3 5 0 35 0 65 0 95. . . . . . ,

X6 is ′ = ( )( )( )ZX6
1 5 2 5 3 5 0 35 0 65 0 95. . . . . . ,

X7 is ′ = ( )( )( )ZX7
1 5 2 5 3 5 0 35 0 65 0 95. . . . . . ,

X8 is ′ ( )( )( )Z = X8
2 5 3 5 4 5 0 5 0 75 1. . . . . ,

X9 is ′ = ( )( )( )ZX9
2 5 3 5 4 5 0 5 0 75 1. . . . . ,

X10 is ′ ( )( )( )Z = X10
2 5 3 5 4 5 0 35 0 65 0 95. . . . . . ,

X11 is ′ ( )( )( )Z = X11
2 5 3 5 4 5 0 35 0 65 0 95. . . . . . ,

X12 is ′ = ( )( )( )ZX12
1 2 3 0 25 0 5 0 75. . . ,

X13 is ′ ( )( )( )Z = X13
1 5 2 5 3 5 0 35 0 65 0 95. . . . . . ,

X14 is ′ ( )( )( )Z = X14
2 5 3 5 4 5 0 5 0 75 1. . . . . ,

X15 is ′ ( )( )( )Z = X15
2 5 3 5 4 5 0 35 0 65 0 95. . . . . . ,

X16 is ′ = ( )( )( )Z  X16
2 5 3 5 4 5 0 35 0 65 0 95. . . . . . ,

X17 is ′ ( )( )( )Z = X17
1 5 2 5 3 5 0 35 0 65 0 95. . . . . . ,

X18 is ′ ( )( )( )Z = X18
3 4 5 0 5 0 75 1. . ,

X19 is ′ ( )( )( )Z = X19
2 5 3 5 4 5 0 5 0 75 1. . . . . ,

X20 is ′ ( )( )( )Z = X20
2 5 3 5 4 5 0 5 0 75 1. . . . . .

According to condition of (6), Rules 2 and 4 can be used 
for interpolation. The values of distance:

Dv ′( ) =Z Z, . ,1 1 58  Dv ′( ) =Z Z, . .2 3 76

The interpolation weights: 

w1 = 0.7, w2 = 0.3. 

The overall level of job satisfaction:

Z w Z w Z QS H LS My y y= + = ( ) + ( ) =

= ( )(
1 1 2 2 0 7 0 3

0 7 2 3 4 0 5 0 75 1
, , . * , . * ,

. * . . ))( ) +

+ ( )( )( ) =
= ( )( ) +
+

0 3 1 2 3 0 25 0 5 0 75

1 4 2 1 2 8 0 5 0 75 1

0 3

. * . . .

. . . . .

. 00 6 0 9 0 25 0 5 0 75

1 7 2 7 3 7 0 19 0 41 0 73

. . . . .

. . . . . . .
( )( ) =

= ( )( )

According to the codebooks, the overall level can be 
labeled as (QS, M). By using ranking of Z-numbers, one can 
see that in this case, job satisfaction level is lower than that 
in the first one, (QS, H).

6. Discussion of the results of the study on developing 
method of general interpolation for Z-number-valued 

if-then rules

Under conditions of high uncertainty, information is often 
characterized as vague or with partial certainty. One way to 
reduce this uncertainty is to use Z-numbers to express the 
degree of confidence in the value of a fuzzy variable, which 
is a combination of fuzziness and probability to describe the 
degree of confidence in the data. In the work, the main results 
are the obtained distances between the elements of a given 
rule and the elements of the current rule (1), (2). Practical ap-
plications of these formulas are shown in Tables 1, 2 (here are 
parts A and B of Z-numbers describing linguistic variables).

Compared to existing methods using fuzzy logic and fuzzy 
sets [15], Z-numbers more effectively describe imperfect infor-
mation, which fuzzy numbers are paired in such a way that in-
formation is presented with a high degree of reliability [13, 14]. 
This article discusses the use of Z-numbers in decision making. 
Without detracting from the achievements of the authors 
in [16] (this work is also devoted to the representation of 
a measure of job satisfaction by means of fuzzy sets), let’s believe 
that the method proposed in this article gives the better results. 

However, this study is limited to using only one type of 
distance between probability distributions. This limitation 
may reduce the scope and generalizability of the study, as 
some types of distances may be more or less suitable for spe-
cific applications. If the data is complex or contains different 
types of distributions, distance alone may not be enough to 
adequately assess the similarities or differences between them.

The main disadvantage of the presented study is that the 
approach is based on linear interpolation. Linear interpolation 
assumes that there is a linear relationship between two known 
points. This limits its ability to capture complex trends or 
non-linear changes in data. In some cases, linear interpolation 
can lead to oscillations or «jumps» in the interpolated function, 
especially if the distance between the known points is small [17].

This research focuses on the application of classical Z-num-
bers in decision-making. However, future research on Z-num-
bers may include extensions of MCDM (multi-criteria deci-
sion-making) models based on these generalized Z-numbers: 
intuitionistic Z-numbers, neutrosophic Z-numbers, Pythago-
rean Z-numbers, and Fermatean Z-numbers. These generalized 
Z-numbers are considered the best representation of Z-num-
bers and have advantages that deserve further study [18]. 
This will effectively identify the strengths of these generalized 
Z-numbers and their application in various decision-making 
contexts. Such an extended study can greatly enrich the un-
derstanding of Z-numbers and increase their practical value in 
decision-making in various fields.

7. Conclusions

1. A way to measure the ‘closeness’ of new Z-valued input 
with rules antecedents is formalized. The basics of a general 
interpolation method for Z-valued If-Then rules are proposed. 
Ordering conditions for interpolation are based on distance 
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between Z-numbers. Given a current observation in form 
of a vector of Z-numbers, a resulting output is computed as 
weighted sum of Z-number-valued consequents. The compo-
nents of the current observation vector are «between» the 
components of the antecedent vectors of the two rules, and the 
corresponding result was calculated as a linear combination of 
consequents. The coefficients of this combination reflect the 
influence of each subsequent rule on the resulting result.

2. A technique for Z-valued output as the weighted mean 
of rule consequents (based on the measured ‘closeness’) is 
developed. The proposed method of general interpolation for 
Z-number-valued rules includes certain stages. At the first 
stage, it is necessary to check whether the ordering conditions 
are met for the current observation and rule-antecedent vectors. 
At the second stage, with a positive outcome, the values of 
the distance between the current observation vector and 
the vectors of the antecedents of the rules are calculated. At 
the next stage, it is necessary to calculate the interpolation 
coefficients (weights). At the final stage, the resulting result 
is calculated as a weighted sum of the following rules.

3. As an application of the proposed method, job satis-
faction evaluation problem is considered. The problem is 

characterized by imprecise and partially reliable information 
related to influential factors of job satisfaction. The obtained 
results show efficiency of the method for Z-valued If-Then 
rules with high number of antecedents.
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