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The study focuses on improving the quality of using 
recurrent neural networks (RNNs) to predict cryptocurren-
cy prices. The formula of the target variable for the model 
based on the arithmetic mean is developed, which allows us 
to better take into account the dynamics of cryptocurrency 
exchanges. The factors affecting this variable were grouped 
into features based on the volume of daily cryptocurrency 
trading, the volatility of the relevant prices, and the pre-cal-
culated and selected signals of technical indicators. As part 
of the study, an algorithm for processing daily data was 
developed for the model. The results obtained made it pos-
sible to create a holistic model for forecasting stock prices. 
Two recurrent neural networks were trained: one with a long 
short-term memory (LSTM) and the other with a recurrent 
gate unit (GRU). To determine the efficiency of the models, 
the analysis was carried out using two key indicators: the 
Sortino coefficient, which measures the relative risk/reward 
for each additional unit of unwanted volatility, and the 
Sharpe ratio, which measures the return on assets, subtract-
ing the free risk. As a result, it was found that both models 
have similar results in terms of accuracy (~69 %). Still, the 
GRU-based model showed significantly better values of the 
Sortino coefficients (3.13) and Sharpe’s coefficient (2.45), 
which allows us to conclude that it is effective on cryptocur-
rency exchanges. At the same time, the LSTM model requires 
more parameters for training than the GRU model with an 
identical structure, which leads to a longer training time. 
The obtained scientific and practical results are aimed at 
more efficient use of recurrent neural networks in price fore-
casting on cryptocurrency exchanges
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1. Introduction

Technological progress, especially in artificial intelligence, 
drives the exponential growth of information technology.  
This evolution profoundly transforms social structures and 
economic ties. A notable manifestation of this trend is the rise 
of cryptocurrencies. These innovative financial tools have 
swiftly gained traction. As reported by liga.net in 2023, there 
are now over 60 million unique cryptocurrency wallets [1], 
highlighting the significant interest from investors and scho
lars in this financial market segment.

In this technological revolution, cutting-edge advance-
ments in artificial intelligence, notably recurrent neural net-
works (RNNs), are pivotal in the cryptocurrency landscape. 
RNNs are preferred for forecasting tasks due to their efficiency 
in handling time series data. Their capacity to generalize and 
discern intricate patterns positions them as a dependable tool.

The inherent volatility of cryptocurrency markets pre
sents significant challenges for investors and traders. Data 
from CoinMarketCap [2] indicates that many cryptocurren-
cies experience daily fluctuations by tens of percent, necessi-
tating innovative forecasting methods. Within this scenario, 
the practical application of RNNs becomes crucial for pre-
dicting market directions and formulating investment tactics.

Yet, employing RNNs comes with its set of challenges.  
A primary hurdle is handling the big data essential for train-
ing upcoming models. As per IDC [3], the global data volume 
is projected to reach 200 zettabytes by 2026. This surge neces-
sitates innovative solutions for data storage and processing.

Given the discussed points, there’s a clear need for con-
tinued research into using RNNs for cryptocurrency price 
prediction. Swift advancements in cryptocurrencies mark 
the current scientific and technological environment. Ad-
ditionally, the realm of artificial intelligence applications 
is expanding. These factors highlight the importance of  
a thorough investigation into the potential of RNNs to en-
hance operations on cryptocurrency exchanges.

Research into using recurrent neural networks (RNNs) 
for price forecasting on cryptocurrency exchanges is indeed 
pertinent. Cryptocurrencies are rapidly evolving, and there’s 
a growing amount of data to process. Within this setting, 
RNNs can be a robust tool to enhance investment portfolio 
management in this financial market segment. The rise in 
cryptocurrency popularity and volatility underscores the 
demand for innovative market forecasting methods. RNNs 
can be instrumental in addressing this need. With the 
surge in data volumes and the broadening applications of 
artificial intelligence, exploring the capabilities of RNNs on  
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cryptocurrency exchanges becomes a vital avenue for ongo-
ing investigation.

2. Literature review and problem statement

The paper [4] discusses the findings from a study on 
crafting investment strategies encompassing volatile assets 
like cryptocurrencies. This research leverages neural net-
works to suggest a trading strategy that maximizes profit 
while setting a stop-loss. This is achieved by enhancing the 
traditional moving average technical indicator. The enhance-
ment involves integrating limited recursion in Elman neural 
networks with a hybrid neuro-symbolic neural network. This 
integration ensures that no recursive parts of the network 
remain trainable. The strategy was modeled using the Euro
stoxx50 financial index. Results showcased the strategy’s 
potential to evade negative asset returns, thereby lowering 
investment risks. Yet, the paper should provide further de-
tails on the model’s precision. Investment risks in this paper 
are gauged on a per-trade basis. A future study could evaluate 
risk tolerance across a series of trades. Moreover, the current 
neural network only considers a single technical indicator’s 
outcome. A model drawing from multiple indicators could 
be more insightful, as it might unearth additional nonlinear 
correlations within price movements.

The paper [5] delves into the attributes of stocks to en-
hance the accuracy of price forecasts on stock exchanges. The 
research indicates that public data showcasing prominent 
funds’ investment patterns mirrors their managers’ collective 
views regarding stock characteristics. Like [4], this study 
doesn’t specify the accuracy of the models developed but in-
stead focuses on the combined return of a 50-asset portfolio.  
Additionally, there’s no analysis regarding the model’s re-
silience against risks. For practical application, it’s essential 
to determine if such a model can be reliably used in out-
of-sample scenarios, especially under uncertain conditions. 
Furthermore, when refining the model, it would be beneficial 
to incorporate insights from the specific characteristics of 
distinct asset groups.

The paper [6] details research on creating a type 2 chao
tic transient-fuzzy deep neuro-oscillatory network with 
a  retrograde signal to predict stock prices. This model un-
derwent training using a dataset comprising 129 assets, of 
which 9 are cryptocurrencies, spanning 2048 days. The data 
was represented through ten signals derived from technical 
indicators. Instead of emphasizing accuracy, the research 
aimed to reduce the standard deviation while boosting the 
average cumulative return. While mathematically sound, 
this method must account for risk tolerance across a series 
of trades. Drawing from this paper’s experiences designing 
intricate algorithms, it’s recommended to consider a model 
that integrates multiple input features.

The paper [7] introduces research on designing a neural 
network for predicting stock market prices. The authors 
suggest a structure that combines a bilinear projection with 
an attention mechanism. While the model’s accuracy touches 
80 %, there’s no cumulative return or investment risk level 
assessment. Drawing on this paper, considering input fea-
tures as time series might be beneficial in ensuring a reliable 
accuracy level.

The paper [8] discusses the creation of a neural network 
for predicting prices on stock exchanges. The authors in-
troduce a novel deep-learning approach that melds wavelet 

transforms with stacked autoencoders. The model showcases 
satisfactory MAPE, R, and Theil U metrics values. Yet, much 
like in [6], it doesn’t account for risk tolerance across conse
cutive trading actions. Incorporating insights from recurrent 
neural networks in handling time series might be beneficial.

The paper [9] discusses the advantages of using modeling 
technology in business risk management. It underscores the 
value of employing recurrent neural networks for price pre-
dictions, leading to a decrease in risky ventures.

Although the models presented are trained on big data-
sets, enhancements could benefit their accuracy. The pa-
per [10] highlighted a shortcoming of RNNs in handling 
ongoing input streams. An adaptive forget gate was intro-
duced, enabling the network to refresh its state at specific 
intervals. Testing revealed that this new method outperforms 
traditional RNN techniques. This solidifies the merit of de-
veloping models using this innovative approach.

A review of these sources points towards the potential 
benefits of undertaking a research initiative to refine an RNN 
model for predicting prices on cryptocurrency exchanges.

3. The aim and objectives of the study

The study aims to develop a model for forecasting pri
ces on cryptocurrency exchanges based on recurrent neu-
ral  networks. 

To achieve this aim, the following objectives were accom-
plished:

– to categorize model features into groups based on crypto-
currency clusters and technical indicators-based signals. Clus-
ters should consider daily trading volume and price volatility;

– to define a target variable for the model;
– to build and evaluate the model.

4. Materials and methods of research

4. 1. Research object
The object of this research is the development of a model 

that predicts cryptocurrency exchange prices using recurrent 
neural networks. This encompasses the identification of mo
del input features and the subsequent training process.

This study’s central hypothesis posits that price pre-
diction on cryptocurrency exchanges can be enhanced by 
developing a recurrent neural network with intricate input 
features and a training strategy aligned with the model’s 
future application.

This research operates on the premise that there exist 
discernible patterns within price dynamics, which the model 
can identify given sufficient training data. However, certain 
limitations exist. The model does not account for external 
influences like global economic shifts, political interventions, 
or technological advancements.

4. 2. Data and tools
This study’s models were trained and validated using 

data from the Binance API [11] from June 2021 to June 2023. 
This dataset captures daily metrics such as close, open, high, 
lowest prices, and trading volumes. Our analysis targeted 
cryptocurrencies exchanged with BUSD, which serves as Bi-
nance’s counterpart to the US dollar. The dataset comprises 
289 distinct cryptocurrencies. A brief overview of the data is 
provided in Table 1. The full dataset can be accessed at [12].



Mathematics and Cybernetics – applied aspects 

45

Python was chosen as the primary tool for data analysis, 
model training, and visualization [13]. Essential libraries such 
as NumPy, Pandas, Scikit-learn, TensorFlow, Matplotlib, Sea-
born, and Keras were employed. These libraries offer extensive 
resources for data processing, feature engineering, model train-
ing, validation, and graphical representation. The utilization of 
these libraries simplifies both the development and evaluation 
phases. Due to its vast library ecosystem, intuitive syntax, sca
lability, high performance, and easy integration capabilities, 
Python was deemed the most suitable for the study’s objectives.

4. 3. Neural network type
RNNs (Recurrent Neural Networks) were selected for 

forecasting stock prices due to their proficient handling 
of time series data. They process the entire sequence con-
text and identify nonlinear relationships within the series.  
Given the intricate nonlinear patterns frequently appearing 
in financial time series, this capability is vital for forecasting 
stock prices. At its core, RNNs are a subset of neural net-
works where connections form a directed sequence-aligned 
graph [10]. This design endows them with memory loops, 
enabling information retention within the network.

However, early RNN iterations encountered the ‘vanish-
ing gradient’ issue, leading to protracted training durations 
for gradient methods when working with RNNs [14, 15]. 
This challenge arose because the error gradient, vital for gra-
dient methods, vanished as it retrogressively moved through 
the network. Consequently, the RNN’s initial layers ceased 
learning. In situations with extended sequences, RNNs strug-
gled to relay information from preceding steps forward, ex-
hibiting a short-term memory deficit.

Fig. 1 illustrates a common issue with earlier RNN ver-
sions: unit 1 experienced a vanishing error gradient because 
of damped backflow, impeding the accurate transfer of infor-
mation to block 4. A new RNN variant, the long short-term 
memory (LSTM), emerged to address the short-term memo-
ry challenge.

Fig. 2, derived from [10], displays an LSTM unit. This unit 
comprises three gates: input, output, and forget. These gates 
regulate information flow and determine the unit’s status.  
In sequence, LSTMs link these units, each functioning as  
a memory module.

As shown in Fig. 2, the forget gate (1) tells the unit what 
information should be «forgotten» or discarded from the inter-
nal state. The input gate (2) indicates what new information 

to store in the state. The output gate (3), (4) is what the unit 
outputs to the outside, a filtered version of the internal state:

f W h X bt t t t t= [ ]+( )−s * , ,1 	 (1)

i W h X bt i t t i= [ ]+( )−s * , ,1 	 (2)

o W h X bt o t t o= [ ]+( )−s * , ,1 	 (3)

C W h X bt c t t c
 = [ ]+( )−tanh * , .1 	 (4)

Then the internal state of the cell is calculated by the 
formula (5):

C i C f Ct t t t t= + −* * .

1 	 (5)

The final output from the block, or ht, is then filtered by 
the formula (6):

h o Ct t t= ( )* tanh .	 (6)

As with every neural network, weights are associated 
with each input. These weight matrices are combined with 
gradient optimization to make the feedforward unit learn. 
The weight matrices can be seen in the formulas above as Wf, 
bf, Wi, bi, Wo, bo, Wc, bc, respectively.

These units are then connected, as shown in Fig. 3. This 
allows the LSTM network to store information from past 
steps and make time-series predictions. Using the LSTM 
cell architecture, the network can eliminate the vanishing 
gradient problem. This problem prevented older RNN archi-
tectures from achieving good time-series predictions.

Unit 1 Unit 2 Unit 3 Unit 4

ht–1ht–2ht–3 ht

XXt–1Xt–2Xt–3

Fig. 1. A typical structure of a recurrent neural network: 	
Xt – input sequence, ht – output sequence

Table 1

A sample of input data collected using the Binance API for the period from June 2021 to June 23

Crypto-cur-
rency symbol

End of the 
period

Start of the 
period

Open price High price Low price Close price
Trading 
volume

Trading volume 
(BUSD)

BTC 2021-06-01 2021-06-01 37266.5 37918.54 35683.88 36685.87 19265.08 704653105.2

BTC 2021-06-02 2021-06-02 36685.87 38235.22 35909.54 37568.67 14636.82 546204536.3

BTC 2021-06-03 2021-06-03 37568.66 39475.45 37168.01 39250 17391.70 671676510.4

BTC 2021-06-04 2021-06-04 39249.99 39285.96 35578.23 36853.91 19950.22 738544042.6

BTC 2021-06-05 2021-06-05 36848.29 37924.61 34823.78 35521.12 16838.29 612038548.6

BTC 2021-06-06 2021-06-06 35521.12 36475.78 35230 35807.49 10837.52 389495323.9

BTC 2021-06-07 2021-06-07 35810.93 36809.14 33313.77 33573.37 18293.17 650225499.6

BTC 2021-06-08 2021-06-08 33570 34085.63 31050.01 33396.46 31935.94 1045356523

BTC 2021-06-09 2021-06-09 33403.31 37574.48 32418.21 37408.94 32116.48 1126081299

Source: Compiled by the authors based on  [11]
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As shown in Fig. 3, the architecture is a standard version 
of the LSTM unit. Researchers are constantly improving and 
modifying the block architecture to make the LSTM network 
more efficient and reliable for different tasks. An example is 
the used architecture of the LSTM unit, where connections 
are added to each valve, which allows them to look at the 
internal state of the Ct–1. 

Another common modification of the 
RNN is the gated recurrent unit or GRU, 
shown in Fig. 4.

Fig. 4 shows the main distinction bet
ween the GRU and the LSTM. The GRU 
integrates the input and forget gates into 
a singular update gate. Furthermore, the 
internal state of the unit and the hidden 
state are merged. As a result, a GRU block 
is more straightforward than a conventio
nal LSTM. An advantage of the RBF lies 
in its rapid learning capability. Later in this 
paper, the effectiveness of both the GRU 
and LSTM methods will be tested and 
compared. Notably, the GRU and LSTM 
can identify long-term patterns in time se-
ries, a crucial aspect for forecasting mar-
ket trends. Their adaptability enables them  

to fit various scenarios and effectively address the nonlinear 
dependencies frequently seen in financial time series. How-
ever, while recognizing their merits, it’s vital to understand 
that employing RNNs for stock price prediction necessitates 
a comprehensive knowledge of the data and a systematic 
approach to its pre-processing, which constitutes the core of 
this research.
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Fig. 2. Unit of long short-term memory: Xt – input data sequence, ht – output data sequence, Ct – unit status, 	
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  – internal unit’s state
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4. 4. Evaluation of the obtained models
The accuracy of the models was assessed in this study. 

Yet, it’s important to note that the accuracy measure only 
evaluates the capability to anticipate price shifts at specific 
moments without accounting for associated trading risks. 
For investors, the ideal models are those that forecast accu-
rately and balance risk and return favorably. To this end, the 
Sharpe [16] and Sortino [17] ratios were employed to exa
mine the efficacy of the derived trading strategies.

The significance of these ratios in model analysis cannot 
be overstated. The first reason is their intrinsic risk adjust-
ment, which is pivotal for gauging performance in practical 
scenarios. By factoring in risk, it becomes feasible to juxtapose 
a model’s profit potential against the inherent risks. Secondly, 
the standardization offered by these ratios provides a straight-
forward method to gauge model performance. This facilitates 
more informed determinations of the model’s continued de-
ployment or potential refinements based on the findings.

The Sharpe ratio, in essence, contrasts the performance of 
investments, including cryptocurrencies, to a risk-free asset, 
taking risk adjustments into account. It’s computed as the 
differential between the returns of the investment and that 
of the risk-free asset, all divided by the standard deviation 
of the investment’s return. This ratio conveys the additional 
yield an investor garners for each incremental risk unit. The 
Sharpe ratio can be expressed using formula:

S
E R Rf=

− 
s

,	 (7)

where R – the return on the portfolio (asset), Rf – the return 
on an alternative investment (usually a risk-free interest rate 
is taken), E[R–Rf] – the risk premium (the mathematical 
expectation of the excess of asset return over the return on 
an alternative investment), and, σ – the standard deviation 
of the portfolio (asset) return.

The Sharpe ratio determines how well an asset’s return 
compensates for the risk an investor is taking. Investing in 
the asset with the higher Sharpe ratio will be less risky when 
comparing two assets with the same expected return.

The Sortino coefficient assesses the profitability and risk 
of an investment tool, portfolio, or strategy. Though it bears 
similarities to the Sharpe ratio in its calculation, it diverges 
by utilizing the «downside volatility» instead of the general 
portfolio volatility. Here, the volatility is determined based 
on returns that fall beneath the minimum acceptable portfo-

lio return (MAR) [18]. The methodology for its calculation 
is articulated in formulas (8) and (9):

S
R T
DR

=
−

,	 (8)

where R – the average portfolio return, T – the minimum ac-
ceptable level of portfolio profitability, and DR – a downward 
deviation or «downward volatility»:

DR T r f r dr
t

= −( )
−∞
∫ 2

( ) ,	 (9)

where T – the annual target return, originally called the 
minimum acceptable return MAR, r – a random variable 
representing the return for the distribution of annual returns, 
and f(r) – a distribution for annual returns, for example, a log-
normal distribution.

According to the sources [16, 17], Sharpe and Sortino 
values greater than one indicate acceptable and above 2.5 – 
excellent model quality.

5. Results of developing a recurrent neural network  
for price forecasting at cryptocurrency exchanges

5. 1. Formation of models features groups
Three feature groups were derived from the available 

data: classification by trading volume, classification by price 
volatility, and technical indicator signals. Each of these 
groups is elaborated upon below.

Trading volume is indicative of the liquidity on an 
exchange. High liquidity can translate to more fluid price 
movements. Moreover, a surge in trading volume may rep-
resent heightened interest and trading activity, signaling 
investor confidence or doubt. When there’s an uptick in trad-
ing volume accompanying a price rise or fall, it may suggest  
a more robust trend. Such correlations are considered by the 
model, enhancing its forecasting precision.

Daily trading volume values were restricted to 0 to 
0.07 billion BUSD to address extreme deviations. Any va
lues beyond this bracket were treated as outliers and subse-
quently replaced. The data was then clustered into 4 distinct 
groups using the K-means method [18]. Fig. 5 offers a visual 
representation of the distribution of cryptocurrency trading 
volumes, depicted through a histogram.

 
Fig. 5. Histogram of the distribution of cryptocurrency clusters calculated by the K-means method based on daily trading 

volume as of June 01, 2023, for 289 cryptocurrencies. Source data and calculations: [12]
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Fig. 5 reveals that most cryptocurrencies experience daily 
trades of up to 200 million BUSD. However, a distinct group 
comprises significant cryptocurrencies like bitcoin, ether, 
and several stablecoins, registering daily trading volumes 
surpassing 600 million BUSD. Incorporating the one-hot 
encoded clusters as features in the RNN model is expected 
to elucidate specific nonlinear relationships for each group, 
potentially enhancing forecast precision.

Volatility is pivotal in stock exchanges, indicating the 
extent of price variations and associated uncertainty. The 
indicator for volatility is derived from the standard deviation 
of the daily closing price’s percentage alteration, as depicted 
in formula (10):

S
x x

nx

i
i

n

=
−( )

−

∑ 2

1
,	 (10)

where n – number of days, x  – average close price, xi – close 
price on a particular day.

Abnormal deviations led to constraining the values bet
ween 0.04 and 0.13. Any values beyond this range were 
replaced with these extreme limits. The data were catego-
rized into four clusters utilizing the K-means clustering me- 
thod [18]. The findings were illustrated in a histogram (Fig. 6).

As illustrated in Fig. 6, most cryptocurrencies exhibit 
volatility values ranging from 0.05 to 0.1. This range sig-

nifies a moderate degree of price variability. The spread of 
these volatility metrics suggests their potential as neural 
network input data once transformed into a uniform code. 
By introducing volatility as a feature, deep learning models  
can be better equipped to understand the intricacies of 
price movement dynamics. These dynamics influence stock 
market sentiment, diverse trading behaviors, and external 
determinants. Incorporating volatility enhances the model’s 
predictive accuracy regarding price direction.

Technical indicators are analytical tools in stock ex-
changes, forecasting price shifts based on past data [19]. 
Incorporating buy and sell cues derived from these indicators 
as features enhances the capacity of deep learning models to 
identify price movement trends. A compilation of 26 pre
valent stock market indicators was gathered for this study, 
drawing from references [19, 20], as detailed in Table 2.

The list of technical indicators presented in Table 2 is 
effective for identifying trends in the stock exchange. Calcu-
lations were made for each indicator, the results of which are 
shown in Fig. 7.

As depicted in Fig. 7, both the Sortino and Sharpe coef-
ficients exhibit relatively low average and minimum values. 
Such an outcome aligns with expectations, given that signals 
from technical indicators are typically more effective when 
amalgamated with other signals [13]. In the realm of neural 
networks, a synergistic effect emerges during the model 
training phase.

 
Fig. 6. Histogram of the distribution of cryptocurrency clusters calculated by the K-means method based on the price volatility 

for the period 06.2021 – 06.2023 for 289 cryptocurrencies. Source data and calculations: [12]

Table 2
List of common technical indicators

Short title Full title Short title Full title

CCI Commodity Channel Index RSI Relative Strength Index

WPR Williams Percentage Range STOCH Stochastic Oscillator

BB Bollinger Bands TSI True Strength Index

FI Force Index UO Ultimate Oscillator

ATR Average True Range ADI Accumulation and Distribution Index

VI Vortex Index EOM Ease Of Movement

TEMA Triple Exponential Moving Average OBV On-Balance Volume

MI Mass Index VPT Volume-Price Trend

MACD Moving Average Convergence/Divergence DC Donchian Channel

KST Know Sure Thing Oscillator KC Keltner Channel

ADX Average Direction Index CC Coppock Curve

DPO Detrend Price Oscillator UI Ulcer Index

MFI Money Flow Index ICH Ichimoku Kinko Hyo
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Incorporating these indicators into a neural network as 
binary signals to forecast price direction is crucial. It fosters 
a notable enhancement in analysis efficiency and simplicity. 
With these indicators, the neural network can more readily 
discern behavioral patterns.

5. 2. Developing a target variable for the model
In training neural networks for stock price predictions using 

time-series data, selecting the target variable (Y) is as critical 
as selecting features. This target variable must encapsulate the 
information essential for realizing the specified investment ob-
jective. Factoring in the investment objective and the forecast 
horizon is crucial when pinpointing the target variable. Distinct 
target variables can yield varying outcomes. Some conventio
nal target variables for forecasting stock price behavior are 
provided in formulas (11)–(15) as referenced in [14, 15]. Here, 
P is the price, t – is the period, and n – is the number of days.

The price change is calculated as the difference between 
the price of an asset at a future and current time. This simple 
approach allows you to learn about the expected price move-
ment over a certain period:

Y P Pt t n t= −+ .	 (11)

The return is calculated as a relative price change. It al-
lows you to find out how much the price is expected to rise 
or fall in percentage terms:

Y
P P

Pt
t n t

t

=
−+ .	 (12)

The logarithmic return is the natural logarithm of the ra-
tio between future and current prices, which has convenient 
mathematical properties such as additivity over time:

Y
P P

Pt
t n t

t

=
−





+log .	 (13)

Price direction is a binary classification of price direction 
indicating whether the price of an asset will rise or fall:

Y
P P

P Pt
t n t

t n t

=
>
≤





+

+

1

0

, ,

, .

 if 

 if 
	 (14)

Excess return is the difference between the asset’s return 
and a benchmark return, such as a stock index or a risk- 
free rate. This allows you to predict the value of an asset re
lative to other assets on the exchange:

Y
P P

P
risk free ratet

t n t

t

=
−





−+   .	 (15)

The formulas (16), (17) are based on the arithmetic mean:

W

P P
P

nt

t n t n

t nt

n

=

−





+ + −

+ −
∑ 1

1 .	 (16)

Y

W

W

W
t

t

t

t

=
>

− <
=









1 0

1 0

0 0

, ,

, ,

, .
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Thus, the target variable (17) is formed, which is cal-
culated based on the arithmetic mean of the future change 
in the closing price (Table 1) over n periods in percent-
age terms. The target variable is a signal to trade and takes 
the value 1 – buy, 0 – hold, or –1 – sell. In other words, if 
the price increases over the subsequent n periods, the target 
variable will signal a buy and vice versa. Such a target vari-
able can offset the negative impact of noise price fluctuations 
during training.

5. 3. Building and testing the model
Based on the previous calculations, three groups of 

features were formed: involvement in clusters by trading 
volume, involvement in clusters by price volatility, and 
technical indicators-based signals. The target variable was 
also created based on the arithmetic mean (17). Fig. 8 shows 
the developed algorithm for generating model features in the 
time series format for the model.

 
Fig. 7. Calculated metric values for 26 signals based on technical indicators from 06.2021 to 06.2023 for 289 cryptocurrencies. 

Dataset and code: [12]



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 ( 125 ) 2023

50

As shown in Fig. 8, the data is trans-
formed into a matrix format before being 
transferred to the neural network. It is 
worth noting that the algorithm is not ap-
plied to the first n days of the sample due to 
the lack of relevant input data. A diagram of 
the model training and validation process 
is shown in Fig. 9, with an extended expla-
nation of the algorithm for calculating the 
Sharpe and Sortino coefficients in Fig. 10.

The maximum values of the time series 
size and the threshold for predicting the 
target variable in Fig. 9 are due to the lack of 
significant computing capabilities and time 
to test more combinations. Fig. 11 shows the 
results of evaluating the obtained 54 RNN 
models (27 GRU and 27 LSTM). 

As shown in Fig. 11, the model trains bet-
ter when the target value window is increased. 
However, this reduces the values of the Sharpe 
and Sortino ratios. Expanding the time series 
window increases the accuracy, but there is 
no apparent effect on the values of the ratios. 
At the same time, the best results of the coeffi-
cients were obtained at 30 days for the LSTM 
and 40 days for the GRU. Thus, it was decided 
to use the RNN models presented in Fig. 12.

Calculation of 26 
technical indicators for 
the previous n days and 

their conversion to 
signals 

(1 - buy,
0 - hold
-1 - sell)

Determining the 
cryptocurrency volatility 

cluster (1 of 4) and 
applying one-hot encoding 

Determination of the 
cryptocurrency trading 

volume cluster (1 of 4) and 
applying one-hot encoding 

Consolidation into a single matrix

Daily trade data for a particular cryptocurrency

0 cluster – [1,0,0,0]
1 cluster – [0,1,0,0]
2 cluster – [0,0,1,0]
3 cluster – [0,0,0,1]

0 cluster – [1,0,0,0]
1 cluster – [0,1,0,0]
2 cluster – [0,0,1,0]
3 cluster – [0,0,0,1]

         [i1, i2, i3, i4]
              …               n
         [i1, i2, i3, i4]

Increasing the matrix 
dimension to 4*n by 

duplication
         [i1, i2, i3, i4]
              …               n
         [i1, i2, i3, i4] 

Increasing the matrix 
dimension to 4*n by 

duplication
              26

   [i1,1,  … , i26,1  ]
            …                  n
   [i1,n, … , i26,n]

              34

   [i1,1,  … , i34,1]
            …                  n
   [i1,n, … , i34,n]  

Fig. 8. Algorithm for generating model features in the format of time series 	
for a single cryptocurrency: n – the dynamic parameter of the time series 

duration (in days)

Increasing prediction period for the target variable by 5 days

Daily trade data for a specific cryptocurrency during 06.2023 - 06.2023

Data processing using the 
developed algorithm Target variable Calculation 

Increasing the size of the time series by 10 days

Setting the size of the time series
(initial = 10 days, maximum = 90 days)

Setting the prediction period for the target variable
(initial = 5 days, maximum = 15 days)

Neural network training

Optimization of 
layers, filters, 

and hyper-
parameters

Calculation of Sharpe and Sortino ratios

Optimization based on accuracy and Sharpe and Sortino ratios

Saving the model

Selecting the best saved model 
based on Sharpe and Sortino ratios  

Fig. 9. Model training algorithm for price forecasting on a cryptocurrency exchange

Pre-processed data on all cryptocurrencies

Application of the neural network

Setting a starting budget for testing

Consistent trading based on the signals generated by the neural network and saving the 
trading history in the form of daily asset value in BUSD (Binance dollars) 

Calculation of Sharpe and Sortino ratios for a single cryptocurrency 

Iterating over cryptocurrencies

Calculating the average value of Sharpe and Sortino ratios for all cryptocurrencies  
Fig. 10. Algorithm for calculating the Sharpe and Sortino ratios as part of the model training algorithm 	

for forecasting prices on a cryptocurrency exchange
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As can be seen in Fig. 12, there are 338 ths. parameters in 
the LTSM model and 255 ths. parameters in the GRU model. 
The training history is shown in Fig. 13, 14.

As can be seen from Fig. 13, 14, the accuracy for the 
GRU is 69.47 %, and for the LTSM 69.04 %. The Sortino 
and Sharpe ratios are 3.13 and 2.45 for the GRU and 2.83 
and 2.14 for the LTSM. Accuracy could be improved by 
covering more previous days, but this would reduce the 
values of the Sharpe and Sortino coefficients. It is worth 
noting that it is difficult to achieve high accuracy due to 
the high degree of uncertainty in cryptocurrency markets.

The study used data for 289 cryptocurrencies, but 
it needs to be clearer to visualize the history of model 

testing on each due to the results’ similarity. Therefore, 
it is necessary to form a representative list of crypto
currencies. 

A matrix of intersections derived from the previously 
obtained cryptocurrency clusters by volatility and daily 
trading volume is presented in Fig. 15.

As shown in Fig. 15, 249 cryptocurrencies (86 % of 
the total) are located within 6 cluster intersections.  
A representative list is formed from cryptocurrencies with 
average trading volumes within their cluster intersection. 
Fig. 16, 17 demonstrate the test results and the Sharpe 
and Sortino ratios values for the created models for each 
cryptocurrency.

 Fig. 11. Results of the evaluation of recurrent neural networks trained based on data 	
for June 2021 to June 2023. Source data, code and models: [12]

Architecture of the developed recurrent neural network with 
long short-term memory

Long short-term memory recurrent layer (input)
parameters: 188,000
shape: 40:200

Dropout layer
parameters: 0
shape: 40:200

Long short-term memory recurrent layer 
parameters: 120,400
shape: 40:100

Dropout layer
parameters: 0
shape: 40:100

Long short-term memory recurrent layer 
parameters: 30,200
форма: 50

Dropout layer
parameters : 0
shape: 50

Dense layer (output)
parameters: 153 
shape: 3

Architecture of the developed recurrent neural network with a 
gated reccurent unit

Layer with gated reccurent unit (input)
parameters: 141,600
shape: 30:200

Dropout layer
parameters: 0
shape: 30:200

Layer with gated reccurent unit
parameters: 90,600
shape: 30:100

Dropout layer
parameters: 0
shape: 30:100

Layer with gated reccurent unit
parameters: 22,800
shape: 50

Dropout layer
parameters: 0
shape: 50

Dense layer (output)
parameters: 153 
shape: 3  

Fig. 12. Architecture of the developed recurrent neural networks. 	
Source data, code, and models: [12]
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 Fig. 13. Training history of a recurrent neural network 	
with a long short-term memory based on data for June 2021 

to June 2023. Source data, code, and models: [12]

 Fig. 14. Training history of a recurrent neural network 	
with a gated recurrent unit based on data for June 2021 	

to June 2023. Source data, code, and models: [12]

  

 Fig. 15. Matrix of cryptocurrency distribution between clusters of daily trading volumes and volatility. 	
Source data and code: [12]

Fig. 16. Results of testing the model based on the recurrent neural network with a gated recurrent unit on data 	
for June 2021 to June 2023. Source data, code, and models: [12]
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As shown in Fig. 16, 17, the increase in asset value oc-
curred for most of the tests even though the price of the 
respective assets fell during the second half of the test period. 
This indicates the potential of the models for practical work 
at cryptocurrency exchanges.

6. Discussion of the results of the development  
of a recurrent neural network for price forecasting  

on cryptocurrency exchanges

Significant advancements have been observed in lever-
aging neural networks for stock exchange forecasting, as 
highlighted in [4]. The unique characteristics of the proposed 
models have been underscored through data collection from 
the international exchange Binance, covering 289 cryptocur-
rencies from June 2021 to June 2023, as detailed in Table 1. 
This dataset, transcending specific national boundaries, en-
hances the universality of the devised models. Mirroring 
findings from [5], these models navigate the volatility of 
financial instruments, maintaining a balance of stability 
and profitability, evident in Fig. 18, 19. Contrary to [6, 7], 
the models bypass the need for intricately structured neu-
ral networks, still achieving an acceptable 69 % accuracy, 
as depicted in Fig. 15, 16. Despite declining asset prices in 
the study’s latter half, asset values generally exhibited an 
upward trajectory. Although both models presented analo-
gous accuracies, the RNN-based GRU model outshined in 

Fig. 17. Results of testing the model based on the recurrent neural 
network with a long short-term memory on data for June 2021 	

to June 2023. Source data, code, and models: [12]

 

terms of Sortino and Sharpe coefficients, suggesting 
superior forecasting stability. Such observations un-
derscore the immense potential of GRU-based RNNs 
in crafting cryptocurrency exchange price-prediction 
models. A distinct scientific novelty is discerned in 
the algorithms crafted for feature formation (Fig. 8) 
and subsequent model training (Fig. 9, 10).

However, this research has limitations. Model 
results showcase sensitivity to particular parameters, 
potentially limiting the applicability and univer-
sality across diverse exchanges. The volatile nature 
of cryptocurrency exchanges might hamper result 
reproducibility. Additionally, textual data from va
rious informational sources needed to be factored in, 
given the constraints in query volume and processing 
intricacies.

Employing RNN-based models in predicting cryp-
tocurrency exchange prices is not without its set-
backs. Despite the refinements in LSTM and GRU 
models, the quest for optimal gradients still poses 
complexities during the training phase. Such models 
are computationally demanding, inflating time and 
resource expenditures. Additionally, RNNs might suc-
cumb to overfitting in the turbulent realms of crypto-
currency markets. Their predictions might overlook 
crucial external determinants like political shifts or 
technological innovations. And while RNNs exhibit 
prowess with time-series data, their efficacy might 
wane for non-stationary datasets like cryptocurren-
cy valuations. The absence of theoretical assurances 
regarding RNN forecast accuracy accentuates the 
prudence required in their application.

Prospective studies could incorporate external de-
terminants, computational optimizations, algorithmic 
enhancements to curtail overfitting, and strategies to 
mitigate the vanishing gradients. 

Anticipated mathematical hurdles might encompass 
the integration of external factors into predictive models. 
Methodological obstacles could revolve around pinpoint-
ing and verifying optimal model parameters over time. 
Experimentation challenges may stem from cryptocurrency 
market volatility, expansive data requisites for training, and 
adaptability to ever-evolving market conditions. Practical 
impediments orbit computational restrictions, focusing on 
streamlining computational efficiency and runtimes.

7. Conclusions

1. Three groups of features for the price forecasting 
model on cryptocurrency exchanges have been formed. 
The first group, which presents cryptocurrency clusters by 
daily trading volume, allows identifying the main trading 
patterns and trends for predicting future price fluctuations. 
The second group shows cryptocurrency clusters by price 
volatility, essential for forecasting and minimizing risks, 
especially in the highly volatile cryptocurrency market.  
The third group is based on signals from technical indi-
cators, helping to identify key trends and determine the 
best time to enter and exit the market. These three fea-
tures provide a holistic and comprehensive analysis of the  
cryptocurrency market, allowing the developed model to 
predict price movement direction on cryptocurrency ex-
changes effectively.
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2. A target variable for the arithmetic mean model has 
been developed. Choosing the correct target variable is 
critical because it determines what specific task the mo
del will solve. The dynamic component in the number of 
days allowed us to optimize the variable window to 5 days  
after training.

3. Based on the formed groups of features, predictive 
models based on recurrent neural networks were built 
and tested. These were two modifications: with long 
short-term memory (LSTM) and with a gated-recur-
rent unit (GRU). The accuracy for the GRU model was 
69.47 %, and for the LSTM, 69.04 %. Sortino and Sharpe 
ratios were 3.13 and 2.45 for the GRU and 2.83 and 2.14 
for the LSTM. The obtained ratios indicate the high effi-
ciency of both models.
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