
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (125) 2023

6

INFORMATION TECHNOLOGY

components is performed by the MQTT broker. Under the
standard mode of operation, the broker routes incoming
messages to all clients who are subscribed to a certain “top-
ic”. However, with the growth of the number of connected
devices and the amount of data generated, there is a need to
scale the system and balance the load in it.

To ensure the robustness and scalability of the IoT sys-
tem, distributed dynamic computing methods are used. Such
methods make it possible to perform time-consuming com-
puting tasks on several servers connected to one network.
In the context of IoT systems based on the MQTT protocol,
load distribution is usually performed by introducing addi-
tional modules, such as load balancers or queuing systems.
With this approach, one more software component is needed,
which will be an “intermediary” between the MQTT broker
and the servers on which the actual data processing takes
place. The use of this approach has the following drawbacks
and potential problems:

– increase in delays: the introduction of an additional
“intermediary” component between the MQTT broker and
computing servers increases delays in data transmission and
processing;

– complexity of configuration and management: addi-
tional software components complicate the process of system
deployment and maintenance;

IMPROVING A PROCEDURE
OF LOAD BALANCING

IN DISTRIBUTED IOT
SYSTEMS

I h o r Z a k u t y n s k y i
Postgraduate	Student

Department	of	Electronics,	Robotics,	Monitoring	and	
IoT	Technologies**

I h o r R a b o d z e i *
Corresponding author

Е-mail:	igor.rabodzei@gmail.com
S t a n i s l a v B u r m a k i n

Postgraduate	Student
Department	of	Computer	Information	Technologies**

Е-mail:	svburmakin@gmail.com
O l e k s a n d r K a l i s h u k *

V i t a l i i N e b y l y t s i a *
*Department	of	Information	Technology	Security**

National	Aviation	University
Liubomyra	Huzara	ave.,	1,	Kyiv,	Ukraine,	03058

The object of this research is the process of load
balancing in distributed Internet of Things (IoT) systems.
Within this work, a complex of problems related to efficient
load distribution has been addressed. The authors conducted
an analysis of existing load-balancing approaches and their
drawbacks and proposed an enhanced architecture for
the MQTT broker. Additionally, methods and algorithms
for load balancing were developed based on multi-criteria
server monitoring.

Furthermore, the authors created a mathematical
model to assess the uniformity of load distribution in the
system and introduced a corresponding metric – the load
distribution coefficient. In order to evaluate the proposed
load balancing methods, a series of experiments were
conducted, including the simulation of a distributed IoT
system with non-deterministic load. The main goal of these
experiments was to assess the uniformity of MQTT load
distribution by the broker.

The results of the experiments confirmed the hypothesis
of improved load distribution efficiency through multi-
criteria monitoring-based balancing. The utilization of
the proposed load-balancing methods allowed for a more
efficient utilization of computational resources. It was found
that when using the proposed methods, in the case of non-
deterministic load in the IoT system, the load distribution
coefficient on average exceeded the corresponding indicator
of existing methods by 70 %. In addition, the value of this
coefficient for the proposed methods remains virtually
unchanged throughout the experiment, which is evidence
of the stable operation of the system as a whole. The results
obtained can be useful in the development of modern IoT
systems

Keywords: internet of things, load balancing, cloud
computing, distributed systems, performance evaluation

UDC 621.382.2

DOI: 10.15587/1729-4061.2023.287790

How to Cite: Zakutynskyi, I., Rabodzei, I., Burmakin, S., Kalishuk, O., Nebylytsia, V. (2023). Improving a procedure

of load balancing in distributed iot systems. Eastern-European Journal of Enterprise Technologies, 5 (2 (125)), 6–22.

doi: https://doi.org/10.15587/1729-4061.2023.287790

Received date 21.07.2023

Accepted date 28.09.2023

Published date 30.10.2023

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license

1. Introduction

The Internet of Things concept is one of the most promis-
ing technologies of the 21st century. The number of connected
IoT devices is growing exponentially, and according to the
IoT Analytics report [1], it will reach 27 billion by 2025. This
growth is due to the development of the base of electronic
components, the transition to new generations of wireless
communication, as well as a decrease in the cost of electronics
production in general. Also, an important factor in the devel-
opment of IoT technologies is the growth of the power of com-
puting resources and the development of cloud technologies.
Since the number of connected devices is constantly growing,
the amount of data they generate is also constantly increasing.
This trend generates high requirements for data transmission,
storage, and processing systems.

In modern Internet of Things systems, the main data
transfer protocol between connected devices and servers is
MQTT (Message Queuing Telemetry Transport). MQTT
can work under conditions of loss of communication, and it
also creates a small load on the data transfer channel. This
allows for fast information exchange between devices and
the server, which is critical for an IoT network. This protocol
uses the Puslisher-Subscriber architecture. According to
this architecture, the routing of messages between system

Information technology

7

ancing methods in fog computing systems. This approach is
interesting and promising as it focuses on the overall energy
efficiency of the system but, at the same time, it is limited
due to the need to implement an additional level of fuzzy
computing. A similar study was carried out in [11], where the
application of existing balancing methods in fog computing
systems was considered. The results reported in the cited
study are also limited in the context of Internet of Things
systems, due to the need for an additional computing layer.

Another approach to solving the problem of load balanc-
ing is the use of machine learning methods. The authors of [12]
propose a load balancing scheme based on neural networks for
Internet of Things systems. To determine the effectiveness of
this method, the authors performed mathematical modeling,
but the operation of these methods in the context of dynamic
systems with a distributed architecture was not investigated.
A similar method is proposed in [13], where the topology of
the network and ways of distributing the load in it were con-
sidered in detail. The disadvantages of the study include the
complexity of implementation and the complexity of the sys-
tem architecture. The authors of study [14] propose load bal-
ancing methods for multipath routing. However, in the cited
study there are no practical experiments that would confirm
or refute the effectiveness of the above methods.

Another area of research into the problem of load bal-
ancing is the application of mathematical modeling meth-
ods. The authors of [15] proposed a mathematical theory
of dynamic load balancing in cellular networks. Among the
shortcomings of this approach, we can single out the limited
adaptability of the theory to changes in the intensity of the
input load of the network. In [16], the authors consider a
quasi-positional algorithm for load balancing in a cloud com-
puting environment. Mathematical models for determining
the optimal number of computing containers in Internet of
Things systems are proposed in [17]. The main drawback
of this approach may be the difficulty of adapting models
to changes in system configurations and loads. Study [18]
considers an optimization model for scheduling tasks in
cloud computing but this model does not take into account
dynamic load changes. The authors of work [19] propose a
mathematical model for increasing the efficiency of using
database resources in cloud computing.

In addition, many studies consider methods for improving
the efficiency of load distribution in industrial systems. For
example, work [20] investigates the problems of load balanc-
ing on the example of a implemented system for monitoring
and managing public transport. However, those studies do not
fully reveal the problem of load balancing in distributed IoT
systems as they only consider available commercial solutions.

The main limitation of the above studies is their focus
on classic web applications and commercial solutions; they
do not sufficiently take into account the dynamic load that
occurs in Internet of Things systems.

Therefore, there is a need to devise an effective procedure
for load balancing in distributed IoT systems. This proce-
dure should ensure an even distribution of tasks between
available workers and the most efficient utilization of server
resources.

3. The aim and objectives of the study

The aim of this study is to improve the procedure of load
balancing in distributed systems of the Internet of Things

– the need for additional resources: additional compo-
nents require additional computing resources, which in-
creases the cost and complexity of the system as a whole.

A potentially more optimal approach is to implement
load balancing at the MQTT broker level. In this case, the
system does not require additional components, which leads
to the reduction of message delivery time between the client
(IoT device) and the subscriber (computing server) to a
minimum. In addition, the implementation of this approach
allows existing IoT systems to use distributed computing
without changing the system architecture.

Optimizing the use of computing resources helps im-
prove system performance and reliability, and reduces hard-
ware and support costs. Therefore, the task of load balancing
at the MQTT broker level has the potential to optimize the
operation of the IoT system as a whole and requires further
research and development of new solutions.

2. Literature review and problem statement

One of the most popular research problems is load bal-
ancing in systems based on cloud and fog computing. For ex-
ample, in [2], the authors propose a method for balancing the
input load between virtual machines, based on the change in
CPU load. However, this approach has limitations since the
input load may be oriented not on processor resources but
on memory or network resources. Thus, this approach to bal-
ancing will not be effective. In [3], the authors also use the
concept of virtual machines in cloud systems. However, the
effectiveness of the proposed load distribution between them
has not been fully investigated. The authors of study [4]
proposed a method of load distribution based on «slicing» of
network resources in the context of fog computing. However,
the concept of fuzzy computing, and therefore the proposed
methods, cannot always be applied in an IoT network.

Another approach to solving load distribution tasks is
balancing based on geocoordinates. In study [5], the authors
propose a load distribution model based on the geographic
location of connected servers (Geography-Aware). In the
context of the Internet of Things system, these methods
are limited because the connected devices are often not
geographically distributed. Also, a study of load distribution
based on these algorithms was carried out in [6]. In the cited
study, the authors propose approaches for load balancing in
data storage systems.

Algorithms based on geodistribution are also used in [7]
to solve the problem of distributed data centers. Such a mod-
el is efficient for the above systems but not efficient enough
for systems with dynamic and hard-to-predict load, such as
IoT networks.

In [8], the authors proposed a complex load distribution
system in the IoT network. The concept of that system is
based on the dynamic allocation of resources for each part of
the network and the segmentation process. The disadvantages
of the system include the complexity of implementation due to
the need to provide an additional level of fuzzy calculations.

In [9], a comprehensive analysis of load balancing meth-
ods in cloud and fog computing, as well as the possibility of
their application in IoT systems, is carried out. However,
no scientific and practical experiments were conducted to
evaluate the effectiveness of the considered methods in the
context of IoT systems, which is a limitation of the cited
study. In [10], the authors consider energy-efficient load bal-

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (125) 2023

8

based on multi-parameter monitoring. This
will make it possible to improve the unifor-
mity of load distribution in dynamic systems
of the Internet of Things, and therefore to
increase the efficiency of the use of comput-
ing resources.

To achieve the goal, the following tasks
were set:

– to develop an improved MQTT broker
architecture with support for dynamic load
balancing methods;

– to build a mathematical model for de-
termining the load factor of the computing
server;

– to develop a dynamic load balancing
algorithm;

– to construct a mathematical model for
assessing the uniformity of load distribution in
distributed systems of the Internet of Things;

– to conduct experimental studies to de-
termine the effectiveness of the proposed
methods.

4. The study materials and methods

4. 1. The object and hypothesis of the
study

The object of research is the process of
load balancing in distributed systems of the Internet of
Things, in particular at the level of the MQTT protocol.

Under the standard mode of operation of MQTT (Fig. 1),
a client subscribed to a certain topic has access to a copy of
each message broadcast to this topic [21]. In this case, to
balance the load, it is necessary to distribute it by topics,
and to perform the subscription of workers to a specific topic.

But this approach has certain disadvantages because:
1. The load in IoT systems is non-deterministic and diffi-

cult to predict, so the early distribution of the load between
workers is impossible in real systems.

2. The workload of workers will be uneven.
3. Load distribution using partitions is incorrect within

the concept of the MQTT protocol.
This is especially true for systems that generate large

volumes of data (BigData).
A possible solution is to use the “Shared Subscriptions”

method, which appeared in the MQTT 5 release [22].
With shared subscriptions (Fig. 2), clients who share a
subscription in the same group receive messages one at a
time – a process sometimes called client load balancing. The
message load of one topic is distributed among all subscrib-
ers (Fig. 2). When using the Shared Subscriptions method,
the MQTT broker performs sequential routing of messages
between available servers of a certain group. With this ap-
proach, each worker receives 1/N messages, where N is the
number of servers in the group.

But this approach also has disadvantages related to the
uneven distribution of the load. Messages received at differ-
ent points in time, depending on their type, may require dif-
ferent software processing and, therefore, generate different
loads. Thus, there will be situations where part of the servers
will be fully loaded and will not be able to perform some
tasks (or perform them with a delay), while the other part
will be inactive or under-loaded at the same time.

The research hypothesis assumes that load balancing
based on multi-parameter monitoring can improve the effi-
ciency of computing resources in Internet of Things systems
with a distributed architecture.

Two MQTT brokers with different balancing methods
were used for the our experiment. Namely, HiveMQ with
the Shared Subscriptions method (hereinafter Method 1) as
well as the broker was developed based on the methodology
proposed in this study (hereinafter Method 2).

4. 2. Research methodology
In the course of this study, a methodology (Fig. 3) based on

mathematical modeling and experimental methods was used.
At the first stage, an analysis of available methods of load

balancing in Internet of Things systems was carried out. In
addition, their limitations and shortcomings in the context
of distributed systems with dynamic load were determined.
Based on the analysis, a goal was formulated and a hypoth-
esis was put forward regarding the improvement of existing
load balancing methods, as well as the research task was
stated. Next, the MQTT broker architecture was developed,
with monitoring and load balancing modules.

At the next stage, a mathematical model was proposed
for determining the load factor of the computing server. Also,
based on the proposed model, a balancing algorithm was
developed, and the software implementation of the developed
algorithm in the load balancing module was also performed.

To evaluate the effectiveness of the proposed methods,
a mathematical model for assessing the uniformity of load
distribution in distributed systems of the Internet of Things
has been built. This model is constructed on the basis of
vector distances of instantaneous load of active computing
servers. According to the proposed mathematical model, the
appropriate coefficient was introduced and a software envi-
ronment was developed for its determination.

Fig.	1.	MQTT	standard	subscription	method

Fig.	2.	MQTT	shared	subscriptions	mechanism

Information technology

9

At the final stage, a number of practical experiments
were conducted, in which the impact of existing and pro-
posed balancing methods and the efficiency of using server
resources by the Internet of Things system with dynamic
load were investigated.

5. Results of investigating the improved load balancing
method in distributed IoT systems

5. 1. MQTT broker
5. 1. 1. Architecture
For optimal load distribution between available serv-

ers (workers), the MQTT broker must receive information

about the current load status of each available server, and
route the message to the least loaded one at the moment.
Fig. 4 shows an improved model of the MQTT protocol.
In this model, two additional modules are introduced in
the MQTT broker – Utilization monitoring and Load
Balancer. In the proposed version, an additional channel is
introduced for the monitoring system – Monitoring chan-
nel (TCP, 8123 Port). Through the above MQTT channel,
the broker receives information about the load of each serv-
er. The evaluation is based on the following characteristics:
CPU, RAM, Disk, and Network usage. After receiving the
monitoring package, the broker stores them in a special
structure – Utilization state. This structure, in turn, is
used by the load balancing module (Load balancer).

Fig.	3.	Methodology	of	the	study

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (125) 2023

10

Load balancer is an asynchronous module that routes
incoming messages from Publishers to Subscribers (workers)
over a standard MQTT channel (TCP, 8124 Port).

5. 1. 2. Monitoring module
The monitoring module determines and analyzes instan-

taneous load values for each indicator. The above module
consists of three main components:

– server monitoring service – determines the current
value of the server load, and transmits it via the monitor-
ing transmission channel. In the proposed implementa-
tion, it is part of the MQTT client library;

– transmission channel – TCP socket through which
monitoring data is transmitted. In this case, serialized JSON
is transmitted (Table 1);

– monitoring information processing and analysis ser-
vice – the MQTT component of the broker, which receives,
stores, and analyzes the load values for each connected
server.

Table	1

Structure	of	the	object	with	monitoring	data	

Field Type

utilization Number

cpu_utilization Number

ram_utilization Number

disk_utilization Number

network_utilization Number

5. 2. Mathematical model for determining the comput-
ing server load factor

For load balancing, a general indicator (1) of server load,
Load Score, is introduced, which is determined on the basis
of the received monitoring data.

()
() ()

() ()0

, ,
d ,

, ,

T CPU RAM

DISK NET

LoadScore w

W CPU w t W RAM w t
t

W DISK w t W NET w t

=

 + +
=

+ +
∫ (1)

where wCPU, wRAM, wDISK, wNET are weighting factors for the
characteristics of CPU, RAM, Disk utilization, and Network
utilization, respectively.

CPU(w, t), RAM(w, t), Disk(w, t), NET(w, t) reproduce
the functions of resource use by server w at time t.

In this case, additional coefficients are introduced for
each characteristic, which makes it possible to dynami-
cally change the influence of one or another parameter on
the load distribution in the system. The use of dynamic
coefficients makes it possible to avoid overloading specific
resources. For example, if a server has a large amount of
RAM and at the same time is limited by CPU resources,
it is possible to reduce the ratio of wRAM and increase
wCPU, which will increase the overall performance of
the server.

5. 3. Dynamic load balancing algorithm
In the process of load balancing for active servers, an

additional variable, Threshold, is introduced. The Thresh-
old value is set based on the permissible load that the server
can withstand without being overloaded. When a server’s
LoadScore exceeds this threshold, it means that the server’s
resource usage (CPU, RAM, disk, and network usage) has
reached a point where it is considered too high for optimal
performance.

Fig. 5 shows the dynamic load distribution algorithm in
the system.

Servers with LoadScores below the Threshold are con-
sidered to have a manageable load and can receive new mes-
sages (tasks). Servers with LoadScores above the Threshold
should not receive messages to prevent further overload.

 Fig.	4.	Improved	MQTT	protocol	model

Information technology

11

5. 4. Mathematical model for assessing the uniformi-
ty of load distribution in distributed Internet of Things
systems

To evaluate the effectiveness of balancing, we shall intro-
duce a special characteristic – the coefficient of uniformity
of load distribution. To this end, a combination of statistical
metrics for each parameter that affects server load, as well as
an aggregated metric for the entire system, is applied. One
possible approach is to use “distances” between servers based
on the values of the load parameters. Euclidean differences
between parameter vectors are used to calculate “distances”.
In our case, the vectors of instantaneous server load values
are x1, x2, xi, where xi is the vector of measurements (2) for
the i-th server:

(), , , .i i i i ix CPU RAM DISK NET= (2)

Then the Euclidean distance between two vectors xi and
xj can be calculated by the formula:

() ()24

1
Distance , ,i j ik jkk

x x x x
=

= −∑ (3)

where xik is the k-th coordinate of the vector xi, xjk is the k-th
coordinate of the vector xj.

Thus, the Euclidean distance between each pair of serv-
ers can be calculated. In the next step, one can use these dis-
tances to calculate an aggregated average distance metric:

() ()1 1,

Average Distance

1
Distance , .

1
N N

i ji j j i
x x

N N = = ≠

=

=
− ∑ ∑ (4)

This metric will show the uniformity of load distribution
between servers. If the value of this metric is large, it may

indicate an uneven distribution of the
load, and if it is small, it may indicate
an even distribution.

5. 5. Experimental study of
the effectiveness of the proposed
methods

5. 5. 1. Experiment environment
To emulate the non-uniform load

generated in real systems, 50 tasks of
different types and intensities were
generated. Table 2 gives an example
of experimental tasks. Based on these
MQTT data, clients form messages
and send them to the MQTT broker,
which in turn routes it to the corre-
sponding server (worker) according to
a certain algorithm.

After the worker receives the mes-
sage, the program code is executed,
which generates the load according to
the received coefficients: CPU/RAM/
Disk/Network – intensive.

In this experiment, 5 servers were
used as workers, the characteristics
of which are given in Table 3.

The experiment involves the use of
servers with identical characteristics
and on the same local network, to effec-
tively evaluate balancing algorithms.

Table	2

Experimental	tasks

Task
number

Complexity of the task

CPU RAM Disk I/O Network

1 50 46 21 32

2 12 78 12 24

3 1 32 55 21

4 16 76 6 75

5 9 11 22 87

6 44 7 37 14

7 1 9 61 53

8 12 43 29 32

9 43 30 18 98

10 4 12 14 16

Table	3

Computation	server	parameters

Indicator Value

Machine Type Basic

CPU Type Regular Intel

Cores 1

RAM 512Mb

Disk Type SSD

Memory 8Gb

Network Bandwidth 1Gb/s

Operating System Debian

Fig.	5.	Dynamic	load	balancing	algorithm

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (125) 2023

12

5. 5. 2. Evaluation of results
The main characteristic when comparing balancing

methods is the proposed coefficient of uniformity of load
distribution. To calculate this coefficient, it is necessary
to store the instantaneous load values of each server at a
certain interval. In the case of the proposed architecture,
this can be done at the broker level since it receives load in-
dicators from workers in real time. But the HiveMQ broker
does not receive this information, so for the experiment it
is necessary to transfer monitoring to a separate module –
Load Monitoring.

In this experiment, the monitoring server receives load
indicators from workers with an interval of 100 ms, and cal-
culates the coefficient of uniformity of load distribution for

each set of received values. Fig. 6 shows the general scheme
of the experiment.

Execution of tasks: charts in Fig. 7, 8 show the execution
time and the distribution of tasks among 5 servers.

The above charts make it possible to visually assess the
difference in the distribution of tasks among servers for the two
investigated methods (Method 1 and Method 2) at different
points in time. Based on this data, it is possible to identify the
main load peaks or server overloads.

Table 4 gives the result of balancing by the algorithm based
on Method 1, and Table 5 – based on Method 2, for each of the
five experimental servers.

Fig. 9–14 show the dynamics of changes in the main
server load characteristics for each balancing method.

 Fig.	6.	Scheme	of	experiment

 Fig.	7.	Task	execution	time	chart	–	Method	1

Information technology

13

 Fig.	8.	Task	execution	time	chart	–	Method	2

Table	4

Load	balancing	–	Method	1

Task number Server number
Execution time

Start Finish Execution duration

1 3 1691166950859 1691167000860 50001

2 1 1691166951847 1691166963848 12001

3 5 1691166952849 1691166953850 1001

4 2 1691166969850 1691166969850 16000

5 4 1691166954851 1691166963852 9001

6 3 1691166955853 1691166999853 44000

7 1 1691166956856 1691166957856 1000

8 5 1691166957857 1691166969857 12000

9 3 1691166958855 1691167001856 43001

10 1 1691166959856 1691166963857 4001

Table	5

Load	balancing	–	Method	2

Task number Server number
Execution time

Start Finish Execution duration

1 5 1691167138683 1691167188684 50001

2 4 1691167139682 1691167151683 12001

3 2 1691167140684 1691167141684 1001

4 3 1691167141687 1691167157688 16000

5 2 1691167142686 1691167151686 9001

6 1 1691167143691 1691167187692 44000

7 5 1691167144688 1691167145689 1000

8 4 1691167145695 1691167157695 12000

9 5 1691167146693 1691167189693 43001

10 3 1691167147694 1691167151695 4001

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (125) 2023

14

a b

c

e

Fig.	9.	Dynamics	of	changes	in	processor	resource	load.	Method	1:		
a	–	container;	b	–	container	2;		

c	–	container	3;	d	–	container	4;	
	e –	container	5

d

Information technology

15

a b

c

d

e

Fig.	10.	Dynamics	of	changes	in	processor	resource	load.	Method	2:		
a	–	container;	b	–	container	2;		

c	–	container	3;	d	–	container	4;		
e –	container	5

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (125) 2023

16

a b

d

c

e

Fig.	11.	Dynamics	of	changes	in	processor	resource	load.	Method	1:		
a	–	container;	b	–	container	2;		

c	–	container	3;	d	–	container	4;		
e –	container	5

Information technology

17

a b

c

d

e

Fig.	12.	Dynamics	of	changes	in	processor	resource	load.	Method	2:		
a	–	container;	b	–	container	2;		

c	–	container	3;	d	–	container	4;		
e –	container	5

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (125) 2023

18

a b

c

d

e

Fig.	13.	Dynamics	of	changes	in	processor	resource	load.		Method	1:		
a	–	container;	b	–	container	2;		

c	–	container	3;	d	–	container	4;		
e –	container	5

Information technology

19

For both studied methods, the load was generated during
the same period of time and with the same intensity. There-

fore, based on our results, it is possible to conduct a compre-
hensive comparison of their effectiveness.

a b

c

d

e

Fig.	14.	Dynamics	of	changes	in	processor	resource	load.		Method	2:	a	–	container;	b	–	container	2;	c	–	container	3;		
d	–	container	4;	e –	container	5

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (125) 2023

20

5. 5. 3. Load distribution coefficient
The load distribution uniformity coefficient was deter-

mined according to the method described in chapter 5.4 for
instantaneous server load values with an interval of 100 ms.
An example of calculating the coefficient for 5 servers with
the following load values:

Server 1: x1={0.8, 0.7, 0.6, 0.5},

Server 2: x2={0.9, 0.65, 0.55, 0.45},

Server 3: x3={0.75, 0.6, 0.7, 0.55},

Server 4: x4={0.85, 0.75, 0.65, 0.6},

Server 5: x5={0.88, 0.68, 0.58, 0.48}. (5)

Euclidean distance between servers 1 and 2:

()
() () () ()

1 2

2 2 2 2

Distance ,

0.8 0.9 0.7 0.65 0.6 0.55 0.5 0.45

0.169.

x x =

= − + − + − + − ≈

≈ (6)

Similarly, the distances between all pairs of servers are
calculated. The average distance can then be calculated as
an aggregated metric:

()
()
()

1 2

1 3

4 5

Average Distance

Distance ,
1

Distance , 0.173.
5 4

Distance ,

x x

x x

x x

=

 +

= + +…+ ≈
× +

 (7)

The plot in Fig. 15 shows the values of the calculated
load distribution coefficient in the system for two balancing
methods. In this case, the smaller the value of the calculated
distance, the more uniform the distribution, and according-
ly, this method is more effective.

The above coefficient is the main indicator for analyzing
and evaluating the performance of load balancing methods as
it reflects the system’s ability to adapt and optimize the distri-
bution of tasks and resources. This indicator makes it possible
to assess how well the system coped with the variable load, and
how efficiently the available computing resources are used.

6. Discussion of research results of research on an
improved load balancing method in distributed Internet

of Things systems

The results of load distribution in the system reported in
this work demonstrate the advantages of the proposed balanc-
ing procedure compared to the existing one – MQTT Shared
Subscriptions [2]. This becomes possible owing to the proposed
method of load balancing based on multi-parameter monitoring.

To implement the proposed methods and algorithms, an
improved MQTT broker architecture (Fig. 4) with additional
components was developed. Namely, the monitoring and load
balancing module. In addition, the client’s MQTT module has
been expanded to determine and transmit the values of the
current state of the investigated parameters (CPU Utilization,
RAM Usage, Disk Usage, Network Utilization).

A mathematical model (1) and the corresponding coefficient
are proposed to estimate the workload of the computing server.
In this model, dynamic coefficients are used for the parameters
on which the server is monitored. This approach makes it possi-
ble to adapt balancing according to the type of input load, which
helps increase the evenness of the use of computing resources.
This model is programmatically implemented in the broker’s
MQTT monitoring module. The module receives load vectors
from active servers and calculates the value of the coefficient.

An algorithm (Fig. 5) for dynamic load balancing was
developed, and its software implementation was performed
in the corresponding MQTT broker module. This algorithm
performs balancing based on load factors and threshold
values for each server. In the software implementation of the
algorithm, the value of server thresholds is static, and the value
of load factors is dynamic and updated every 100 milliseconds.

Fig.	15.	Coefficient	of	uniformity	of	load	distribution.	Red	plot	–	method	1;	blue	plot	–	method	2

Information technology

21

To assess the uniformity of load distribution, a mathe-
matical model (4) was built, based on the distances between
the vectors of instantaneous load values of active servers.
The advantage of this model is that it takes into account the
differences in server load on several parameters (this study
uses a model with four parameters). This approach allows for
a comprehensive assessment of the efficiency of the use of
computing resources and is simple to implement.

Our experiment with the simulation of a real IoT system
that generates a dynamic load showed the main differences
in the operation of these two methods.

From the analysis of the time chart in Fig. 7, one can see
that using the standard Round Robin balancing algorithm
(used in Method 1) leads to overloading of some servers
and inefficient use of others. The situation when 7 tasks
were executed simultaneously on the server Worker 3, while
only one was executed on the server Worker 1, is especially
revealing. This unevenness in the load occurs because the
above algorithm does not take into account the current state
of server load and the resources needed to process specific
tasks, which may differ in complexity or volume of data.

Comparing this with Fig. 8, where the proposed algo-
rithm is shown, one can see that it provides a more even
distribution of tasks among active servers. The maximum
difference in the number of active tasks during the entire
testing period does not exceed one. This indicates that the
proposed method demonstrates a more stable and adaptive
approach to load balancing, ensuring optimal use of comput-
ing resources.

Analysis of the plots in Fig. 9–14 confirms the influence
of the proposed methods in ensuring the effective use of the
main resources of the system and demonstrates a signifi-
cant advantage of the proposed method. This conclusion is
confirmed by the plot in Fig. 15, which shows the change
in the distribution uniformity coefficient for the considered
methods. It is characteristic of the proposed method that the
value of this coefficient is on average 70 % higher compared
to Method 1, and does not change significantly during the
experiment period. This ratio reflects the overall efficiency
and projected performance of the system, and increasing
it helps reduce resource costs as the system operates more
efficiently and stably.

Our results confirm the proposed hypothesis as well
as substantiate the application of the proposed methods to
solve the problem of load balancing in distributed systems of
the Internet of Things.

The limitation of the proposed approach is its focus on
the MQTT protocol, and the impossibility of application
in systems built on the basis of the HTTP, COAP, gRPC
protocols.

The disadvantages of the proposed approach include the
complicated MQTT architecture of the broker, as well as the
need to provide an additional channel and a module for mon-
itoring connected servers. A possible optimization option is
to combine data transmission channels and a monitoring
channel. Also, in this implementation, serialized JSON pack-
ets are used to transmit monitoring data. A more optimal
solution may be the use of binary data transfer formats, for
example, Protocol Buffers.

This research may be further advanced by adapting the
proposed methods to new architectures and protocols that
are used in distributed systems of the Internet of Things.
Also, the development of this research may tackle the soft-

ware optimization of the shortcomings indicated in this
chapter, namely the improvement of the monitoring channel.

The methods and approaches proposed in this work could
be applied to the development and improvement of distrib-
uted IoT systems and would make it possible to increase
the productivity and efficiency of the use of computing
resources.

7. Conclusions

1. An improved MQTT architecture of the broker, as well
as connected clients (subscribers), has been implemented.
In the implemented architecture, unlike the existing ones,
additional components are introduced – the monitoring and
load balancing module.

2. A mathematical model is proposed, which makes it
possible to quantitatively estimate the instantaneous load
of the server. In this model, unlike the existing models, the
method of multi-parameter monitoring of the state of com-
puting resources is applied. In addition, dynamic coefficients
are applied for each parameter, which makes this model
adaptable to different types of load. The model is an element
of the proposed method, and is used in the above MQTT
broker load balancing module.

3. An algorithm for dynamic load balancing based on
the multiparameter monitoring method was developed. This
algorithm provides an adaptive distribution of tasks among
active computing servers and significantly reduces the risk
of overloading and underutilization of computing resources
compared to existing methods. The application of this algo-
rithm has made it possible to improve the overall efficiency of
the use of computing resources of the system by up to 70 %.

4. For a general assessment of the efficiency of load
distribution in the system, a mathematical model based on
Euclidean distances between vectors of instantaneous server
load values is proposed. On the basis of this model, a special
indicator was introduced – the coefficient of uniformity of
load distribution. This coefficient, in contrast to existing
assessment methods, reflects the balanced distribution of
the load of the system as a whole, and not its individual
components.

5. To determine the effectiveness of the proposed meth-
ods, a testing algorithm was developed, and a number of
scientific and practical experiments were conducted. A
comparative analysis of the effectiveness of balancing in a
distributed system of the Internet of Things was carried out
based on existing and proposed methods. The results of the
experiment showed that the use of the proposed methods
makes it possible to reduce the average load of the computer
server by 40–65 %. At the same time, the speed of data pro-
cessing remains unchanged. This means that the application
of the suggested procedure does not affect the performance
of the system but helps reduce the load on computing re-
sources.

Conflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial,
personal, authorship, or any other, that could affect the study
and the results reported in this paper.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (125) 2023

22

Funding

The study was conducted without financial support.

Data availability

All data are available in the main text of the manuscript.

References

1. State of IoT – Spring 2023. Available at: https://iot-analytics.com/product/state-of-iot-spring-2023

2. Liaqat, M., Naveed, A., Ali, R. L., Shuja, J., Ko, K.-M. (2019). Characterizing Dynamic Load Balancing in Cloud Environments

Using Virtual Machine Deployment Models. IEEE Access, 7, 145767–145776. doi: https://doi.org/10.1109/access.2019.2945499

3. Shafiq, D. A., Jhanjhi, N. Z., Abdullah, A., Alzain, M. A. (2021). A Load Balancing Algorithm for the Data Centres to Optimize Cloud

Computing Applications. IEEE Access, 9, 41731–41744. doi: https://doi.org/10.1109/access.2021.3065308

4. Goncalves, D., Puliafito, C., Mingozzi, E., Rana, O., Bittencourt, L., Madeira, E. (2020). Dynamic Network Slicing in Fog Computing

for Mobile Users in MobFogSim. 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC). doi:

https://doi.org/10.1109/ucc48980.2020.00042

5. Yuan, H., Bi, J., Zhou, M. (2022). Geography-Aware Task Scheduling for Profit Maximization in Distributed Green Data Centers.

IEEE Transactions on Cloud Computing, 10 (3), 1864–1874. doi: https://doi.org/10.1109/tcc.2020.3001051

6. Bogdanov, K. L., Reda, W., Maguire, G. Q., Kostić, D., Canini, M. (2018). Fast and Accurate Load Balancing for Geo-Distributed

Storage Systems. Proceedings of the ACM Symposium on Cloud Computing. doi: https://doi.org/10.1145/3267809.3267820

7. Srinivas, J., Qyser, A. A. M., Reddy, B. E. (2015). Exploiting Geo Distributed datacenters of a cloud for load balancing. 2015 IEEE

International Advance Computing Conference (IACC). doi: https://doi.org/10.1109/iadcc.2015.7154780

8. Shuaib, M., Bhatia, S., Alam, S., Masih, R. K., Alqahtani, N., Basheer, S., Alam, M. S. (2023). An Optimized, Dynamic, and Efficient

Load-Balancing Framework for Resource Management in the Internet of Things (IoT) Environment. Electronics, 12 (5), 1104. doi:

https://doi.org/10.3390/electronics12051104

9. Lim, J. (2021). Scalable Fog Computing Orchestration for Reliable Cloud Task Scheduling. Applied Sciences, 11 (22), 10996. doi:

https://doi.org/10.3390/app112210996

10. Singh, S. P., Kumar, R., Sharma, A., Nayyar, A. (2020). Leveraging energy‐efficient load balancing algorithms in fog computing.

Concurrency and Computation: Practice and Experience, 34 (13). doi: https://doi.org/10.1002/cpe.5913

11. Fan, Q., Ansari, N. (2020). Towards Workload Balancing in Fog Computing Empowered IoT. IEEE Transactions on Network

Science and Engineering, 7 (1), 253–262. doi: https://doi.org/10.1109/tnse.2018.2852762

12. Kim, H.-Y., Kim, J.-M. (2016). A load balancing scheme based on deep-learning in IoT. Cluster Computing, 20 (1), 873–878. doi:

https://doi.org/10.1007/s10586-016-0667-5

13. Gomez, C., Shami, A., Wang, X. (2018). Machine Learning Aided Scheme for Load Balancing in Dense IoT Networks. Sensors,

18 (11), 3779. doi: https://doi.org/10.3390/s18113779

14. Adil, M. (2021). Congestion free opportunistic multipath routing load balancing scheme for Internet of Things (IoT). Computer

Networks, 184, 107707. doi: https://doi.org/10.1016/j.comnet.2020.107707

15. Tonguz, O. K Yanmaz, E. (2008). The Mathematical Theory of Dynamic Load Balancing in Cellular Networks. IEEE Transactions

on Mobile Computing, 7 (12), 1504–1518. doi: https://doi.org/10.1109/tmc.2008.66

16. Latchoumi, T. P., Parthiban, L. (2021). Quasi Oppositional Dragonfly Algorithm for Load Balancing in Cloud Computing

Environment. Wireless Personal Communications, 122 (3), 2639–2656. doi: https://doi.org/10.1007/s11277-021-09022-w

17. Zakutynskyi, I. (2023). Finding the Optimal Number of Computing Containers in IoT Systems: Application of Mathematical

Modeling Methods. Electronics and Control Systems, 2 (76), 9–14. doi: https://doi.org/10.18372/1990-5548.76.17661

18. Alakbarov, R. (2022). An Optimization Model for Task Scheduling in Mobile Cloud Computing. International Journal of Cloud

Applications and Computing, 12 (1), 1–17. doi: https://doi.org/10.4018/ijcac.297102

19. Kaveri, P. R., Chavan, V. (2013). Mathematical model for higher utilization of database resources in cloud computing. 2013 Nirma

University International Conference on Engineering (NUiCONE). doi: https://doi.org/10.1109/nuicone.2013.6780095

20. Zakutynskyi, I., Sibruk, L., Rabodzei, I. (2023). Performance evaluation of the cloud computing application for IoT-based public

transport systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (124)), 6–13. doi: https://doi.org/10.15587/

1729-4061.2023.285514

21. MQTT Shared Subscriptions – MQTT 5 Essentials Part 7. Available at: https://www.hivemq.com/blog/mqtt5-essentials-part7-

shared-subscriptions/

22. MQTT Version 5.0. OASIS Standard. Available at: https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html

