-0

D-

Розв'язується задача лінійно-пружної взаємодії підвісу гіроскопа у вигляді двох коаксіальних циліндрів із зовнішнім хвильовим збуренням. Аналітично пояснюється природа виникнення переміщень поверхні внаслідок дифракційних ефектів

Ключові слова: підвіс гіроскопа, оболонка, радіальні переміщення

-0

┏-

Решается задача линейно-упругого взаимодействия подвеса гироскопа в виде двух коаксиальных цилиндров с внешним волновым воздействием. Аналитически объясняется природа возникновения перемещений поверхности вследствие дифракционных эффектов

Ключевые слова: подвес гироскопа, оболочка, радиальные перемещения

The problem of linearly-resilient interaction of suspension of gyroscope is decided as two coaxial cylinders with external wave influence. Nature of origin moving of surface is analytically explained because of diffraction effects

Keywords: suspension of gyroscope, shell, radial moving

1. Введение

Исследования относятся к области прикладной механики и описывают природу возмущенного движения одной из модификаций подвеса гироскопа – в виде двух цилиндров, причем наружный имеет продольную щель и является упруго податливым, а внутренний представляется абсолютно твердым телом. Дифракционные явления приводят к нарушению динамического состояния поверхности и, как следствие, к появлению волновых процессов, существенно влияющих на погрешности измерений.

Если принять во внимание тот факт, что летательный аппарат в рамках Полетного Задания может двигаться по различным траекториям с существенным кинематическим и силовым воздействием со стороны фюзеляжа, то упруго-податливая поверхность подвеса может привести к возникновению Эйлеровых сил инерции, воспринимаемых приборами инерциальной навигации как входной сигнал.

Таким образом, описание природы изучаемого явления позволит проанализировать ситуацию и принять меры по устранению дополнительных погрешностей.

2. Анализ состояния проблемы и постановка задачи исследований

Приборы инерциальной навигации, сочетая в себе массу достоинств, основным из которых является

УДК 629.7.054

ДИФРАКЦИЯ ВОЛН НА ПОДВЕСЕ ГИРОСКОПА

Н.В. Гнатейко

Кандидат технических наук, доцент Кафедра теоретической механики Национальный технический университет Украины «Киевский политехнический институт» пр-т Победы, 37, г. Киев, Украина, 03056 Контактный тел.: (044) 454-94-51 E-mail: karachun1@gala.net

автономность, как оказалось, подвержены влиянию внешних воздействий различного характера [1]. Достаточно длительная история совершенствования этих приборов дала жизнь многим техническим решениям, в том числе и автокомпенсационным, позволившим радикально повлиять на повышение точности измерений [2]. Вместе с тем, стремительное развитие ракетно-космической техники привело к тому, что многие приборы в режиме эксплуатационного использования летательных аппаратов ухудшили свои характеристики. Речь идет о влиянии проникающего акустического излучения высокой интенсивности на элементы подвеса гироскопа и особенно на чувствительные элементы систем коррекции [3].

Целью проводимых исследований является описание природы упругого взаимодействия подвеса гироскопа с внешним волновым воздействием высокого уровня.

3. Исходные предпосылки и построение системы обыкновенных дифференциальных уравнений

Рассмотрим прохождение плоской звуковой волны через систему двух коаксиальных круговых цилиндров. Внутренний считаем бесконечной по протяженности абсолютно твердой круговой оболочкой, а наружный – упругой оболочкой, которая имеет со стороны падающей внешней волны давления окно длины 2L (рис. 1). Оболочки соединены упругой связью с коэффициентом жесткости с₁.

Рис. 1. Дифракция звука на системе двух коаксиальных цилиндров

Волна падает со стороны окна длиной 2L

Уравнения наружной оболочки при нормальном падении звуковой волны имеют вид:

$$\begin{split} \omega^{2}\rho V + \frac{\partial^{2}V}{\partial\beta^{2}} + \frac{1-\sigma}{2}\frac{\partial^{2}V}{\partialx^{2}} + \frac{\partial W}{\partial\beta} &= 0; \\ \left(\omega^{2}\rho + 1\right) \cdot W + \frac{\partial V}{\partial\beta} + c^{2}\left(\frac{1}{r^{4}}\frac{\partial^{4}W}{\partial\beta^{4}} + \frac{2}{r^{2}}\frac{\partial^{4}W}{\partial\beta^{2}\partialx^{2}} + \frac{\partial^{4}W}{\partialx^{4}}\right) &= (1) \\ &= f\left(x, x_{0}, \beta, t\right)\delta\left(x - x_{0}\right) + P\left(x, \beta, r, t\right)^{def} F\left(x, x_{0}, \beta, t\right), \end{split}$$

где V, W - соответственно тангенциальные и радиальные перемещения элементов поверхности под действием падающей волны; $-\infty < x < +\infty$; $0 \le \beta \le 2\pi$; все коэффициенты постоянные по величине.

Носителем функции $F(x,x_0,\beta,t)$ является сегмент $-L \le x \le L$, из чего следует, что -L < x < L, а также $F(x,x_0,\beta,t)=0$. $\forall x$, |x|>L.

В уравнениях (1) функция

$$f\left(x,x_{_{0}},\!\beta,t\right)\!=\!c_{_{1}}\!\left[\,U\!\left(x,x_{_{0}},\!\beta,t\right)\!-\right.-W\!\left(x,x_{_{0}},\!\beta,t\right)\!\right]$$

есть ни что иное, как решение задачи Коши, выполненное в четвертой главе. Поэтому, если будут определены радиальные перемещения $W(x,x_0,\beta,t)$, то и поступательное перемещение внутренней оболочки $U(x,x_0,\beta,t)$ также станет известным.

Таким образом, будем отыскивать решения $\{V,W\}$, ограниченные при $x \to \pm\infty$. Вместе с тем представляет интерес и более узкая задача – нахождение решений $\{V,W\}$, которые обращаются в нули при $x \to \pm\infty$ вместе со всеми производными.

Представим известную функцию $F(x, x_0, \beta, t)$, а также искомые функции $V(x, x_0, \beta, t)$ и $W(x, x_0, \beta, t)$ в форме тригонометрических рядов Фурье по переменной β ($0 \le \beta \le 2\pi$):

$$F(x, x_0, \beta, t) = \sum_{m=-\infty}^{+\infty} F_m(x) \exp(im\beta);$$

$$V(x, x_0, \beta, t) = \sum_{m=-\infty}^{+\infty} V_m(x) \exp(im\beta);$$

$$W(x, x_0, \beta, t) = \sum_{m=-\infty}^{+\infty} W_m(x) \exp(im\beta).$$
(2)

Коэффициенты Фурье этих уравнений (их комплексные амплитуды) зависят и от других параметров системы (1). Но, чтобы избежать громоздкости записи, это не отражено в обозначениях. Подстановка соотношений (2) в уравнения (1) приводит к системе двух обыкновенных дифференциальных уравнений относительно переменных $V_m(x)$ и $W_m(x)$:

$$(\omega^{2}\rho - m^{2}) \cdot V_{m}(x) + \frac{1 - \sigma}{2} V_{m}''(x) + im W_{m}(x) = 0;$$

$$im V_{m}(x) + \left(\omega^{2}\rho + 1 + \frac{c^{2}m^{4}}{r^{4}}\right) W_{m}(x) -$$

$$- \frac{2c^{2}m^{2}}{r^{2}} W_{m}''(x) + c^{2} W_{m}^{IV}(x) = F_{m}(x),$$

$$(3)$$

 $m = 0, \pm 1, \pm 2, \dots$

Интегрирование исходных уравнений при m = 0. При m = 0 система уравнений (3) распадается на два независимых уравнения –

$$\frac{1 - \sigma}{2} V_0''(x) + \omega^2 \rho V_0(x) = 0;$$

$$c^2 W_0^{IV} + (\omega^2 \rho + 1) W_0(x) = F_0(x).$$

Ведем обозначения:

$$\frac{2\omega^2 \rho}{1-\sigma} = \lambda^2; \ \frac{\omega^2 \rho + 1}{c^2} = 4\mu^4.$$
 (4)

Тогда –

$$V_0''(x) + \lambda^2 V_0(x) = 0;$$

$$W_0^{IV}(x) + 4\mu^4 W_0(x) = c^{-2} F_0(x)$$
(5)

и решение первого из уравнений этой системы имеет вид –

$$V_0(x) = A_0 \cos(\lambda x) + B_0 \sin(\lambda x), \qquad (6)$$

то есть ограничено при всех значениях $x\to\pm\infty$. Если поставить задачу $V_0(x) \mathop{\longrightarrow}\limits_{x\to\pm\infty} 0$, то получим:

$$A_0 = B_0 = 0$$
 и $V_0(x) \equiv 0$.

Чтобы выделить какое-нибудь другое единственное решение достаточно задать значения функций V₀(x') и V₀(x') в какой-нибудь точке x' оси −∞ < x < +∞.

Общее решение второго уравнения системы (5) запишем по значениям корней его характеристического уравнения

$$k^4 + 4\mu^4 = 0. (7)$$

Тогда

$$k_{1,2} = \mu(1 \pm i) ; k_{3,4} = -\mu(1 \mp i)$$
 (8)

И

$$W_{01}(x) = \exp(\mu x)(a_1 \cos \mu x + a_2 \sin \mu x) + + \exp(-\mu x)(a_3 \cos \mu x + a_4 \sin \mu x)$$
(9)

Решение однородного уравнения

$$W_0^{IV}(x) + 4\mu^4 W_0(x) = 0$$

обозначим через g(x) и будем искать как реакцию динамической системы на единичный импульс при таких начальных условиях:

$$g(0) = g'(0) = g''(0) = 0, g'''(0) = 1.$$
 (10)

Для удобства решение запишем в комплексной форме -

$$g(x) = C_1 \exp(k_1 x) + C_2 \exp(k_2 x) + + C_3 \exp(k_3 x) + C_4 \exp(k_4 x),$$
(11)

что приводит к следующей системе четырех линейных уравнений относительно постоянных С_i:

$$C_{1} + C_{2} + C_{3} + C_{4} = 0;$$

$$k_{1}C_{1} + k_{2}C_{2} + k_{3}C_{3} + k_{4}C_{4} = 0;$$

$$k_{1}^{2}C_{1} + k_{2}^{2}C_{2} + k_{3}^{2}C_{3} + k_{4}^{2}C_{4} = 0;$$

$$k_{1}^{3}C_{1} + k_{2}^{3}C_{2} + k_{3}^{3}C_{3} + k_{4}^{3}C_{4} = 1.$$
(12)

Главный определитель системы (определитель Вандермонда) имеет вид:

$$\begin{split} \Delta &= \begin{vmatrix} 1 & 1 & 1 & 1 \\ k_1 & k_2 & k_3 & k_4 \\ k_1^2 & k_2^2 & k_3^2 & k_4^2 \\ k_1^3 & k_2^3 & k_3^3 & k_4^3 \end{vmatrix} = \\ &= (k_2 - k_1)(k_3 - k_1)(k_4 - k_1)(k_3 - k_2)(k_4 - k_2)(k_4 - k_3). \end{split}$$

Тогда частные определители запишутся следую- $+\frac{1}{8\mu^3c^2}$ щим образом — |0 1 1 1|

$$\begin{split} \Delta_{1} &= \begin{vmatrix} 0 & 1 & 1 & 1 \\ 0 & k_{2} & k_{3} & k_{4} \\ 0 & k_{2}^{2} & k_{3}^{2} & k_{4}^{2} \\ 1 & k_{2}^{3} & k_{3}^{3} & k_{4}^{3} \end{vmatrix} = -(k_{3} - k_{2})(k_{4} - k_{2})(k_{4} - k_{3}); \\ \Delta_{2} &= \begin{vmatrix} 1 & 0 & 1 & 1 \\ k_{1} & 0 & k_{3} & k_{4} \\ k_{1}^{2} & 0 & k_{3}^{2} & k_{4}^{2} \\ k_{1}^{3} & 1 & k_{3}^{3} & k_{4}^{3} \end{vmatrix} = (k_{3} - k_{1})(k_{4} - k_{1})(k_{4} - k_{3}); \\ \Delta_{3} &= \begin{vmatrix} 1 & 1 & 0 & 1 \\ k_{1} & k_{2} & 0 & k_{4} \\ k_{1}^{2} & k_{2}^{2} & 0 & k_{4}^{2} \\ k_{1}^{3} & k_{2}^{3} & 1 & k_{3}^{3} \end{vmatrix} = -(k_{2} - k_{1})(k_{4} - k_{1})(k_{4} - k_{2}); \\ \Delta_{4} &= \begin{vmatrix} 1 & 1 & 1 & 0 \\ k_{1} & k_{2} & k_{3} & 0 \\ k_{2}^{2} & k_{2}^{2} & k_{2}^{2} & 0 \end{vmatrix} = (k_{2} - k_{1})(k_{3} - k_{1})(k_{3} - k_{2}), \end{split}$$

что позволяет вычислить произвольные постоянные:

$$C_{1} = \frac{\Delta_{1}}{\Delta} = \frac{1}{8\mu^{3}i(1+i)}; C_{2} = \frac{\Delta_{2}}{\Delta} = -\frac{1}{8\mu^{3}i(1-i)};$$
$$C_{3} = \frac{\Delta_{3}}{\Delta} = \frac{1}{8\mu^{3}i(1-i)}; C_{4} = \frac{\Delta_{4}}{\Delta} = -\frac{1}{8\mu^{3}i(1+i)}.$$

Таким образом, решение однородного уравнения можно записать в виде -

g(0) = 0; g'(0) = 0; g''(0) = 0,

$$g'''(0) = \frac{1}{8i} \left[(1+i)^2 + (1+i)^2 - (1-i)^2 - (1-i)^2 \right] = 1.$$

Для удобства дальнейших вычислений, выражению (13) придадим вещественную форму -

$$g(x) = \frac{1}{16\mu^{3}i} \left\{ \exp(\mu x) \left[(1-i)\exp(i\mu x) - (1+i)\exp(-i\mu x) \right] + \exp(-\mu x) \left[(1+i)\exp(i\mu x) - (1-i)\exp(-i\mu x) \right] \right\} = (14)$$

 $=\frac{1}{8\mu^3}[\exp(\mu x)(\sin\mu x - \cos\mu x) + \exp(-\mu x)(\sin\mu x + \cos\mu x)].$

Частное решение W₀₂(х) второго уравнения системы (5) построим в виде –

$$W_{02}(x) = c^{-2} \int_{0}^{x} F_{0}(\xi)g(x-\xi)d\xi =$$

$$\frac{1}{8\mu^{3}c^{2}}\exp(\mu x)\int_{0}^{x}\exp(-\mu\xi)F_{0}(\xi)[\sin\mu(x-\xi)-\cos\mu(x-\xi)]d\xi +$$

$$\frac{1}{8\mu^{3}c^{2}}\exp(-\mu x)\int_{0}^{x}\exp(\mu\xi)F_{0}(\xi)[\sin\mu(x-\xi)+\cos\mu(x-\xi)]d\xi =$$

$$= -\frac{1}{8\mu^{3}c^{2}}\exp(\mu x)\left\{(\cos\mu x)\int_{0}^{x}\exp(-\mu\xi)F_{0}(\xi)(\sin\mu\xi + \cos\mu\xi)d\xi + (\sin\mu x)\int_{0}^{x}\exp(-\mu\xi)F_{0}(\xi)(\sin\mu\xi - \cos\mu\xi)d\xi\right\} -$$

$$-\frac{1}{8\mu^{3}c^{2}}\exp(-\mu x)\left\{(\cos\mu x)\int_{0}^{x}\exp(\mu\xi)F_{0}(\xi)(\sin\mu\xi-\cos\mu\xi)d\xi-\right.$$

$$-(\sin \mu x)\int_{0}^{x} \exp(\mu\xi)F_{0}(\xi)(\sin \mu\xi + \cos \mu\xi)d\xi \bigg\}.$$
 (15)

Введем обозначения:

=

$$\begin{split} &\frac{1}{4\sqrt{2}\mu^{3}c^{2}}\int_{0}^{x}\exp(-\mu\xi)F_{0}(\xi)\sin(\mu\xi+\frac{\pi}{4})d\xi=J_{1}(x)\;;\\ &\frac{1}{4\sqrt{2}\mu^{3}c^{2}}\int_{0}^{x}\exp(-\mu\xi)F_{0}(\xi)\sin(\mu\xi-\frac{\pi}{4})d\xi=J_{2}(x)\;; \end{split} \tag{16} \\ &\frac{1}{4\sqrt{2}\mu^{3}c^{2}}\int_{0}^{x}\exp(\mu\xi)F_{0}(\xi)\sin(\mu\xi-\frac{\pi}{4})d\xi=J_{3}(x)\;;\\ &-\frac{1}{4\sqrt{2}\mu^{3}c^{2}}\int_{0}^{x}\exp(\mu\xi)F_{0}(\xi)\sin(\mu\xi-\frac{\pi}{4})d\xi=J_{4}(x)\;. \end{split}$$

Тогда выражение (15) примет вид -

$$W_{02}(x) = -\exp(\mu x) [(\cos \mu x) J_1(x) + (\sin \mu x) J_2(x)] - \exp(-\mu x) [(\cos \mu x) J_3(x) + (\sin \mu x) J_4(x)].$$
(17)

С учетом (9) полное решение второго уравнения системы (5) будет таким:

$$\begin{split} W_{0}(x) &= W_{01}(x) + W_{02}(x) = \\ &= -\exp(\mu x) \{ [a_{1} - J_{1}(x)](\cos\mu x) + [a_{2} - J_{2}(x)](\sin\mu x) \} + \\ &+ \exp(-\mu x) \{ [a_{3} - J_{3}(x)](\cos\mu x) + [a_{4} - J_{4}(x)](\sin\mu x) \}. \end{split}$$
(18)

Решения ищем ограниченные при $x \to \pm \infty$, то есть на краях бесконечной оболочки. Тогда, учитывая, что носитель функции F(x) конечен, то при |x| > L функция F(x) будет равна нулю, то есть

$$F(x) = 0$$
, если $|x| > L$. (19)

Следует отметить, что

 $J_1(x) = \text{const} = B_1; J_2(x) = \text{const} = B_2, \text{если } x > L;$ (20)

$$J_3(x) = \text{const} = B_3; J_4(x) = \text{const} = B_4, \text{если } x < -L$$
 (21)

Тогда выражение (18), с учетом соотношений (20) и (21), преобразуется:

$$\begin{split} W_{0}(x) &= \exp(\mu x) \left\{ \begin{bmatrix} B_{1} - J_{1}(x) \end{bmatrix} \cos \mu x + \begin{bmatrix} B_{2} - J_{2}(x) \end{bmatrix} \sin \mu x \right\} + \\ &+ \exp(-\mu x) \left\{ \begin{bmatrix} B_{3} - J_{3}(x) \end{bmatrix} \cos \mu x + \begin{bmatrix} B_{4} - J_{4}(x) \end{bmatrix} \sin \mu x \right\} = \\ &= \frac{1}{4\sqrt{2}\mu^{3}c^{2}} \exp(\mu x) \left\{ (\cos\mu x) \int_{x}^{L} \exp(-\mu \xi) F_{0}(\xi) \sin(\mu \xi + \frac{\pi}{4}) d\xi \right\} + \\ &+ (\sin\mu x) \int_{x}^{L} \exp(-\mu \xi) F_{0}(\xi) \sin(\mu \xi - \frac{\pi}{4}) d\xi \right\} - \\ &= \operatorname{colon}(b_{1} \quad b_{2} \quad b_{3} \quad b_{4} \quad b_{5} \quad b_{6}) \\ &+ (\sin\mu x) \int_{-L}^{x} \exp(\mu \xi) F_{0}(\xi) \sin(\mu \xi + \frac{\pi}{4}) d\xi \right\}, \end{split}$$
(22)
$$\begin{aligned} &\prod_{A_{1}} \lambda_{2} \quad \lambda_{3} \quad \lambda_{4} \quad \lambda_{5} \quad \lambda_{6} \\ &\lambda_{1}^{2} \quad \lambda_{2}^{2} \quad \lambda_{3}^{2} \quad \lambda_{4}^{2} \quad \lambda_{5}^{2} \quad \lambda_{6}^{2} \\ &\lambda_{1}^{3} \quad \lambda_{2}^{3} \quad \lambda_{3}^{3} \quad \lambda_{4}^{3} \quad \lambda_{5}^{3} \quad \lambda_{6}^{3} \\ &\lambda_{1}^{4} \quad \lambda_{2}^{4} \quad \lambda_{3}^{4} \quad \lambda_{4}^{4} \quad \lambda_{5}^{4} \quad \lambda_{6}^{4} \\ &\lambda_{1}^{5} \quad \lambda_{2}^{5} \quad \lambda_{3}^{5} \quad \lambda_{5}^{5} \quad \lambda_{5}^{5} \\ \end{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}. \end{split}$$

Уточним поведение построенного решения вне носителя возмущающей силы F(x), то есть вне окна, через которое проходит волна давления (-L≤x≤L). Другими словами, проверим, ограничено ли решение при х→±∞.

$$\frac{1}{4\sqrt{2}\mu^{3}c^{2}}\int_{x}^{L} \exp(-\mu\xi)F_{0}(\xi)\sin(\mu\xi\pm\frac{\pi}{4})d\xi = 0; \qquad (23)$$
$$-\frac{1}{4\sqrt{2}\mu^{3}c^{2}}\int_{-L}^{x} \exp(\mu\xi)F_{0}(\xi)\sin(\mu\xi-\frac{\pi}{4})d\xi =$$
$$=-\frac{1}{4\sqrt{2}\mu^{3}c^{2}}\int_{-L}^{L} \exp(\mu\xi)F_{0}(\xi)\sin(\mu\xi-\frac{\pi}{4})d\xi = \text{const} \stackrel{\text{def}}{=} p_{1}; (24)$$
$$-\frac{1}{4\sqrt{2}\mu^{3}c^{2}}\int_{-L}^{x} \exp(\mu\xi)F_{0}(\xi)\sin(\mu\xi+\frac{\pi}{4})d\xi =$$

$$= -\frac{1}{4\sqrt{2}\mu^{3}c^{2}}\int_{-L}^{L} \exp(\mu\xi)F_{0}(\xi)\sin(\mu\xi + \frac{\pi}{4})d\xi = \operatorname{const}^{\operatorname{def}} = p_{2} . (25)$$

В этом случае

$$W_0(x) = \exp(-\mu x)(p_1 \cos \mu x + p_2 \sin \mu x), L < x < +\infty.(26)$$

Если
$$-\infty < x < L$$
, то:

$$\frac{1}{4\sqrt{2\mu^{3}c^{2}}} \int_{-L}^{x} \exp(\mu\xi)F_{0}(\xi)\sin(\mu\xi \pm \frac{\pi}{4})d\xi = 0; \qquad (27)$$

$$\frac{1}{4\sqrt{2\mu^{3}c^{2}}} \int_{x}^{L} \exp(-\mu\xi)F_{0}(\xi)\sin(\mu\xi + \frac{\pi}{4})d\xi =$$

$$= \frac{1}{4\sqrt{2\mu^{3}c^{2}}} \int_{-L}^{L} \exp(-\mu\xi)F_{0}(\xi)\sin(\mu\xi + \frac{\pi}{4})d\xi = \text{const}^{\text{def}} = q_{1}$$

$$\frac{1}{4\sqrt{2\mu^{3}c^{2}}} \int_{x}^{L} \exp(-\mu\xi)F_{0}(\xi)\sin(\mu\xi - \frac{\pi}{4})d\xi = (28)$$

$$= \frac{1}{4\sqrt{2\mu^{3}c^{2}}} \int_{-L}^{L} \exp(-\mu\xi)F_{0}(\xi)\sin(\mu\xi + \frac{\pi}{4})d\xi = \text{const}^{\text{def}} = q_{2}$$

С учетом сказанного, получаем:

 $W_0(x) = \exp(\mu x)(q_1 \cos \mu x + q_2 \sin \mu x), -\infty < x < -L.(29)$

Из выражений (27) и (29) следует, что построенное решение (22) экспоненциально стремится к нулю при $x \mathop{\rightarrow} \pm \infty$ вместе со всеми своими производными по переменной $\alpha_i = \text{Re}\lambda_i = 0$. Других решений, кроме (22), ограниченных на всей оси -∞ < х < +∞, второе уравнение системы (5) не имеет.

Интегрирование уравнений при m≠0.

Из первого уравнения системы (3) имеем:

$$mW_{m}(x) = i\left(\omega^{2}\rho - m^{2}\right) \cdot V_{m}(x) + i\frac{1-\sigma}{2}V_{m}''(x);$$

$$mW_{m}''(x) = i\left(\omega^{2}\rho - m^{2}\right) \cdot V_{m}''(x) + i\frac{1-\sigma}{2}V_{m}^{IV}(x);$$
(30)

$$mW_{m}^{IV}(x) = i\left(\omega^{2}\rho - m^{2}\right) \cdot V_{m}^{IV}(x) + i\frac{1-\sigma}{2}V_{m}^{IV}(x).$$

Подставив найденные соотношения (30) во второе уравнение системы (3), получаем:

$$\begin{split} & \left[(\omega^{2}\rho - m^{2}) \left(\omega^{2}\rho + 1 + \frac{c^{2}m^{4}}{r^{4}} \right) + m^{2} \right] V_{m}(x) + \\ & \left[\frac{1 - \sigma}{2} \left(\omega^{2}\rho + 1 + \frac{c^{2}m^{4}}{r^{4}} \right) - \frac{2c^{2}m^{2}}{r^{2}} (\omega^{2}\rho - m^{2}) \right] V_{m}''(x) + \\ & + c^{2} \left[\left(\omega^{2}\rho - m^{2} \right) - \frac{2m^{2}}{r^{2}} (\omega^{2}\rho - m^{2}) \right] V_{m}^{IV}(x) + \\ & + c^{2} \frac{1 - \sigma}{2} V_{m}^{IV}(x) = -imF_{m}(x) \,. \end{split}$$

введем обозначения:

$$\frac{2}{c^{2}(1-\sigma)} \left[(\omega^{2}\rho - m^{2}) \left(\omega^{2}\rho + 1 + \frac{c^{2}m^{4}}{r^{4}} \right) + m^{2} \right] = S_{m,1};$$

$$\frac{1}{c^{2}} (\omega^{2}\rho + 1) + \frac{m^{4}}{r^{4}} - \frac{4m^{2}}{1-\sigma} (\omega^{2}\rho - m^{2}) = S_{m,2}; \qquad (31)$$

$$\begin{split} & \frac{2}{1\!-\!\sigma} \! \left(\omega^2 \rho \!-\! m^2 \right) \! \left(1\!-\!\frac{2m^2}{r^2} \right) \!\!=\! S_{m,4} \, ; \\ & \frac{-2mi}{c^2(1\!-\!\sigma)} F_m(x) \!=\! h_m(x) \, , \, m \; = \; \pm 1 \!\! , \; \pm 2 \!\! , \; \ldots \, . \end{split}$$

В результате получаем для функции $V_{\rm m}(x)$ следующее уравнение шестого порядка с постоянными коэффициентами –

$$S_{m,1}V_m(x) + S_{m,2}V_m''(x) + S_{m,4}V_m^{IV}(x) + V_m^{VI}(x) = h_m(x).$$
 (32)

Проинтегрировав это уравнение, можно найти $W_m(x)$ простым дифференцированием решения $V_m(x)$, как это указано в первом уравнении системы (3). Поскольку функция $f(x,x_0,\beta,t)$ найдена ранее в первой главе, отыскать величину $U(x,x_0,\beta,t)$ можно из уже приведенного соотношения

$$\sum_{j=1}^{b} (a_j + b_j p_j) \exp(iv_j x)$$

Найдем решения уравнения (32), ограниченные при х→±∞, опуская в дальнейшем индексы" m".

Уравнению (32) соответствует характеристический полином

$$\lambda^{6} + S_{4}\lambda^{4} + S_{2}\lambda^{2} + S_{1} = 0, \qquad (33)$$

который запишем в виде –

$$z^3 + S_4 z^2 + S_2 z + S_1 = 0 , \qquad (34)$$

где $\lambda^2 = z$.

Формулы (31) показывают, что коэффициенты уравнений (33), (34) четные относительно m. Поэтому, уравнение (34) может иметь:

- три простых корня;

- один простой и один двукратный корень;

- один трехкратный корень.

В соответствии с этим, уравнение (33) будет иметь:

- шесть простых корней;
- два простых и два двукратных корня;

- два трехкратных корня.

Вначале рассмотрим первый случай, когда все корни уравнения (33)

$$\lambda_j = \alpha_j + i\nu_j \quad , \quad j = 1,6 \tag{35}$$

простые. Или, с учетом сказанного ранее, -

$$\lambda_{j} = \alpha_{j} + i\nu_{j} = \lambda_{mj} = \alpha_{mj} + i\nu_{mj}.$$
(36)

Не исключено, что какие-то из них лежат на мнимой оси, то есть

 $\lambda_k = i v_k$, $\alpha_k = 0$.

Общее решение однородного уравнения выражения (32) имеет вид –

$$V_{01}(x) = \sum_{j=1}^{b} a_{j} \exp(\lambda_{j} x), \qquad (37)$$

где а_і - произвольные постоянные.

Реакция динамической системы (32) на единичный импульс будет такой –

$$g(x) = \sum_{j=1}^{6} b_j \exp(\lambda_j x)$$
. (38)

Функция g(x) удовлетворяет однородному уравнению выражения (32) и начальным условиям вида –

$$g(0) = g'(0) = g''(0) = g'''(0) = g^{V}(0) = 0; g^{V}(0) = 1.(39)$$

Тогда

 $b = colon(b_1 \quad b_2 \quad b_3 \quad b_4 \quad b_5 \quad b_6) -$

есть решение следующей системы линейных алгебраически уравнений, аналогичной (12):

$$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ \lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4} & \lambda_{5} & \lambda_{6} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} & \lambda_{4}^{2} & \lambda_{5}^{2} & \lambda_{6}^{2} \\ \lambda_{1}^{3} & \lambda_{2}^{3} & \lambda_{3}^{3} & \lambda_{4}^{3} & \lambda_{5}^{3} & \lambda_{6}^{3} \\ \lambda_{1}^{4} & \lambda_{2}^{4} & \lambda_{3}^{4} & \lambda_{4}^{4} & \lambda_{5}^{4} & \lambda_{6}^{4} \\ \lambda_{1}^{5} & \lambda_{2}^{5} & \lambda_{3}^{5} & \lambda_{4}^{5} & \lambda_{5}^{5} & \lambda_{6}^{5} \\ \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \\ \lambda_{1}^{5} & \lambda_{2}^{5} & \lambda_{3}^{5} & \lambda_{4}^{4} & \lambda_{5}^{5} & \lambda_{6}^{5} \\ \lambda_{1}^{5} & \lambda_{2}^{5} & \lambda_{3}^{5} & \lambda_{4}^{5} & \lambda_{5}^{5} & \lambda_{6}^{5} \\ \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \\ 1 \\ \end{vmatrix}$$
(40)

Определитель этой системы – определитель Вандермонда. И, поскольку веса чисел λ_j различны, этот определитель не равен нулю. Таким образом, система однозначно разрешима.

Частное решение неоднородного уравнения (32) выглядит так:

$$V_{02}(x) = \sum_{j=1}^{6} b_j \exp(\lambda_j x) \int_{0}^{x} \exp(-\lambda_j \xi) h(\xi) d\xi, \qquad (41)$$

а полное решение запишется в виде –

$$V_{0}(x) = V_{01}(x) + V_{02}(x) =$$

= $\sum_{j=1}^{6} \exp(\lambda_{j}x) \left\{ a_{j} + b_{j} \int_{0}^{x} \exp(-\lambda_{j}\xi) h(\xi) d\xi \right\}.$ (42)

Решения ищем ограниченные на всей оси $-\infty < x < +\infty$, а носитель функции h(x) есть сегмент $-L \le x \le L$.

Если корень λ_j находится на мнимой оси, то $\alpha_j = Re\,\lambda_j = 0$, $\lambda_j = i\nu_j$. Тогда a_j оставим произвольным. Если же $Re\,\lambda_j \neq 0$, то a_j выбираем следующим образом:

$$a_{j} = -b_{j} \int_{0}^{L \operatorname{sign} \alpha_{j}} \exp(-\lambda_{j}\xi)h(\xi)d\xi.$$
 (43)
Тогда

$$a_{j} + b_{j} \int_{0}^{x} \exp(-\lambda_{j}\xi) h(\xi) d\xi = -b_{j} \int_{x}^{L \operatorname{sign} \alpha_{j}} \exp(-\lambda_{j}\xi) h(\xi) d\xi.$$
(44)

В результате этого, семейство нужных решений неоднородного уравнения (32) окажется следующим:

$$\begin{split} V_{m}(x) &= \sum_{j=1}^{6} \exp(i\nu_{j}x) \left\{ a_{j} + b_{j} \int_{0}^{0} \exp(-i\nu_{j}\xi) h(\xi) d\xi \right\} - \\ &- \sum_{j=1}^{6} b_{j} \exp(\lambda_{j}x) \cdot b_{j} \int_{x}^{L \operatorname{sign} \alpha_{j}} \exp(-\lambda_{j}\xi) h(\xi) d\xi , \end{split}$$
(45)
rge $h(\xi) = h_{m}(\xi) ; x \to +\infty ; \operatorname{Re} \lambda_{j} = \alpha_{j} \neq 0 . \end{split}$

При этом возможны следующие четыре варианта конструкции формулы (45):

- уравнение (34) имеет три различных отрицательных корня. В этом случае уравнение (33) содержит три различных пары чисто мнимых корней (не равных нулю) комплексно сопряженных. Первая сумма будет включать шесть слагаемых, а вторая – равна нулю;

- уравнение (34) имеет два различных отрицательных корня и один положительный. Тогда уравнение (33) будет иметь две различные пары чисто мнимых и не равных нулю комплексно сопряженных корней, а два других – вещественные (один положительный, другой отрицательный). В этом случае первая сумма будет содержать четыре слагаемых, вторая – два;

- уравнение (34) имеет один отрицательный корень. Два других его корня различны. Тогда уравнение (33) будет иметь одну пару чисто мнимых, не равных нулю, комплексно-сопряженных корней, а его остальные корни не будут на мнимой оси --два в левой, два в правой полуплоскостях. Первая сумма в этом случае содержит два слагаемых, вторая – четыре;

- уравнение (34) не имеет отрицательных корней. Тогда уравнение (33) не будет иметь чисто мнимых корней, а только три корня в левой и три в правой полуплоскостях. Первая сумма будет отсутствовать, вторая – содержит четыре слагаемых.

Уточним поведение решений (45) вне носителя функции h(x), то есть вне окна $-L \le x \le L$, когда $h(x) \equiv 0$.

Если L≤x≤+∞, то первая сумма в выражении (45) выглядит следующим образом:

$$\sum_{j=1}^{6} (a_j + b_j p_j) \exp(i\nu_j x);$$

$$p_j \stackrel{\text{def}}{=} \int_{0}^{L} \exp(-i\nu_j) h(\xi) d\xi , \qquad (46)$$

$$\operatorname{Re} \lambda_j = \alpha_j = 0.$$

В этой сумме столько слагаемых, сколько корней уравнения (33) лежит на мнимой оси. Если таких корней нет, эта сумма отсутствует.

$$\prod_{\substack{\text{L sign } \alpha_j \\ x}} \operatorname{Re} \lambda_j = \alpha_j > 0 \quad \text{is } L \le x \le +\infty$$

$$\int_{x}^{\text{L sign } \alpha_j} \exp(-\lambda_j \xi) h(\xi) d\xi = -\int_{L}^{x} \exp(-\lambda_j \xi) h(\xi) d\xi = 0 , \quad (47)$$

где ∀х:L<x<+∞, поэтому вторая сумма, если она имеет место в выражении (45), будет вида:

$$\sum_{j=1}^{L} b_j c_j \exp(\lambda_j \mathbf{x});$$

$$c_j^{\text{def}} = \int_{-L}^{L} \exp(-\lambda_j \xi) h(\xi) d(\xi),$$
(48)

 $\operatorname{Re}\lambda_{i} = \alpha_{i} = 0$

и стремиться к нулю при х→+∞ вместе со всеми своими производными по переменной х.

Таким образом, при L < x < +∞

$$V_{m}(x) = \sum_{j=1}^{o} (a_{j} + b_{j}p_{j})\exp(iv_{j}x) + \sum_{j=1}^{o} b_{j}c_{j}\exp(\lambda_{j}x)$$
(49)
Re $\lambda_{j} = \alpha_{j} = 0$ Re $\lambda_{j} = \alpha_{j} < 0$.

Аналогично, если
$$-\infty < x < -L$$
:
 $V_m(x) = \sum_{j=1}^6 (a_j - b_j q_j) \exp(iv_j x) - \sum_{j=1}^6 b_j c_j \exp(\lambda_j x)$ (50)
 $\operatorname{Re} \lambda_j = \alpha_j = 0$ $\operatorname{Re} \lambda_j = \alpha_j > 0$,
где $q_j = \int_{-L}^0 \exp(-iv_j \xi) h(\xi) d(\xi)$.

Если в формулах (49) и (50) первая сумма присутствует, то она осциллирует, а вторая – стремится к нулю в первой формуле при $x \to +\infty$, а во второй формуле - при $x \to -\infty$ вместе со всеми их производными по переменной х.

Таким образом, случай отсутствия кратных корней уравнения (34) проанализирован полностью.

4. Выводы

Полученная аналитическая трактовка упругого взаимодействия подвеса гироскопа с проникающим акустическим излучением позволяет уяснить природу явления, прогнозировать случаи возникновения особенностей резонансного типа, а также выбрать необходимые технические решения для уменьшения влияния дифракционных явлений.

Литература

- Ишлинский А.Ю. Ориентация, гироскопы и инерциальная навигация [Текст] / А.Ю. Ишлинский М.: Наука, 1976. – 671с.
- Автокомпенсация инструментальных погрешностей гироскопии [Текст]: монография / С.М. Зельдович, М.И. Малтинский, И.М. Окон, Я.Г. Остромухов. – Л.: Судостроение, 1976. – 255с.
- Мельник В.Н. Об особенностях динамики гироскопа с многофазным подвесом в акустических полях // Космічна наука і технологія, 2002. – Т.8. – №4. – С.49-53.