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been rapidly developed due to their flexibility and scal-
ability to be adopted in several fields for modeling real-
world applications like object detection, image classifica-
tion, etc. However, their high accuracy incurs intensive 
computations. Therefore, it is crucial to carefully choose 
a suitable computer platform and implementation meth-
odology for CNN network architectures while achieving 
increased efficiency. Parallel architectures are prevalent 
in CNN implementation. Herein, we present a new Single 
Instruction Multi Data (SIMD) parallel implementation of 
the proposed CNN to speed up the execution process and 
make it suitable to deploy on low-cost, low-power con-
sumption platforms. The proposed implementation produc-
es an improved model of deep CNN executable on a cost-ef-
ficient platform and portability to work autonomously with 
multi-core processing units while maintaining working 
accuracy. Raspberry Pi 3 B is a low-power target device for 
implementing our model. The proposed approach is charac-
terized by high diagnostic accuracy of up to 96.35 % while 
incurring power consumption of 3.65 Watts, achieving 
power reduction between 19.17 % and 68.45 % compared to 
the prior work. Meanwhile, it has a fine inference time for 
the selected platform. The outstanding results of this study 
reflect the success of employing parallel architectures to 
utilize the quad courses of the ARM processor on the target 
platform. The presented model can be an efficient medical 
assistant to provide automated detection and diagnosis for 
myopia ocular disease. Thus, it can be a promising health-
care toolkit that reduces the effort of the medical staff and 
increases the quality of the provided medical services for 
myopia patients
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1. Introduction

In today’s era, computers equipped with cutting-edge 
GPUs’ efficiently handle and process most artificial intel-
ligence and deep learning applications [1]. However, in spe-
cific contexts, there is a preference for compact, lightweight, 
affordable, and efficient computing devices that possess ad-
vanced capabilities instead of expensive and bulky comput-
ers. This is driven by the need to address specific challenges 
and provide effective solutions [2]. Single-board computer 
systems (SBCS) are the best choice for this purpose. These 
systems are constructed on a single circuit board and have 
all basic units of the computer system like microprocessors, 
memory, input/output, and other functional features [3]. Re-
cently, the preference for single-board computer systems has 
grown due to high applicability and low cost, so they have 
become frequently used and can be combined with other 
technology fields [4]. With the technological advancements 
of single-board computers, artificial intelligence has em-
braced these systems and employed them in different fields. 
Their wide adoption can be attributed to their exceptional 
power efficiency, making them an ideal choice for different 
applications [5]. Various domains, invest deep learning on 
a single board, for example, in face detection [6, 7], object 

detection and classification [8, 9], motion detection [10], as 
well as medical aspects and human healthcare field [11, 12]. 

Ophthalmology is one of the most crucial domains that 
have been embraced by deep learning systems and imple-
mented them in different approaches. These systems play 
a vital role in detecting and providing early diagnosis for 
various ocular diseases that impact the eye and disrupt the 
natural vision system. [13]. Early detection of these diseases 
is crucial to prevent visual damage. However, there exists a 
significant disparity between the number of ophthalmolo-
gists and the number of patients. Furthermore, the manual 
evaluation of the fundus is time-consuming and heavily 
reliant on the skills of ophthalmologists, making thorough 
fundus examination challenging. Consequently, comput-
er-aided diagnostic procedures are imperative for identifying 
ocular issues with the assistance of robotics [14]. Ocular 
problems can manifest differently in various populations, be 
it in developed or underdeveloped nations [15]. Developing 
countries, especially those in Asia, often face high rates 
of untreated ocular conditions [16]. Therefore, embedded 
computer systems based on deep learning are considered the 
most suitable solution to provide quick and affordable medi-
cal services for the purpose of detection and early diagnosis 
of these diseases [17]. 

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license
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Most deep learning models for detecting and diagnosing 
ocular diseases were implemented using well-known and 
trained deep learning networks, like VGG16, VGG19, Alex-
Net, ResNet 50, etc. [18, 19]. These networks are character-
ized by their large size, massive number of calculations, and 
substantial network parameters, as they were implemented 
on computer systems with high specifications and contained 
advanced GPU cards with higher power consumption. All 
this has limited the flexibility of these networks and restricted 
the ability to implement those models on a low-cost platform 
with tolerable power consumption [20]. Therefore, there is a 
pressing need for a new methodology of deep network imple-
mentation and employing low-power platforms for this target. 
Consequently, there is a real benefit from using such models 
on a large scale. Nevertheless, embedded platforms like IoT 
devices and single-board computer systems are unable to 
accommodate such accelerators due to their limited resourc-
es [21]. Thus, the presented methodologies must be optimum 
and aim to utilize the overall hardware resources provided 
by the implementation platform. So, one of the most glowing 
ways is the parallel implementation of inference deep neural 
networks with whole device resource utilization.

Hence, scientific research for developing deep neural 
networks, introducing new models, and suggesting distinct 
implementation approaches to enhance their performance 
and reduce power consumption is of scientific relevance.

2. Literature review and problem statement

Ophthalmology and related detection and diagnosis of 
eye diseases is one of the most important fields that have ad-
opted intelligent systems based on deep networks. These sys-
tems have been invested as supporting models that provide 
accurate diagnosis and detection services for various ocular 
diseases. In general, research workers can be classified into 
two main groups; the first one includes the intelligent sys-
tems that have trained and implemented their architectures 
by investing the integrated GPUs with computer systems, 
and they include [22–27].

The main goal of these works is to present new models 
and get superior results. 

While [28–31] are the second group, which represents 
the researchers’ seeking to prove the capability of embedded 
systems implemented on single-board systems with limited 
resources and low power consumption in the fields of artifi-
cial intelligence and various deep learning networks.

In [22], a deep learning model based on transfer learning 
was presented for myopia detection. The model consists of 
two ResNet18 deep-learning classification networks. The 
first is distinguishing normal and abnormal cases, while the 
second is classifying pathological and high myopia cases. 
Nine hundred thirty-two fundus images were preprocessed 
and used as a dataset for the presented model, which is 
trained for 30 epochs on NVIDIA GeForce RTX 2060 
with 6.0 GB. The model achieved 81.82 %, 83.61 %, and 
83.52 % as accuracy, precision, and sensitivity, respectively. 
However, the results of the proposed model indicate a real 
need to develop it; this can be achieved by conducting ad-
ditional processing of the training dataset, which leads to 
improved classification results. Furthermore, for the second 
classifier, it is advisable to employ an alternative deep learn-
ing network than what was used in the first one, which gives 
more classification accuracy.

Also, in [23], two models of multi-class classification 
were employed for multi-ophthalmological disease detection. 
Both of the presented models’ adopted transfer learning with 
VGG16 with some modifications. The input layer is removed 
while weights of the top five layers are kept frozen for trans-
fer learning. In contrast, the final fully connected layers are 
removed. In the first architectural model, left and right fun-
dus images are individually applied to parallel pre-trained 
VGG16. Then the two feature maps obtained from the parallel 
CNNs are combined and fed into the Global Average Pooling 
layer. On the other hand, both left and right fundus images are 
concatenated and supplied to a single VGG16 for feature ex-
traction, followed by the Global Average Pooling layer. Both 
models were trained for 100 epochs on the ODIR dataset and 
optimized through SGD optimizer. So the evaluated metrics 
for the first architecture are 87.16 %, 84.93 %, and 85.87 % for 
accuracy, AUC, and F1 score, respectively, while these metrics 
became 89.06 %, 66.88 %, and 85.57 % for the second one. 
Still, the second approach exhibits some overfitting, which 
can be mitigated through augmenting the training data.

A new approach based on VGG19 deep neural network is 
presented in [24] for eye disease identification. Mainly, the 
methodology of the presented model is based on training the 
model on preprocessed dataset images to make a classification 
decision about whether a healthy or sick image. The model 
attains 88 % test accuracy, 93 % precision, and a recall of 83 % 
after 50 training epochs on the dataset collected from the 
Kaggle website. Nvidia Tesla K80 CUDA Cores (GPU), with 
24 GB memory, was targeted as an implementation platform. 
Nevertheless, the model has a significant processing time, 
which needs 39.16 minutes for total processing operations.

Furthermore, a glaucoma prediction system was demon-
strated in [25], which is based on U-net CNN. The system 
was trained on a synthesized database of 8,245 images 
created by combining two sets of fundus image databases 
LARGE database and the database of the Central Family 
Clinic Medical Center. The system achieved an accuracy 
of 94 %, and precision between 90 % to 95 %, while the F1 
score was between 91 % and 94 %. However, the number of 
layers, besides the sitting with various filter sizes, makes the 
training time so long. Maybe choosing an alternative CNN 
architecture can address this aspect.

A U-net deep network architecture in [26], was utilized to 
segment retinal vessels to help diagnose various dangerous eye 
disorders. The deep network was trained and tested relying 
on the DRIVE dataset of 40 retinal images, the presented 
model running by Intel XeonE5-2683 2.0 GHz processor, and 
NVIDIA Titan XP GPU framework. The implemented system 
effectively achieved an accuracy of 95.5 % and 82 %, 98 % for 
both sensitivity and specificity, respectively. Also, the system 
accomplished the segmentation process in 21.56 seconds. Nev-
ertheless, the presented system shows a clear contrast between 
sensitivity and specificity, which the limitation of the training 
records may cause. Anyway, this can be mitigated by training 
the model on a different dataset or even through using various 
augmentation strategies. 

Additionally, a combination of CNN and self-attention 
mechanism was employed in an MBSaNet model in [27] to 
identify multiple fundus diseases. The features were extract-
ed through the AlexNet CNN, while the self-attention cap-
tures the complicated relationships between spatial positions, 
enabling the system to directly detect one or more diseases in 
fundus images. MB SaNet approach is utilized to detect diverse 
ocular diseases like age-related macular degeneration (AMD), 
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After reviewing and analyzing both groups of the previ-
ous works, it is evident that studies in the first group were 
interested in developing a supplementary model for diagnos-
ing one or more eye diseases through systems operating on 
GPU cards integrated into an advanced and costly computer 
system. These studies did not address essential aspects such 
as the amount of power consumed by the presented approach 
and its portability or ability to work independently. 

While research works in group two employed the sin-
gle-board low-power system to implement their models. 
However, the results of most of these researches were not at 
the worthy level, neither in terms of performance accuracy 
nor in terms of time, and this can be explained by the fact 
that the presented systems used large-sized deep learning 
networks without modification or improvement, as well as 
there is no suggestion of optimum deep networks that are 
more suitable for approved implementation platforms. These 
objectives are achieved through new deep networks imple-
mented with new architectures that exploit parallelism in 
their structure to obtain acceptable results in terms of power 
consumption and mobility as well as the total cost of the sys-
tem. Also, with considerable resulting accuracy and speed, 
making the proposed method more acceptable and practical.

Our research paper tackles the challenge of integrating 
an efficient deep learning network operating in a cost-ef-
fective, power-efficient environment while preserving the 
accuracy of this network and keeping it at the level of 
those networks implemented on expensive hardware re-
sources. Whereas the proposed deep learning network was 
implemented based on the parallel SIMD architecture, 
which enabled this network to be easily implemented on a 
single-board multi-core system like ARM Cortex-A53 pro-
cessor on Raspberry Pi board, which is characterized by its 
minimal power consumption as well as low cost compared to 
GPU cards, besides its ability to work as an accurate inde-
pendent and mobile computer system with ease. 

All this allows us to assert that it is expedient to conduct 
a study on employing parallel architectures for implement-
ing deep learning networks to utilize low-cost platforms in 
AI applications and models.

3. The aim and objectives of the study

The aim of the study is to develop an efficient SIMD ar-
chitecture of the proposed deep learning network that can be 
used as a low-power embedded model in medical diagnostics 
of myopia ocular disease. 

To achieve this aim, the following objectives are accom-
plished:

– to assess the efficiency of the proposed deep network 
with the new SIMD parallel implementation on a multi-core 
single-board computer system;

– to evaluate and compare the power consumption and 
inference time of the proposed embedded system with previ-
ous research works.

4. Materials and methods of research

4. 1. Object and hypothesis of the study 
This paper presents a new implementation of a deep neural 

network suggested for automatic myopia ocular disease detec-
tion. The proposed network utilizes SIMD architectures, offer-

diabetic retinopathy (DR), glaucoma, and others. The proposed 
system was trained for 30 epochs on the ODIR dataset and 
implemented on a computer system of Intel Xeon Gold 6226R, 
16 cores with 32 threads, and NVIDIA RTX5000, of 32 GB 
memory. The system’s evaluation metrics were 0.88–0.879 for 
accuracy, and 0.891, 0.881 for both AUC and F1 score, respec-
tively. Nonetheless, it should be noted that the model efficiency 
might be reinforced by improving the learning process by 
choosing a new CNN network for this model.

Moreover, in [28], multiple deep learning models were 
presented based on transfer learning for DR detection. Ef-
ficientNet-B6, EfficientNet-B5, Inception v3, VGG19, and 
ResNet 50, were tested after they were trained on a prepro-
cessed APTOS dataset. The best accuracy score of 86.03 % 
was achieved by EfficientNet-B6. Consequently, this model 
was selected as an edge device for inference implementation on 
the low-cost and power-consuming Raspberry Pi platform, as a 
single-board system. However, the efficiency of the implement-
ed model still needs to be improved, which can be achieved by 
adding more layers to the deep network. Since the deep network 
was implemented with its traditional architecture without any 
other modification or enhancement, the chosen implementation 
platform does not allow any other additions due to its limited 
resources. This obstacle can be addressed by providing a neural 
network appropriate for the implementation platform, consider-
ing the improved accuracy resulting from the proposed model.

Another single-board computer system leverages deep 
learning relying on transfer learning in [29]. Where Google 
Lenet was employed to detect cataract ocular disease. The deep 
network was developed using MATLAB Digital Image Pro-
cessing paradigm and implemented on Raspberry Pi 3 Model 
B+ SBC. Whenever the Raspberry Pi camera captures an eye 
image, it sends it to a dedicated software program accountable 
for preparing this image as input for the deep network on Rasp-
berry Pi. Even though this system achieves a high accuracy 
of 96.4 %, this accuracy is not fixed and is based mainly on 
the image processing carried out by the responsible person. In 
addition, the interference of the human factor limits the contri-
bution of the system to providing medical support services au-
tomatically. In addition, it made the response time of the system 
too long. Anyway, the system can be modified through adding a 
preprocessing stage for the deep network as well as optimizing 
the model architecture to reduce time.

A Raspberry Pi 4 platform was also utilized to implement 
a specific U-Net deep network for fundus image segmenta-
tion in [30]. The network was trained on DRISHTI-GS and 
RIM-ONE-v3 datasets for both optic disc and optic cup seg-
mentation. The trained network accomplished its function 
through 1.2 seconds per image as a response time. Thus, the 
overall architecture of the proposed model may be strength-
ened through a parallel architecture implementation strate-
gy or by exploiting accelerators that are compatible with the 
Raspberry Pi board, to enhance the overall inference time.

In [31], two implementation methods were proposed for 
LeNet-5 of three convolutional layers. The methods strategy 
aimed to utilize the NEON unit for SIMD processing, which 
is integrated into each Cortex-A53 core to implement the 
network in SIMD fashion. However, these units are simple 
parallel processing elements, which made the inference time 
very long. The first implementation method achieved about 
5.445 sec inference time, while it was about 4.075 sec for the 
second method. Of course, relying on ARM Cortex cores 
gives more flexibility and generality for the architectural 
design and presents powerful results.
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ing efficient advanced capabilities, and operates efficiently 
on a compact, low-power single-board platform. The model 
was trained using the ODIR (Ocular Disease Intelligent 
Recognition) dataset, on a PC with an Intel® Core™ i9-
9900K CPU @ 3.60 GHz 3.60 GHz, 32 GB RAM, and 64-
bit operating system. For more practicality, the developed 
system was inference implemented on Raspberry Pi 3 B 
and provides an efficient classification with 
a low-power consumption embedded system. 
The power measurements were made through 
a Keweisi USB tester, which measures both 
voltage and current traffic.

4. 2. The Dataset
Ocular Disease Intelligent Recognition 

(ODIR) is a compiled ophthalmic database 
of 5,000 patients, which encompasses infor-
mation such as age, color fundus photographs 
from the left and right eyes, as well as, diag-
nostic keywords provided by doctors. Within 
this dataset, a set of eye diseases are docu-
mented, and myopia is one of the perceptible. 
Fig. 1 clarifies pathological myopia case vs. 
normal one.

a                                    b 

Fig. 1. Pathological myopia: a – normal case; 	
b – myopia case

Like other datasets, the ODIR dataset has its limita-
tions. It encompasses dark and unclear images, which can 
adversely affect the accuracy of the results when training the 
suggested model. To mitigate these obstacles, a pre-process-
ing stage has been introduced. This stage involves cropping 
and scaling the images to match the neural network inputs, 
as well as applying histogram equalization for improved vis-
ibility and contrast enhancement. Fig. 2 shows the effect of 
this processing in dataset photos. 

Fig. 2. Sample of dataset photos after preprocessing

Fig. 2 exhibits the effect of pre-processing on highlight-
ing many details of the image, as well as removing the opac-
ity and clarifying the overall image area.

4. 3. The proposed Convolutional Neural Network 
architecture

In this study, the proposed deep learning network with 
particular specifications was introduced. This network is 
presented to be more suitable for AIoT applications and 
hardware of low-power consumption. Fig. 3 depicts the net-
work architecture layout.

As shown in Fig. 3, the proposed deep network is com-
pact and has a limited number of layers, as compared with 
other deep learning networks like VGG16, VGG19, Res-
Net50, and InseptionV3, etc. The first two convolutional lay-
ers employ 64 filters of 3x3, and both layers utilize ReLU as 
an activation function, which ensures that the output is the 
input value if it is positive; otherwise, the output is zero. Af-
ter that, the special dimension will be reduced via Max pool-
ing layer. Subsequently, the convolutional and Max pooling 
layers are used until reaching the flattening layer. An adap-
tive Moment Estimation optimizer (Adam) was applied to 
estimate the parameters, with a learning rate=0.0001 and 
max epochs=70. Table 1 illustrates the deep network details.

Table 1

Proposed network details

Model: “sequential_3”

Layer (type) Output shape Param#

Conv2d_1 (Conv2D) (None, 224, 224, 64) 1,792

Conv2d_2 (Conv2D) (None, 224, 224, 64) 36,928

Maxpooling2d_1 (MaxPooling2D) (None, 112, 112, 64) 0

Conv2d_3 (Conv2D) (None, 112, 112, 128) 73,856

Conv2d_4 (Conv2D) (None, 112, 112, 128) 147,584

Maxpooling2d_2 (MaxPooling2D) (None, 56, 56, 128) 0

Conv2d_5 (Conv2D) (None, 56, 56, 256) 295,168

Conv2d_6 (Conv2D) (None, 56, 56, 256) 590,080

Conv2d_7 (Conv2D) (None, 56, 56, 256) 590,080

Maxpooling2d_3 (MaxPooling2D) (None, 56, 56, 256) 0

Conv2d_8 (Conv2D) (None, 28, 28, 512) 1,180,160

Maxpooling2d_4 (MaxPooling2D) (None, 14, 14, 512) 0

Flatten_1 (Flatten) (None, 100352) 0

Dense_1 (Dense) (None, 1) 100,353

Total params 3,016,001

Trainable params 3,016,001

Non-trainable params 0
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Fig. 3. The proposed deep network
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As shown in Table 1, the proposed network consists of 
only eight convolutional layers, and the overall network pa-
rameters are about 3M.

4. 4. SIMD implementation of the proposed Convolu-
tional Neural Network architecture

The parallel implementation of deep learning networks is 
considered as an advanced approach that achieves faster exe-
cution while minimizing the instruction bandwidth as well as 
the need for repetitive memory access requests. To implement 
the proposed deep network based on the parallel architecture, 
the SIMD architecture was adopted, which enables the exe-
cution of a single instruction on a set of data simultaneously.

The inherent parallelism present in the proposed net-
work was exploited to implement it using the SIMD parallel 
architecture. In this approach, all the convolution and Max 
pooling processes were divided into multiple threads run-
ning in parallel, allowing them to produce their results syn-
chronously independently. In contrast, these processes run 
sequentially in traditional implementations of deep learning 
networks. The Raspberry Pi 3 Model B is a dedicated, pow-
er-efficient single-board embedded hardware, so we deploy 
it for implementing our deep learning inference model. The 
embedded platform has a quad-core ARM Cortex-A53 pro-
cessor, delivering a maximum clock speed of 1.2 GHz. It is 
complemented by a 1GB LPDDR2 RAM module [32]. The 
internal architecture of the Raspberry Pi 3 B microcomputer 
is shown in Fig. 4, a, while Fig. 4, b reviews the Keweisi USB 
tester that is used for power measurement.

To utilize the capabilities of the quad-core ARM Cortex 
processor, we divided the convolution and Max pooling op-
erations of our deep network into four threads that operate 
simultaneously in parallel. This approach allows the execu-
tion of a single instruction on a set of data simultaneously, 
achieving parallelism in the overall execution. Fig. 5 demon-
strates the proposed implementation of the presented deep 
network with the SIMD architecture.
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Fig. 5. SIMD parallel implementation of the proposed deep learning network
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Fig. 4. Research materials: 	
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According to Fig. 5, the presented deep network was 
partitioned into four threads, one for each core of the Cortex 
CPU, and each thread consists of a succession of convolu-
tional and Max-pooling layers for feature extraction and 
dimension reduction, respectively. Thus, in this context, 
all network functionality is implemented simultaneously, 
and this architecture achieves more speeding up than the 
sequential model that is implemented on a single core.

Within each core, the execution of the convolution and 
Max-pooling operations as repetitive and overlapping iter-
ations with each other in a pipeline aspect is interspersed 
with caching operations of the intermediate results obtained 
from each group, as they are stored in the cache memory of 
this core to proceed for the next process. So the sequence of 
operations continues until the core completes all operations 
for the thread entrusted to it. 

Selecting the nested pipeline as an operational frame-
work for each core increases the core’s productivity and 
speeds up the operations within a particular thread. Fig. 6 
shows the successive iterations in each thread through the 

quad cores of the Cortex processor, as well as the pipeline 
implementation of each one.

Fig. 6 shows the details of the parallel implementation 
of the convolution process through the proposed SIMD ar-
chitecture. The first two convolution layers, which are both 
224×224×16 in each core, were accomplished through four 
iteration groups, each one consisting of four convolutional 
processes. The intermediate results of these operations are 
collected in the L1 cache of the core to be used in the fol-
lowing Max-pooling processes. The Max-pooling operations 
are also implemented in the same parallel manner. After 
that, the parallel implementation of the successive convo-
lution and Max-pooling layers continues implementing the 
proposed deep network with a new architecture based on 
fulfilling parallelism in network operations.

The use of SIMD architectures in implementing the 
proposed network enhanced its performance by utilizing 
multi-core programming to accomplish the same process-
ing operations in parallel and increase the speed up pro-
ductivity. 
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Fig. 6. Core implementation tasks: a – implementation details of threads in each core; b – pipeline overlapped operations/core
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5. Results of the SIMD deep CNNs model

5. 1. Prediction accuracy results of the presented model
As mentioned earlier, the proposed system was trained 

and tested based on the ODIR database. This dataset was di-
vided into 80:20, where 80 % of this data was used for system 
training and 20 % for testing. The system was trained for 
70 epochs and achieved a prediction accuracy of 96.35 %, as 
clearly shown in Fig. 7, which expresses the high efficiency of 
the proposed system through its evaluation metrics. 

The model behavior during the 70 training epochs is de-
scribed in model accuracy and model loss, which are shown 
in Fig. 8. 

However, relying on accuracy to evaluate the efficiency of 
the system is insufficient. Therefore, in order to give a compre-
hensive description of the performance of the proposed system, 
we have adopted integrated metrics to describe the efficiency of 
the system, including Precision, Recall, and F1 score.

The Precision for our model, which is described in (1), 
gives an evaluation of the proportion of disease-positive pa-
tients correctly identified among the entire dataset:

True�Positive
Precision .

True�Positive False�Positive
=

+
	 (1)

Recall, on the other hand, evaluates the number of true 
positives that have been precisely classified, which in our 
prediction models refers to individuals that are truly suffer-
ing and have been predicted by our model to be afflicted on 
the other hand. The Recall is calculated by (2):

True�Positive
Recall .

True�Positive False�Negative
=

+
	 (2)

In addition, a common evaluation metric that combines the 
precision and recall of a classifier into a single value is the F1 
score, whereas this metric evaluates the overall performance of 
a binary classifier. The F1 score ranges from 0 to 1, with a high-
er score indicating better performance. The calculated equation 
of the F1 score is shown in (3):

Precision*�Recall
F1�Score .

Precision Recall
=

+
	 (3)

The outcomes of these metrics abstract the system per-
formance, where the higher values depict the high efficiency 
of the system, and this is depicted in Fig. 7, b concerning our 
proposed system.

5. 2. Power and time consumption of the proposed 
model, compared with previous works 

The significant factor for evaluating any system is the 
power consumption; thus, practical and efficient embedded 
systems must exhibit a defined and reasonable power con-
sumption. This benchmark plays a critical role in specifying 
the overall system cost, and for remote and self-powered 
systems, this metric specifies the lifetime of the system work. 
Thus, the power consumption of the system is one of the es-
sential criteria adopted in the development of the embedded 
system presented in this research work, where this aspect 
was addressed by building a finite-layer deep neural network 
besides partitioning all the sequential computations into 
parallel groups and finally by adopting the implementation 
platform with shallow power consumption. This board has 

767/767 [===========================]  -4s 5ms/step -loss: 0.2372  -  
accuracy: 0.9572 -val_loss: 0.3740 -val_accuracy: 0.9219 
Epoch 68/70 
767/767 [===========================]  -4s 5ms/step -loss: 0.1734  -  
accuracy: 1.0000 -val_loss: 0.4100 -val_accuracy: 0.9688 
Epoch 69/70 
767/767 [===========================]  -4s 5ms/step -loss: 0.1510  -  
accuracy: 1.0000 -val_loss: 0.4159 -val_accuracy: 0.9635 
Epoch 70/70 
767/767 [===========================]  -4s 5ms/step -loss: 0.2559  -  
accuracy: 0.9791 -val_loss: 0.4136 -val_accuracy: 0.9635 

a

b 

Fig. 7. Outcomes of the introduced network: 	
a – model training epochs; b – efficiency evaluation metrics
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been selected for its low power consumption; it used about 
1.15 Watts during idle mode and without any USB device 
connection, while its peak power consumption is about 
3.6 Watts. Thus, it surpasses the Raspberry 4 by about 50 % 
in power consumption [33]. Fig. 9 shows the initial power 
consumption of Raspberry Pi 3 B in our experiment work by 
using the Keweisi USB power tester.

Fig. 9. Raspberry Pi 3 B initial power consumption

As shown in Fig. 9, the system board 
was driven by 5.12 V and 0.23 A, so 
the initial power for idle mode is about 
1.1776 Watts (with USB wireless mouse 
connection and LCD monitor).

To emphasize the significance of 
incorporating parallel architectures in 
the construction of deep learning net-
works, our experimental work involves 
two steps. In the first one, only one 
core processor of the ARM processor 
was utilized to implement the entire 
proposed deep network without em-
ploying SIMD parallel architecture, 
and the power consumption of this step 
is shown in Fig. 10.

As shown in Fig. 10, our design ar-
chitecture consumes about 2,783 Watts 
when it is implemented on a single core 
of an ARM processor. Furthermore, it 
is noteworthy that in this implementa-
tion, the proposed system needs about 16 seconds to give 
its final prediction result.

However, a new SIMD parallel architecture of the pro-
posed deep network was implemented utilizing the overall 
quad-cores of the ARM Cortex processor in the second step, 
and its power consumption result is shown in Fig. 11.

Also, Fig. 11 clarifies that the total current needed to 
drive the SIMD architecture is 0.73 A, thus the total pow-
er consumption of the new implementation is 3.65 watts. 
Moreover, the system with a SIMD deep network needs only 
3.25 seconds to give its prediction response.

Fig. 12 shows the difference between single-core and 
quad-core implementations of the proposed deep network on 
the Raspberry Pi 3 B platform. 

Comparing the results of the prior two implementa-
tions, we note that the second implementation, which 
supported the parallel architectures in the structuring of 
deep networks, achieved a speedup of about 4.923 with 
a slight difference in power consumption not exceeding 
0.867 Watts.

Hence, Fig. 12 highlights the importance of utilizing 
parallelism in deep neural networks and employing parallel 
architectures in constructing them. Of course, if ARM pro-
cessors have more cores our embedded system can be faster.

Our proposed model was compared with multiple de-
signs and different deep-learning architectures. These com-
parisons were on two levels, the first is a comparison with 
published works of deep networks and intelligent systems 
that deal with detecting and diagnosing ocular diseases, as 
shown in Table 2. 

Table 3, on the other hand, depicts the second level of 
these comparisons, including a comparison of our system’s 
architecture with different implementations of deep learning 
models on the Raspberry Pi platform.

The comparisons reviewed in Table 2 show a clear su-
periority of the presented deep network and the proposed 
system over its counterparts of neural networks in previous 
and presented studies for ocular disease detection and diag-
nosing. The table also indicates the high accuracy concluded 
by the proposed network relative to its limited size, which 
may reach 18.667 and 3, compared to those in [36, 37]. The 
size of our network stands out with the possibility of imple-
menting it on various implementation platforms with limited 
power consumption as a single-board mobile system, with a 
maximum power consumption of about 3.65 W, compared to 
those vast networks that can only be implemented on GPU 
with high specifications and significant power consumption, 
which is part of an integrated computer system with a very 
high cost.
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Meanwhile, Table 3 shows the dominance of the parallel 
implementation of deep learning networks and utilization of 
all available resources provided by the accessible platform, 
over the traditional implementation methods that are used in 
other deep learning networks implemented on the same and 
similar implementation platforms.

The parallel SIMD implementation of the proposed 
network achieved optimum inference time and accelerated 
the system response compared to what has been achieved in 
previous systems and studies.

6. Discussion of the experimental results of the optimized 
SIMD embedded system

The SIMD implementation of the deep network struc-
ture presented in this research study, shown in Fig. 5, played 
an essential role in multiple aspects, as the implementation 
method made it possible to transform the successive com-
putation tasks within the deep network into sets of parallel 
partials operations that can be run synchronously with each 
other. Thus, this provided a significant reduction in the over-
all execution time on the selected execution platform, com-
pared to those in other architectures implemented on the 
same and similar implementation platforms as in [7, 38, 41], 
shown in Table 3.

Moreover, the results show that the implementation 
of the SIMD gave the possibility to invest all the material 
resources that the implementation platform provides, such 
as the investment of the four cores provided by the ARM 
Cortex processor, and make them work simultaneously by 
employing them all in parallel simultaneous operations, lead-
ing to a reduction in the total inference time.

On the other hand, the proposed deep network, along 
with the utilization of parallel architectures in its implemen-
tation, contributed to the possibility of carrying out this deep 
network on a low-cost single-board microcomputer system 
such as Raspberry Pi 3 B. This implementation platform is 
characterized by its deficient power consumption compared to 
other implementation platforms shown in Table 2, where a set 
of proposed systems that were presented as aids in detecting 
and diagnosing ocular diseases are highlighted in this table, 
wherein the results in Fig. 9–11 show that the power gain 
achieved in the proposed system compared to the systems pre-
sented in the same field alternated between 72.6 %, 68.49 %, 
19.17 %, and 47.94 % for [34–37] respectively in Table 2.

However, one of the most significant restrictions in this 
research work is the resource limitations of the targeted board. 
Despite the optimality of the Raspberry Pi 3 in its power con-
sumption, the processing unit of the board is only quad-core, 
which limits the possibility of achieving greater parallelism 
through the computational tasks of the deep neural network 
and thus achieving a more significant reduction in inference 
time. From this point, developing the processing unit on the 
Raspberry Pi 3 platform can be one of the crucial developments 
for this practical research by adding terminal accelerators, like 
Google Coral USB, which adds supplementary processing 
cores besides those in the ARM Cortex processor.

7. Conclusions

1. With about 3M parameters only, the proposed deep 
network contributed to the introduction of an advanced 
low-power consumption embedded system that can be em-
ployed efficiently to detect and diagnose myopia ocular dis-

Table 2

Model comparison with different ocular disease detection systems

Reference Deep learning models Network parameter size Implementation platform Power consumption (W) Accuracy

[34] EFFICIENT NET B3 10.71M NVIDIA RTX 2080Ti,11GB 265 0.920

[35] RESNET-50 23.9M NVIDIA GEFORCE 1080Ti, 11GB 250 0.928

[36]
Sequential Model of 

INCEPTION RESNET 
AND DKC BLOCK

56M NVIDIA T4 GPU, 16GB 70 0.9608

[23] MBSANET 9.4M NVIDIA RTX5000, 16GM 265 0.881

[37]

VGG16 528M

Nvidia GeForce RTX 2070, 8GB 175

90.28

RESNET201 77M 89.49

DEEP CNN OF 20 
LAYERS

27M 93.81

Our design THE PROPOSED CNN 3M RASPBERRY PI 3 B 3.65 0.9635

Table 3

Model comparison with different deep learning models on Raspberry Pi

References Deep network Implementation platform Aim of design or application Inference Time (s)

[38]

InceptionV3

Raspberry Pi 4 Image classification

71

VGG16 50

MobileNet 52

[39] CondenseNet Raspberry Pi 3 Low-Power Image Classification on Embedded Devices 4.829

[7] ResNet Raspberry Pi 3 Face Detection & Recognition from Images 30

[40] VGG16 Raspberry Pi 4 CNN Inference Acceleration in Edge Computing 6.73

[41] MobileNetV3 Raspberry Pi 4 B Distributed Deep Learning Inference Using Raspberry Pi 20.67

Our system Deep CNN Raspberry Pi 3 B Myopia Ocular disease detection 3.25
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ease with a high accuracy of up to 96.35 %. The suggested 
system is executable on low-cost single-board mobile plat-
forms, like Raspberry Pi 3 B. Thus, the submitted network has 
helped dispense with large networks that need advanced sub-
stantial resources, high cost, and higher power consumption.

2. The SIMD parallel implementation of the deep network 
architecture gained a maximum speed-up of 21.84, compared 
with the deep network implementations in [38], with the opti-
mum system response and shortened inference time.

The proposed system represents an ideal and support-
ive assistant for the ophthalmology field, especially as it is 
marked with high accuracy, low costs as well as low power 
consumption.

With appropriate modifications, our embedded system 
will be suitable for a wide range of AIoT applications that 
rely on deep learning.
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