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1. Introduction

In civil construction and in the composition of a vessel’s 
hull, there are still structural elements of the design meth-
odology that are absent or have a narrow focus. One of these 
structural elements is a beam-wall (Fig. 1), which is attached 
to the cladding I by the lower straight edge 2, and the upper 
broken edge is free.

Beam-wall in Fig. 1 is subjected to axial loads p1, which 
can be caused, for example, by the general bending of a vessel’s 
hull and bending loads p2 from the local bending of the floor.

Beams of this type can work both under elastic and elas-
tic-plastic deformation conditions, under static and cyclic 
loads. The appearance of plastic deformations in the stress 
concentrator 6 (Fig. 1) leads to non-fulfillment of static 
strength, and cyclic loads cause the appearance and growth of 
fatigue cracks in the concentrator. This forces us to consider 
the calculation and design of such a beam from the point of 
view of fatigue life, and the presence of elastic-plastic defor-
mation complicates this problem. Moreover, loss of stability is 

possible. For the considered beam, there are modes of opera-
tion when elastic-plastic deformation cannot always be avoid-
ed, which must be taken into account. For example, if such a 
beam-wall is part of the ship’s hull or floating structures, then 
the elastic-plastic deformation of the beam-wall is ensured 
during the following operations of the vessel: unloading-load-
ing, docking, extreme loads during waves, etc.
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This paper considers a thin-walled steel beam-wall 
with broken edges, which is part of many structures. 
The wall of this beam consists of two prismatic parts 
with a straight transition from a lower wall height to a 
higher one, forming a broken upper edge together with 
the edges of the prismatic parts. The bottom straight 
edge of the wall is attached to the cladding.

The beam-wall is affected by static and cyclic nom-
inal loads, which can cause the appearance of elas-
tic-plastic deformations in the stress concentrator. This 
causes non-fulfillment of static strength and the appear-
ance and growth of fatigue cracks.

In the current work, procedures of design and veri-
fication calculation of a steel beam-wall with fractured 
edges at elastic static and cyclic elastic-plastic defor-
mation in the stress concentrator are proposed. The 
material of the beam is ideal elastic-plastic.

Features of the procedures are the possibility of 
optimal design under conditions of elastic and elas-
tic-plastic deformation, using dependences only for 
optimal elastic design. A distinctive signature of the 
procedures is that, through Neiber’s formula, elas-
tic-plastic characteristics are not determined by known 
elastic ones, as usual, but vice versa. According to the 
established dependences for cyclic elastic-plastic defor-
mations in the concentrator, the theoretical concentra-
tion coefficient is determined, which, in turn, is involved 
in determining the optimal geometric parameters.

The procedures give reliable results with nominal 
symmetrical cyclic loads up to 0.6 of the yield strength. 
This is because Naber’s formula always yields conser-
vative results, causing excess strength.

The procedures can be applied separately for 
stretching-compression and bending, and with their 
combined action
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Fig. 1. General view of the beam-wall
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The appearance of plastic deformations in concentra-
tor 6 (Fig. 1) formally makes it impossible to use the beam-
wall as part of civil structures because the standards do 
not allow it. The growth of fatigue cracks in concentra-
tor 6 (Fig. 1) can cause the failure of complex assemblies, 
which include this beam. These are mostly ship structural 
assemblies. There is a need to calculate such a beam-wall un-
der the action of static and cyclic loads. Currently, there are 
no systematic procedures for assessing the strength and du-
rability of such beam-walls (Fig. 1), and, accordingly, design 
recommendations for them. As a result, software packages 
have to be used every time for calculating beam-walls with 
broken edges, which leads to an increase in the complexity of 
designing structures in general at the initial stages.

Therefore, studies that consider a beam-wall with broken 
edges (Fig. 1), with the aim of devising appropriate proce-
dures, are relevant.

2. Literature review and problem statement

The beam-wall operates in the flat stress-strain 
state (SSS). Work [1] gives the dependences for the theo-
retical concentration coefficients in concentrator 6 (Fig. 1). 
In paper [1], the sizes and shapes of the plastic zones and the 
field of intensity of elastic-plastic deformations (in the form 
of contour lines) are established, depending on the geomet-
ric parameters and the applied load. Works [1, 2] present 
dependences for the intensity of elastic-plastic deformations 
in concentrator 6 of a steel beam-wall (Fig. 1) for an ideal 
elastic-plastic diagram. In [1], with static load, and in [2] – 
with symmetrical cyclic nominal load. Work [2] is the devel-
opment of study [1]. In [1, 2], the influence of technological 
factors, such as the weld, was not taken into account. Under 
real conditions, the weld, as a rule, is far away from concen-
trator 6 (at least 50 mm, in the most unfavorable case 25 mm 
for gas welding), to avoid thermal effects. The material of 
works [1, 2] will be used for devising procedures within the 
framework of the current study.

Our review of the literature was aimed at considering 
general optimization algorithms for structures that could be 
used to devise procedures of design and verification calcula-
tions for the beam-wall in Fig. 1. This is due to the fact that 
there are no systematic procedures for calculating static and 
cyclic strength for the beam-wall under study (Fig. 1), and 
therefore it is necessary to look for a tool for devising these 
procedures.

Work [3] follows Prager’s approach in optimization search, 
which has its well-known advantages and disadvantages. The 
search for the development of methods of optimal design of 
structures in book [3] followed two slightly different paths. 
Optimality conditions in [3] usually have an analytical na-
ture, and therefore their strict satisfaction is limited to rela-
tively simple and not always practical structures, which calls 
into question in some cases the approaches of work [3].

Paper [4] reports new ways of formulating construction 
optimization problems and techniques for solving them in 
comparison with study [3]. However, work [4] mostly offers 
topological optimization based on the analysis of the direct 
stress-strain state (SSS) in the elastic region. This will force 
us to impose restrictions on edges 4, 5, 7 by keeping them 
straight, and edge 6 in the form of a circle (Fig. 1), which will 
complicate the procedure for building an optimization model 
even for an elastic region. Paragraph 4.4 “Optimization of 

Stress Concentration for Elastic Plates with Holes” [4] is in-
teresting, where the optimization of the concentration factor 
is discussed. But under the conditions of the optimization 
study of the beam-wall (Fig. 1), the concentration coefficient 
is constant, in order to be able to link the elastic and elas-
tic-plastic problems.

The optimization methods in [5], as in study [4], work 
directly with SSS and topology, which creates the same 
problems that were considered in the analysis of work [4]. 
Paper [6] mostly discusses the implementation features of 
numerical optimization procedures already known, and par-
tially discussed in papers [3–5], which can be useful only for 
software implementation of algorithms in the future.

Many new authentic algorithms are proposed in [7], 
which, in contrast to works [3–6], are more practical. 
However, the algorithms in [7] also work directly with the 
geometric parameters and SSS of structures, and do not 
provide an opportunity to combine, for example, elastic and 
elastic-plastic deformation, as for a beam-wall (Fig. 1).

A general feature of works [3–7] is that optimization 
procedures are discussed separately for each type/kind of de-
formation, and their combination requires discussion. Works 
[3–7] contain provisions and authentic procedures and un-
derstanding of the problems of optimal design, which cannot 
cover all the features of the operating conditions of structures.

This makes it necessary to carry out optimization studies 
of the beam-wall separately under elastic, plastic, and even 
cyclic deformation, which will increase the complexity of the 
study, although it will give more accurate results.

Work [8], which reports a method of optimal design of 
structures taking into account the requirements of fatigue 
life, is devoid of the indicated shortcomings of studies [3–7]. 
The basic idea is to use load history data in combination with 
finite element stresses and material fatigue properties to 
calculate fatigue life in an optimization process. Durability 
requirements are taken into account as lateral constraints, 
and the weight of the structure as an objective function. De-
formation criteria are used in the optimization process, and 
the connection between the nominal stresses and the char-
acteristics of elastic-plastic deformation in the concentrator 
is carried out using Neiber’s formula. The prototype of this 
procedure [8] (with some modifications) was used in the de-
velopment of design dependences for the investigated beam-
wall under cyclic loading for the calculation of fatigue life.

Some applications of the new procedure of structural 
optimization of shape to maximize fatigue life or inspect 
gaps for damage-resistant structures are presented in [9]. As 
part of the reported procedure, a new simple method called 
FAST (Failure Analysis of Structures) was used to estimate 
the stress intensity factor (SIF) for cracks in the notch. 
The FAST method, which is an extension of the biological 
algorithm, was applied to study the problem of fatigue life op-
timization as a design goal. In this method, fatigue life is con-
sidered through crack parameters. For elastic deformation, 
the method from [9] promises to be acceptable by the authors. 
However, for engineering use, the approach from [9] remains 
complicated because in work [9] the SIF and crack growth 
parameters are involved. This requires additional theoretical 
and experimental studies for concentrator 6 (Fig. 1), which 
negates the ready-made developments in [1, 2]. The reliability 
of the proposed approach [9] in the case of elastic-plastic de-
formation in concentrator 6 (Fig. 1) is uncertain.

Paper [10] considers structural topological optimization 
with restrictions that take into account fatigue life in the 
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multi-cycle region, which already makes it impossible to ap-
ply [10] for low-cycle fatigue life in concentrator 6 (Fig. 1). 
However, in the future, the findings of [10] may be useful in 
the development of universal procedures of fatigue life, both 
for multi- and low-cycle areas.

Topological optimization is applied in [11] to discuss the 
problem of fatigue load resistance. Fatigue life is maximized 
by optimizing the shape of the structure under cyclic plas-
ticity in conjunction with Lemaitre’s failure law. The topo-
logical optimization algorithm is detailed. However, in order 
to develop regular dependences of beam-wall design under 
conditions of elastic-plastic deformation, it is necessary to 
carry out serial calculations again using this method.

Work [12], where research is conducted using neural 
networks, can be attributed to the original methods for 
optimizing structures taking into account low-cycle fatigue. 
This type of research is quite complex and as a result not 
very common to be used for routine research.

Plots of the optimal geometric parameters of the beam-
wall in Fig. 1, taking into account technological factors, are 
given in [13]. A more detailed discussion of paper [13] will 
be given below.

Our review of the literature revealed that for the de-
velopment of optimal design procedures, it is necessary 
to re-build the objective functions and constraints for the 
beam-wall, which will complicate the research.

Thus, the review of the literature showed that there are 
no ready-made procedures of design and verification calcu-
lations for the beam-wall under any type of deformation. The 
use of optimization algorithms and procedures from [3–12], 
except for [8], will cause the fact that separate algorithms 
will have to be developed for devising optimal design proce-
dures for elastic static and elastic-plastic cyclic loads. This 
will increase the complexity and time of development of the 
specified procedures for the beam-wall in Fig. 1.

One of the simplest ways out of this situation can be that 
on the basis of the results [1, 2] for the beam-wall, using [8], 
design and verification procedures can be devised. These 
procedures will make it possible, for two types of defor-
mation of a completely different nature (for elastic static 
and elastic-plastic cyclic), to perform optimal design of the 
beam-wall using procedures for elastic deformation only. 
This convenience is contrasted with the rest of the proce-
dures from [3] to [12], except for [8], which separately offer 
optimal design procedures for elastic, elastic-plastic, fatigue 
cyclic deformation, etc.

3. The aim and objectives of the study 

The purpose of this study is to devise procedures for 
designing and verifying calculations of a beam-wall with 
edge fracture under conditions of static elastic and cyclic 
elastic-plastic deformation of the concentrator, which will 
make it possible to assess strength and fatigue life.

To achieve the goal, the following tasks must be solved:
– to build analytical dependences for the optimal design 

methodology for static elastic deformation;
– to compare the fatigue life results obtained on the basis 

of the developed dependences with the experimental-theo-
retical method (ETM);

– to carry out the transformation of the Neiber formula 
in order to relate the elastic and elastic-plastic deformation 
parameters in the concentrator;

– on the basis of the dependences for the optimal design 
procedure at static deformation and the developed depen-
dences based on the deformation criteria, to devise proce-
dures for calculating the beam-wall at cyclic deformation.

4. The study materials and methods 

The object of our study is a beam-wall with broken edg-
es (Fig. 1). The hypothesis is accepted, according to which 
the neutral layer of the beam-wall coincides with the lower 
edge 2 (Fig. 1). This hypothesis is justified by the fact that 
with a gradual increase in the width of the attached belt of 
the cladding I (Fig. 1), the neutral layer approaches edge 2, 
and the stresses in concentrator 6 increase at the same time. 
At the limit transition, when the width of the attached clad-
ding belt I (Fig. 1) tends to infinity, the neutral layer of the 
beam-wall coincides with edge 2. In this case, edge 2 has no 
vertical displacements, and in concentrator 6 (Fig. 1) the 
greatest stress occurs, compared to other load schemes.

It was assumed that the external nominal cyclic load is 
symmetric, of constant amplitude, which makes it possible to 
take into account the most unfavorable operating condition. 
To simplify the study of the stress-strain state, the influence 
of technological factors was not taken into account.

The research method is numerical methods, which are used 
in the search for unknown parameters of empirical dependences 
by the method of least squares. This is, in particular, one of the 
implementations of the simplex method, the method of conju-
gate gradients, the method of Newton and the fastest descent, 
developed by us in the C++ programming language.

The subject of the study is the geometric parameters of 
the beam-wall (Fig. 1).

5. Results of research into optimal design and fatigue 
durability

5. 1. Construction of analytical dependences for the 
design methodology at static elastic deformation

Paper [13] gives charts of the optimal geometric param-
eters for the beam-wall (Fig. 1), such as the angle α of edge 5 
and the relative radius of rounding r/h of edge 6 (Fig. 1). At 
the same time, the fixed values were the wall height ratio H/h 
and the concentration coefficient k1 for stretching-compression 
and the concentration coefficient k2 for bending. The objective 
functions ensured the minimization of the mass of wastes, 
time, cost, and effort of manufacturing, taking into account 
the constraints related to k1,2. The values of optimal α and r/h 
were obtained for the upper limit r/h≤rh max=1. There are also 
(very) rough approximations of these charts, which need to be 
replaced or clarified for the possibility of their inclusion in de-
sign procedures. The statement of the optimization problem in 
work [13] was formulated as follows: to find the optimal α and 
r/h for given H/h and k1,2, minimizing the objective functions. 
To this statement, the following formulation of the problem 
must be added: find the optimal α for given H/h, k1,2 and r/h, 
minimizing the objective functions. Because r/h may be subject 
to technological limitations related to hardware capabilities, 
which will be discussed in more detail below.

Thus, for the convenience of further explanations, we 
define two optimization problems:

1) find the optimal α and r/h for given H/h and k1,2, min-
imizing the objective function described in [13];
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2) find the optimal α for the given H/h, k1,2 and r/h, min-
imizing the objective function described in [13].

Stretching-compression is a more dangerous stress state 
than bending, so in the following explanations attention 
is paid to stretching-compression. For the convenience of 
further explanations, plots of the optimal geometric parame-
ters in stretching-compression, taken from work [13] for the 
1st optimization problem, are shown in Fig. 2.

Shown in Fig. 2, the dependences have the following 
features. At values of H/h from 1.1 to 1.8, the moment of dis-
appearance of the inclined straight edge 5 occurs at the begin-
ning of the inclined straight lines that appear with increasing 
argument k1 (Fig. 1). Analytically, it can be written as follows:

( )
( )

if 1 cos edge 5 exists,

if 1 cos edge 5 absent.

H h r

H h r

− > − α → 


− ≤ − α → 
 		  (1)

If there is no straight edge 5, then the angle α is defined 
as follows:

arccos 1 , rad.
H h

r
− α = − 

 
 		  (2)

The curvilinear dependences of angle α on concentration 
coefficients k1 correspond to the first condition (1) when the 
straight edge 5 exists (Fig. 1). Rectilinear dependences 
correspond to the second condition (1) when edge 5 does 
not exist, and there is only edge 6.

If, under the conditions of operation, the beam-wall 
is subjected to only stretching-compression load p1, then 
the optimal geometric parameters α and r/h must be de-
termined according to plots in Fig. 2, depending on the 
concentration coefficient k1.

If, under the conditions of operation, the beam-wall 
is only loaded by bending p2, then the optimal geometric 
parameters α and r/h must be determined according to the 
corresponding plots in figures from [13], depending on the 
concentration coefficient k2.

If the operation of the beam-wall is expected under the 
combined action of stretching-compression and bending, 
then the optimal geometric parameters α and r/h must 
be determined according to plots in Fig. 2, depending on 
the concentration coefficient k1. This is due to the fact 
that the value of concentration coefficient k2 at bending is 
always smaller with the same geometric parameters of the 
beam-wall. Performing calculations depending on k1, the 
optimal concentrator parameters are obtained with some 
margin of safety.

Empirical dependences were built for α and r/h, 
which approximate the plots in Fig. 2. These dependenc-
es are presented below and correspond to formulas (3) 
and (4). The structures of empirical dependences were 
established as a result of studying and analyzing the de-
pendences of α and/or r/h on each argument k1 and H/h 
separately. The unknown parameters of the indicated 
empirical dependences were found by the method of least 
squares using one of the implementations of the simplex 
method, as well as Newton’s method, the methods of 
conjugate gradients and the fastest descent to refine the 
results obtained by the simplex method. The values of 
concentration coefficients k1 and the wall height ratio 
H/h lie within: k1∈[1.2; 2.98], and H/h∈[1.1; 3.0]. The 
discrete values of k1 and H/h within the specified limits 
are distributed uniformly through a constant step. When 

deriving empirical formulas for optimal α and r/h, 990 combi-
nations of k1 and H/h were used.

The optimal values of inclination angle α for fixed values 
of concentration coefficient k1 in stretching-compression can 
be determined by the following dependences:

( )

( )

( )
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( )
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1
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






° →α = 


= α 

 	 (3)

where the values of angles α can be determined with an accu-
racy of ±14 % for curvilinear dependences (edge 5 exists) and 
with an accuracy of ±2 % for rectilinear dependences (edge 5 
does not exist) relative to the results shown in the plots 
of Fig. 2, a.

Fig. 2. Plots of optimal parameters depending on the concentration 
coefficient k1 at stretching-compression and the wall height ratio 

H/h: a – dependence plot for the optimal angle α; b – dependence 
plot for the optimal relative radius r/h

a

b
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The optimal values of the relative radius r/h for fixed val-
ues of coefficient k1 can be determined by the dependences:

( )
( )

( )
1

0.31tanh 1.68 1,47

ln 0.83

0.21tanh 2,16 1,94 ,

if / 1 / 1, if / 0.05 / 0.05;

/ , ,rad,

h

h

h

Hr
h k

H

r h r h r h r h

H H h

−
= − 




− − 


> → = < → = 
= α 

 	 (4)

where the value of r/h can be calculated with an accuracy 
of ±7 % relative to the results shown in the plots of Fig. 2, b.

Formulas (3), (4) are valid under the following restric-
tions:

8 90 ;° ≤ α ≤ °  0.05 / 1;r h≤ ≤  

1.2 / 3;H h≤ ≤  11.2 3.k≤ ≤ 			   (5)

The first expression (3) for α approximates curvilinear 
dependences (Fig. 2, a), the second expression approximates 
rectilinear ones. Control values calculated according to for-
mulas (3), (4) are as follows:

1) when: 

k1=1.48; H/h=1,8; α=0.43752 rad≈25°; r/h=1,17639→1,0; 

edge 5 exists: 

H – h=0.8>r∙(1–cosα)=1∙(1–cos25°)=0.0937. 

From the plot of Fig. 2, a, α=0.44528 rad; from the plot 
of Fig. 2, b, r/h=1.0;

2) when: 

k1=1.66; H/h=1.4; α=1.30980 rad≈75°; r/h=0.51739; 

there is no edge 5: 

H–h=0.4<r∙(1–cosα)=1∙(1–cos75°)=0.7412. 

From the plot of Fig. 2, a, α=1.31805 rad; from the plot of 
Fig. 2, b, r/h=0.52939.

The peculiarity of formulas (3) is that for a given con-
centration coefficient k1 it is not known in advance whether 
there is a straight edge 5 or not. Therefore, it is necessary to 
check the following condition for the established k1:

1 1 1 1

1

edge 5 exists, edge 5 absent,

0.56tanh 1.98 1.477 .

d d

d

k k k k

H
k

h

< → ≥ → 

 = −    

	 (6)

The given procedure of optimal design can be applied for 
static loads of a beam-wall under the action of load p, which 
corresponds to p1 according to the type/kind of load (Fig. 1). 
Load p is the value of the nominal load determined at 
the level of the upper edge 7 of the smaller wall (Fig. 1). 
Moreover, if only stretching-compression takes place, then 
p=p1, if bending only, p=p2. If there is a combined action of 
stretching-compression and bending, then the nominal load 
p should be determined as:

p=p1+p2, 					     (7)

where p1 and p2 must be of the same sign to take into account 
the most unfavorable combination of these loads.

The maximum permissible concentration coefficient kmax, 
which must be used when determining the optimal geometric 
parameters α and r/h, will be determined as:

max

[ ]
,

k

k
p n
σ

=
⋅

 					     (8)

where nk=1.2 is the reserve factor for the concentration fac-
tor; [σ] – permissible reduced stresses.

The coefficient nk=1.2 is justified by the largest error (5 %) 
of the empirical formula (1) from paper [1] and the largest er-
ror (14 %) among the empirical formulas (3), (4).

The algorithm for finding the optimal geometric param-
eters α and r/h can be represented as follows.

1) set the maximum permissible value of the concentra-
tion coefficient k1 according to (8) or from other conditions;

2) check condition (6) and determine whether edge 5 
exists (Fig. 1);

3) with the applied H/h and the established k1, find α 
according to the plot in Fig. 2, a, or from formula (3) based 
on the condition of point 2. Find r/h according to the plot 
in Fig. 2, b, or from formula (4).

There are other ways of constructing optimal research 
schemes related to the manufacturing technology of the struc-
tural assembly. The fact is that a free flange (Fig. 3) can be 
attached to the upper curved edge of the beam-wall (Fig. 1).

A technological limitation may be imposed on the ra-
dius r, which may depend on the thickness and mechanical 
properties of the material of the free flange or on the capa-
bilities of the equipment. In this case, it is necessary to use 
any empirical dependence for k1,2 reported in work [1]. In 
the selected dependence for k1,2, it is necessary to set fixed 
values of k1,2, H/h, r/h and solve the resulting nonlinear 
equation with respect to α.

The value of angle α at fixed k1, H/h, r/h can be calculat-
ed using the following expression:

( )11.82 1
16.7atanh

tanh 1.7 1.2

tanh 1.2 0.5 ,
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 		  (9)

which was obtained from formula (1) from study [1].
In the case of a free flange, the rounding radius r, 

heights H, h are determined as shown in Fig. 3. This must be 
taken into account when making the wall. The radius of the 

Fig. 3. General view of the investigated beam 	
with broken edges
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wall without a free flange in this case will be rw=r+t; small 
and large wall heights hw=h–t, Hw=H–t.

As shown by numerical and field experiments, the mate-
rial of stepped beams, which is above the line β≈60° (Fig. 4), 
practically does not participate in deformation during bend-
ing and/or stretching-compression.

This material is the so-called “dead zone”, where the stress-
es are practically zero. That is, in the “dead zone” the material 
does not work against deformation. To reduce the mass of the 
beam, this material can be discarded, which, however, will in-
crease the complexity of manufacturing and the mass of waste.

5. 2. Comparison of fatigue life results
In work [2], the cyclic deformation of a steel beam-wall 

under the action of nominal loads p1 was studied. Loads p1 
are cyclic, symmetrical, of constant amplitude. Under the 
influence of p1, in concentrator 6 (Fig. 1), elastic-plastic de-
formation took place. The material of the beam-wall is ideal 
elastic-plastic. Empirical formulas for the amplitudes of the 
intensity of cyclic (full) elastic-plastic εi cycle and plastic εip 

cycle deformations in concentrator 6 (Fig. 1) were derived for 
the specified conditions in work [2]. These empirical formu-
las are valid for the load level p/σs≤ 0.65 and will be used in 
the deformation criteria for fatigue life assessment.

The indicated amplitudes [2] of the intensity of cyclic 
(full) elastic-plastic εi cycle and plastic εip cycle deformations 
take the form:

( )

( )

cycle

cycle

cycle

cycle

2 1.12 1.15,

2 1 1.21 1.15,

2.58 ,

2.78 1 ,

i i iey

ip i iey

i i iey

ip i iey

ε = ε ⋅ε ⋅ ⋅ ⇒
ε = ε − ⋅ε ⋅ ⋅ 

ε = ⋅ ε ⋅ε ⇒ 
ε = ⋅ ε − ⋅ε 

 		  (10)

where iε  is the relative intensity of elastic-plastic (full) de-
formations, which depending on the applied load prel=p/σs is 
determined by the following formula [1]:

( ) ( )( )
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 			    (11)

0,9ipε  
is the relative intensity of plastic deformations at the 

relative load p/σs=0.9, which is determined by the following 
empirical dependence [1]:

( )
( )
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 		  (12)

εiey is the intensity of elastic deformations at which plastic 
deformation begins in the concentrator, which is determined 
by the dependence:

,
3

s
iey G

σ
ε =  					     (13)

where σs is the yield strength; G – shear modulus;

min
relp  is the minimum relative load at which elastic-plastic 

deformation begins in the zone of stress concentration, which 
is determined by the expression:

min 11/ .relp k=  					     (14)

Before using formulas (10) to (12), it is necessary to 
make sure that the beam-wall is under the conditions of elas-
tic-plastic deformation. For this, it is necessary to ensure the 
fulfillment of the following conditions:

min ;rel relp p≤  min 11/ ;relp k=  / .rel
sp p= σ 		  (15)

Formulas (10) to (12) are valid for the range of parameters:

[ ]/ 1.6; 2.4 ;H h∈  [ ]/ 0.05; 0.2 ;r h∈  [ ]20 ; 75 .α∈ ° ° 	 (16)

Fatigue durability was evaluated for uniaxial (one type 
of load) cyclic symmetric load p=p1 of constant ampli-
tude (Fig. 1) under soft load conditions. The analysis of 
fatigue life of concentrator 6 of the investigated beam-wall 
was carried out in a symmetrical cycle of the cyclic diagram 
using deformation criteria and the experimental-theoretical 
method (ETM) [14, 15].

Table 1 gives a number of the most used and specific 
deformation criteria for assessing fatigue life during elas-
tic-plastic deformation for symmetric cyclic diagrams. These 
criteria are defined for materials with a strength limit of 
σu<700 MPa and are taken from work [16], which in turn 
refers to the original sources.

The following notations are used in the above formulas:
ε – range of intensity of elastic-plastic deformations of the 

cyclic diagram;
1

ln
1f

k

ε =
−ψ

 – true relative elongation at the place of  

formation of the neck after rupture, or true fracture ductility;
ψk – relative narrowing at the place of formation of the 

neck after rupture;
σ–1 is the endurance limit for a symmetric cycle based on 

106 cycles;
σu – strength limit; ,f′σ  f′ε  – respectively, coefficients of 

fatigue strength and plasticity; b, c are constants.
Coefficients ,f′σ  ,f′ε  b, c are determined experimen-

tally and depend on many parameters. Work [16] provides 
sources where you can find research and analysis of param-
eters ,f′σ  ,f′ε  b, c depending on various factors. In [16], it is 
shown (with reference to the relevant work) that for carbon 
and low-alloy ductile steels:

Fig. 4. Stepped prismatic beam during deformation:  
I – material of the beam that does not work during 

deformation or “dead zone”; II – the beam material is 
involved in deformation
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( ) ( )0.92 ...1.15 , 0.35 ...1.0 ,

0.12, 0.6,
f f f f

b c

′ ′ σ = σ ε = ε 


= − = − 
 		 (17)

where σf are true stresses at rupture.

For carbon and low-alloy ductile steels, the value σf can 
be calculated using the formula given in [17]:

( )1 1.4 .f u kσ = σ + ψ  				    (18)

The most conservative estimate when used (17) occurs 
when:

0.92 ,f f′σ = σ  0.35 ,f f′ε = ε 		  (19)

And the most progressive assessment will be when:

1.15 ,f f′σ = σ  1.0 .f f′ε = ε 			   (20)

Next, a comparison of the results obtained by ETM with 
the results obtained by deformation criteria by Manson, 
Langer, Coffin-Manson, SP, SWT for a symmetrical cycle 
is given (Table 1). Explanations are made for the structural 
assembly with parameters H/h=2.0; α=60°; r/h=0.16, made of 
St3 steel. The necessary initial data for calculations are given 
in Table 2.

Table 2

Initial data on the calculation of fatigue strength

# Quantity name Parameters

1 Name of the material St 3 09G2

2 Modulus of elasticity at stretching E, MPa 2∙105 2∙105

3 Yield strength σs, MPa 235 340

4 Yield strength σu, MPa 420 460

5 Relative elongation after rupture δ5 0.27 0.21

6 Transverse constriction after rupture ψf 0.57 0.67

7 Theoretical concentration coefficient k1 2.62

8
Minimum relative load at which plastic 

deformation begins, min 11/relp k=
1

0.382
2.62

=

9
Minimum absolute load at which plastic 
deformation begins min min ,rel

sp p= ⋅σ  MPa
0.382∙235=90

10
Intensity of deformations at which plastic 

deformation begins, εiey
0.00101833

When performing “binding” in ETM, it is necessary 
to take into account the probability of fatigue damage of 
the structural assembly, where the appearance of a fatigue 
crack of a certain length is accepted as fatigue damage. The 
lower the set probability of occurrence of fatigue damage, 

the fewer cycles are obtained per ETM. For 
“binding” in ETM, the model used is made 
of 09G2 steel with the following parameters 
(the index “0” means that the designations 
refer to the model): H0=50 mm, h0=25 mm, 
r0=4 mm, α0=60°. The theoretical coeffi-
cient of concentration during stretching 
is k10=2.62. The ratio of the geometric pa-
rameters of the model and the investigated 
beam-wall are the same, which makes it 
possible to minimize the distortion of the 
results.

The parameters of the attachment point 
in ETM were obtained by statistical pro-
cessing of the results of fatigue tests of the 
models. Two anchor points are applied, cor-
responding to the minimum and maximum 
number of cycles to failure of the model from 

the sampled results. The first anchor point has parameters: 
range of nominal stresses of the model σnom01=270 MPa; the 
corresponding number of cycles before the appearance of fa-
tigue damage in the model (cracks ≈1 mm long) N01=13700; 
cycle asymmetry coefficient R0=0. The second anchor point 
has parameters: σnom02=238 MPa, N02=17700, R0=0. Ac-
cording to ETM, the S-N curve of the structure under study 
is constructed: the dependence of range of nominal stresses 
σnom on the number of cycles N, where the number of cycles 
varies within:

( )0, 8 ,n∈  lg .n N= 				    (21)

Fig. 5 shows plots of the dependence of the number of 
cycles N on the range of nominal symmetrical cyclic stresses 
σnom applied to edge 1 (Fig. 1). In Fig. 5, the following curves 
are marked: а1,2 – according to ETM, respectively for the 1st 

and 2nd anchor points; b – Manson’s criterion; c – Langer’s 
criterion; d – Coffin-Manson criterion; e – SP criterion; 
f – SWT criterion. Line g in Fig. 5 separates the elastic (be-
low) and elastic-plastic regions (above), which is drawn at 
the level of σnom=2∙pmin=180 MPa (Table 2). 

Curves b–f (Fig. 5) were obtained as follows. Accord-
ing to the known range of nominal loads [–p; +p], applied 
to edge 1 (Fig. 1), the range of full cyclic elastic-plastic de-
formations ε=εi cycle was determined according to the first 
formula (10). By substituting the obtained value of ε into 
the selected expressions of the deformation criteria (Ta-
ble 1), the number of cycles N is determined, in which 
the equality of the left and right parts of the equations is 
ensured.

It is necessary to pay attention to the behavior of plots 
of the curves, which are obtained according to the defor-
mation criteria, when using conservative (19) and progres-
sive (20) values of the coefficients of fatigue strength and 
plasticity. When using progressive values of these coef-
ficients, the specified plots are much closer to each other 
than when using conservative values. This means that the 
progressive parameters (20) provide a smaller scatter of the 
data according to the deformation criteria than the conser-
vative parameters (19).

Table 1

Deformation criteria for assessing fatigue durability

# Criteria name Formula

1 Manson’s
0.6 0.6 0.123.5 В
f N N

E
− −σ

ε = ε ⋅ +

2 Langer 1
0.5

2
2

f

N E
−

ε σ
ε = +

3 Coffin-Manson ( ) ( )2 2
2

b cf
fN N

E

′σε ′= + ε

4
V. Subramanya Sarma і 

K. A. Padmanabhan (SP)

0.832 0.53
0.09 0.155 0.561.17 0.0266u u

fN N
E E

−
− −σ σ   ε = + ε   
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5. 3. Conversion for the Neiber formula
As one knows, the classical Neiber formula looks like this:

max max
2

nom nom

nom
max nom nom

, , ,

, , ,
3

i i

t i i

i
i s i i

K K
c K K

K

p
G

ε σ
ε σ

ε σ ⋅
= = = ε σ 


σ 

σ = σ σ = ε = 

		  (22)

where c=1 in the classic case, and in the general case it de-
pends on parameters;

Kt, Kσ, Kε – concentration coefficients, respectively, 
theoretical, elastic-plastic stresses, elastic-plastic defor-
mations; εimax, εinom – intensity of elastic-plastic defor-
mations in the concentrator and nominal, respectively; 

σimax, σinom – intensity of elastic-plastic 
stresses in the concentrator and nomi-
nal stresses, respectively.

After simple transformations from 
(22) the following is obtained:

2
,

t

K K
c

K
ε σ⋅

=  

max
2 2

2

3

3
,

(2 2.6)

s i

t

s
t
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с

p K

G
K

p c

⋅σ ⋅ε
= ⇒

⋅

⋅σ ⋅ε
⇒ =

÷ ⋅
 1,c = 	 (23)

where εi max is determined by (11), and 
ε=εi cycle is determined by (10).

Having the concentration coeffi-
cient Kt, determined by (23), it is possi-
ble to find the optimal geometric param-
eters of radius r of edge 6 and the angle of 
inclination α of edge 5 (Fig. 1) according 
to the procedures of optimal design of 
the beam-wall proposed above.

Additional “safety” coefficients 
in (23) are not applied because with 
c=1, it is possible to obtain a conserva-
tive estimate of the optimal geometric 
parameters of the beam-wall, and, as a 
result, increased metal capacity. In [1], 
it was proved that there is no point in 
correcting the classical Neiber formula 
for symmetric cycles of external load 
when c=1.

5. 4. Procedures for calculating 
the beam-wall under cyclic loading

Below there are the proposed pro-
cedures of design and verification cal-
culations of low-cycle fatigue life of a 
beam-wall using deformation criteria 
within the framework of our study. 
These procedures can be used only for a 
monotonic cyclic load of a constant am-
plitude symmetrical cycle of the nomi-
nal load p.

The procedure of verification calcu-
lation of the beam-wall using deforma-
tion criteria is as follows:

1. Specify: range of nominal cyclic loads p, [–p; +p] of 
constant amplitude; geometric parameters H, h, r, α; yield 
strength of the material σs.

2. According to the known parameters of point 1, deter-
mine the range of cyclic elastic-plastic deformations ε=εi cycle 
at the dangerous point of the beam-wall stress concentrator 
according to (10).

3. Based on known ε, find the number of cycles N before 
the appearance of fatigue damage, using one of the defor-
mation criteria (Table 1), if necessary, using the load and 
durability reserve factors.

A procedure of design calculation of a beam-wall using 
deformation criteria is as follows.

1. Set: the number of cycles N before the appearance of 
fatigue damage; height ratio H/h.

Fig. 5. Comparison of criteria for a symmetrical cycle: a – curves obtained by 
deformation criteria using (19); b – the same, but using (20)

a

b
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2. Using one of the deformation criteria (Table 1), find 
the range of cyclic elastic-plastic deformations ε at the dan-
gerous point of the stress concentrator.

3. Based on known ε, calculate the theoretical concentra-
tion coefficient Kt according to (23).

4. Find the optimal values of r/h and α according to for-
mulas (3), (4) or only α according to (9) if r/h is fixed.

The devised procedures can also be applied to bending, 
when only p2 acts (Fig. 1), or when the stretching-compres-
sion p1 and bending p2 are combined and in phase, regardless 
of the p1/p2 ratio. In this case, the nominal load p should be 
determined according to (7), where p1 and p2 should also be 
of the same sign to take into account the most unfavorable 
combination of these loads.

6. Discussion of the results of optimal design and fatigue life

Dependences for α and r/h are shown in Fig. 1 and their 
corresponding approximations (3) and (4) obtained for 
the upper limit r/h≤rh max=1. With a gradual decrease in 
the value of rh max, the straight lines in the plots of Fig. 1, a 
disappear. This leads to the fact that an increase in the 
concentration coefficient k1 (at fixed rh max) ensures the min-
imization of the objective function more often at r/h=rh max. 
At the same time, the angle α is mainly varied to ensure the 
minimization of the objective function. In further optimiza-
tion studies for the beam-wall, it is necessary to introduce 
an additional parameter rh max, which represents the upper 
limit of the radius.

The presence of a free flange, which can be attached to 
the upper broken edge of the beam-wall, changes the geome-
try of the stress concentrator and the value of the concentra-
tion coefficients in it. More dangerous are concentrators at 
the junction of the free flange with the wall and in the weld 
that connects them (if any).

The larger the values of k1,2 are taken when designing the 
beam-wall, the better its manufacturability and the lower 
the manufacturing cost, but the worse the margin of fatigue 
strength and crack resistance under variable loading.

If a designer can guarantee that the directions and signs 
of p1 and p2 will not change throughout the life of the beam-
wall, then p1 and p2 in (7) can be taken with their signs. This 
applies only to static elastic loading.

In the design calculation of the inclined part of the beam-
wall with a known static load p and the height ratio H/h, the 
concentration coefficient k1,2 should be as large as possible. 
But at the same time, k1,2 should be such that with a known 
nominal load p, the effective reduced stresses in the concen-
trator do not exceed the allowable ones.

In [1] it was shown that when p/σs≤0.6, the coefficient c 
from formula (23) is actually within [0.82; 0.97]. At c=0.82, 
the theoretical concentration factor Kt will be 1.1 times 
greater than the value of Kt when c=1. That is, the use of 
the conservative value c=1 in the last formula (23) will lead 
to obtaining an always lower Kt than it actually is. Low Kt 
improves fatigue life and crack resistance.

The presented algorithm will always provide a reliable 
estimate of the optimal geometric parameters separately un-
der the action of stretching-compression p1, separately under 
bending p2, as well as under the combined action of stretch-
ing-compression and bending. In the case of joint action of 
stretching-compression and bending, and separately only in 
bending, the estimate will be conservative. However, under 

the action of only bending loads p2 (Fig. 1), to obtain progres-
sive optimal parameters α and r/h, it is possible to use plots 
from work [13], which are built for bending and depend on k2.

Having an expression for the stress concentration coef-
ficient, the beam-wall can always be designed in such a way 
as to provide only elastic SSS at the concentrator. In this 
case, it is possible to apply well-known strength criteria for 
fatigue life to predict fatigue life. Methods for calculating 
fatigue life using strength criteria are more developed, they 
can be found in classic works and are not considered here. 
Due to design features, there are cases when restrictions 
are imposed on angle α and radius r, in which it is no longer 
possible to avoid the appearance of plastic deformations in 
the concentrator for a given nominal load.

The deformation criteria (Table 1) used in this work are 
the simplest and were obtained for samples that were brought 
to failure. Fatigue cracks grow in thin-walled structures be-
fore their destruction. Therefore, it is the deformation crite-
ria that relate the parameters of crack growth to the number 
of cycles and the range of the cyclic diagram that would be 
appropriate. However, at present, these criteria are in a state 
of formation and are developing in several directions using 
the same basic deformation criteria of the Coffin-Manson 
type, fracture mechanics, etc. So, it is still too early to argue 
about the possibility of their implementation in the fatigue 
life assessment methodology.

Analyzing the plots in Fig. 5, it can be concluded that the 
ETM fatigue strength assessment gives the most conserva-
tive results. This is explained by the fact that it is based on 
Neiber’s formula, which gives inflated values of elastic-plas-
tic deformations, which in turn leads to an underestimated 
number of cycles before the appearance of fatigue damage. 
With the same value of the range of nominal stresses, the 
number of cycles according to deformation criteria is always 
higher than according to ETM. As the range of nominal 
stresses decreases, the difference between the number of cy-
cles obtained by deformation criteria and by ETM increases, 
and the number of cycles by ETM is always smaller. The 
“binding” applied provides a 50 % chance of fatigue damage. 
If the probability of this damage is assumed to be lower, then 
the ETM curves will be lower, and the fatigue assessment 
will accordingly be even more conservative.

When using the deformation criteria, it is necessary to 
understand that formulas of the Manson, Langer type are 
obtained for the probability of destruction of 50 %. And 
therefore, during practical calculations, two reserve coef-
ficients are usually introduced: for load and for durability, 
which correspond to various programs of transition from 
given project (working) conditions to the limit state. These 
two coefficients are connected by a complex nonlinear rela-
tionship and can be found in the specialized literature. For 
different types of structures (civilian, ship), these coeffi-
cients will be different even for different places where similar 
beam-walls are installed. The study of these coefficients can 
be the subject of future research.

It should be noted that the proposed fatigue life assess-
ment procedures contain intermediate links that provide 
conservative results. Therefore, the procedures of fatigue 
life will also be conservative, although more progressive 
in comparison with the procedures of S-N curves, such as 
ETM, because the cyclic elastic-plastic deformation in the 
concentrator is more accurately taken into account.

In future studies, for example, another Neiber-like for-
mula (e.g., Hlinka, etc.) that relates elastic and elastoplastic 
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characteristics can be applied to obtain a more advanced 
estimate. This issue needs additional study. Another way 
is to improve Neiber’s formula depending on the geometric, 
mechanical, and force parameters.

The procedures devised for the beam-wall apply to a 
wide range of geometric and strength parameters and begin 
to close the currently almost unfilled niche of design proce-
dures for beams with broken edges in general.

For a more progressive assessment of the optimal param-
eters based on (10), it is possible to build plots of the optimal 
values of r and α similar to the plots in Fig. 1. This is due to 
the fact that the deformations in (10), in turn, are expressed 
through geometric parameters and the nominal load p.

The features of the proposed procedures are that elastic 
and elastic-plastic deformation are connected in them, owing 
to the use of the ideas from work [8], which was discussed 
above. This distinguishes our procedures from those given 
in [3–7, 9–12], where optimal solutions for each type of de-
formation are considered separately. In the case of using the 
approaches from [3–7, 9–12], the optimization problem would 
have to be solved for the case of elastic and elastic-plastic 
deformation depending on the parameters of the rigid deform-
able body. In the case of the beam-wall in Fig. 1, the optimal 
dependences of the geometric parameters are obtained once 
for the elastic problem, which, based on the ideas from [8], are 
related to the elastic-plastic problem of cyclic deformation.

The proposed procedures of calculation and design of the 
beam-wall make it possible to carry out evaluations for the 
most unfavorable operating conditions and represent one of 
the boundaries of the (virtual) polygon of strength evalua-
tion, which contains admissible solutions.

The limitations of the study are as follows:
1. The nominal load p should be symmetrical, of constant 

amplitude, with a value of no more than 0.6 from the yield 
strength of the beam-wall material. This type of loading is 
the most unfavorable for the beam-wall, which will give con-
servative results. With asymmetric p cycles, the durability 
assessment will be more progressive.

2. With simultaneous action of stretching-compression 
p1 and bending p2, loads p1 and p2 must be in phase and of 
the same sign.

3. The material of the beam is steel, and the material 
model is ideal elastic-plastic, which makes it possible to con-
duct calculations for materials that have a horizontal yield 
point. Hardening, softening, Bauschinger effect, etc. are not 
taken into account. That is, alloyed steels and high-strength 
steels cannot be considered as a material for a beam-wall 
with broken edges in Fig. 1.

4. Elastic-plastic deformation must be ensured in the 
concentrator, and for this it is necessary to always monitor 
the fulfillment of condition (15). That is, the assessment of 
fatigue life in the case of cyclic elastic deformation in con-
centrator 6 (Fig. 1) using these procedures is impossible. The 
last point can also be attributed to the shortcomings.

Disadvantages of the study are some uncertainties in the 
fatigue damage criterion in concentrator 6 (Fig. 1). Usually, 
this criterion is the length of the fatigue crack, but it can 
vary for different approaches. Applying the deformation 
criteria, failure is formally considered to be the destruction 
of the microvolume at the dangerous point of concentrator 6. 
This approach correlates with S-N curve methods. However, 
in fact, fatigue cracks grow in concentrators depending on 
the number of cycles, for which appropriate criteria have 
been created, which are still in the formative stage.

Disadvantages include the conservative results of the 
assessment of fatigue life with the combined action of 
stretching-compression and bending or only bending. The 
procedures are focused on stretching-compression as the 
most dangerous stress state.

The development of this research can be as follows:
1. Establishing dependences for the values of elastic-plas-

tic cyclic deformations in concentrator 6 (Fig. 1) depending 
on the geometric parameters, the applied load and the asym-
metry of the cycle. This will make it possible to more accurate-
ly predict fatigue life and obtain more progressive estimates.

2. Neiber’s formula, which relates elastic and elastic-plastic 
parameters, should be clarified, or replaced with similar ones.

3. Develop procedures for determining optimal param-
eters not using theoretical concentration coefficients, as 
was done in [13], but using the range of cyclic elastic-plastic 
deformations. This will make it possible not to use Neiber’s 
formula at all, as a connecting link between elastic and 
elastic-plastic deformation but will increase the overall com-
plexity of research.

4. Instead of simplified deformation criteria, use criteria 
that take into account the speed of crack growth in the pro-
posed procedures.

5. Investigate the cases when loads p1 and p2 are not in 
phase, of different frequency and amplitude, which will be 
reflected in the type of applied deformation criteria.

6. Taking into account a more accurate material model 
that takes into account hardening and softening, the Baus-
chinger effect, etc.

7. The above-mentioned area of research, in addition to 
steel, can be carried out for other types of materials: alumi-
num, titanium alloys, etc.

The proposed procedures may be further advanced in or-
der to take into account the influence of technological factors, 
such as the presence of a weld seam, corrosive wear, quality of 
edge 6 processing (Fig. 1), etc. The specified factors can be 
taken into account by coefficients or functional dependences 
on cyclic elastic-plastic deformations, the number of cycles, 
the value of the nominal cyclic load or other parameters.

The procedures devised will make it possible to reduce 
the design time of structural elements that include a beam-
wall with broken edges in the early stages of design. It will 
not be necessary to involve the computing power of calcu-
lation systems every time. Instead, you can immediately 
obtain the geometric parameters of the beam-wall under the 
given conditions.

Our procedures can be proposed for inclusion in the de-
sign standards of civil engineering and shipbuilding.

7. Conclusions 

1. Analytical dependences in the optimal design proce-
dure for static elastic deformation were developed for stretch-
ing-compression only, as the most dangerous type of deforma-
tion. The peculiarity of the procedures is that they provide 
optimal parameters α and r/h for fixed height ratios H/h and 
concentration coefficients k1. As a rule, the height ratio H/h 
is fixed and is determined by the methods of construction me-
chanics, and the coefficient k1 allows one to link elastic static 
and elastic-plastic cyclic deformation, which have different 
physical nature. The specified procedure can be used both for 
bending separately and for the joint action of stretching-com-
pression and bending, which, however, in both of these cases 
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will provide excess strength compared to stretching-com-
pression. In bending, the theoretical concentration coefficient 
is 30 % lower compared to stretching-compression in the 
extreme case, with the same parameters.

2. The devised procedures at conservative and progressive 
values of fatigue strength and plasticity coefficients always 
give 30–40 % more progressive results than ETM, according 
to the indicator lg N, where N is the number of cycles.

3. To obtain an expression for the theoretical concen-
tration coefficient, the classical Neiber formula was trans-
formed, which will always provide an underestimated theo-
retical concentration coefficient compared to the actual one. 
In the extreme case, it will be 1.1 times less than the actual 
one if the stretching-compression load does not exceed 0.6 
of the yield strength. The understated theoretical coefficient 
improves the indicators of fatigue life and crack resistance. 
This, in turn, will provide excess strength both for compres-
sion and bending separately, and when they are combined.

4. Calculation procedures of the beam-wall under cyclic 
loading allow design and verification calculations under the 
condition of elastic-plastic deformation of the beam-wall 
stress concentrator. These procedures were devised on the 
basis of known deformation criteria and developed depen-
dences of the range of cyclic deformations. The use of these 

procedures will provide conservative results compared to 
real materials. This is due to the use of an ideal elastic-plas-
tic model of the material, the classical Neiber formula, and 
taking into account the most unfavorable mode of operation, 
when the cyclic nominal load is symmetric. The amplitude of 
cyclic loads should not exceed 0.6 of the yield strength.
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