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Approximating non-expandable surfaces 
by compartments of expandable ones makes 
it possible to simplify the process of obtaining 
the required shape without loss of operational 
properties. There is a known approximation of 
a sphere using the example of a ball when its 
surface can consist of polygons. However, this 
list does not exhaust the possible options for 
approximating the sphere. Its approximation 
by truncated cones tangent to parallels or by 
congruent cylindrical petals tangent to meri
dians is known.

Any line on the surface of a sphere is a line 
of curvature. This means that the common 
line of contact of the expanded surface with 
the sphere will be a line of curvature for the 
expanded surface as well (rectilinear gene
ratrices of the expanded surface will cross this 
line at a right angle). When building a sweep 
of such a surface, the line of contact will be 
transformed but the rectilinear generatrices 
will remain perpendicular to it, which simpli-
fies the construction of the sweep.

The approximation of the sphere by con-
gruent strips, the number of which can be dif-
ferent, starting from one, is considered. A ne- 
cessary condition for such an approxima-
tion is a common line of contact of adjacent 
strips. To this end, the line of contact on the 
sphere or the guide curve must have an appro
priate shape. Such a curve is taken as a slope 
line (a curve whose tangents form a constant 
angle of inclination to the horizontal plane). 
The study results are the parametric equations 
of the strip touching the sphere and its corre-
sponding equations on the sweep. The con-
struction of the strip on the sweep is explained 
by the invariance of the geodesic curvature of 
the guide curve when the strip is bent until it 
aligns with the plane. This explains the diffe
rence between the proposed approach and con-
ventional methods of sphere approximation.

Approximating the sphere by strips of un- 
folding surfaces has a practical application in 
architecture with spherical elements, as well 
as in religious buildings with domes in the form 
of a part of the sphere

Keywords: sweep of the sphere, line of con-
tact, guide curve, geodesic curve, parametric 
equations

UDC 514.18
DOI: 10.15587/1729-4061.2023.291554

How to Cite: Nesvidomin, A., Ahmed, A. K., Pylypaka, S., Volina, T., Nesvidomin, V., Vereshchaga, V., Andrukh, S.,  

Pavlenko, O., Semirnenko, Y., Lysenko, K. (2023). Construction of a mathematical model for approximating the 

sphere by strips of unfolding surfaces. Eastern-European Journal of Enterprise Technologies, 6 (1 (126)), 78–84.  

doi: https://doi.org/10.15587/1729-4061.2023.291554

Received date 18.09.2023

Accepted date 30.11.2023

Published date 14.12.2023

1. Introduction

In the modern scientific world, sphere approximation is one 
of the important problems that finds its application in many 
fields of science and engineering. This problem consists in ap-

proximating a geometric object – a sphere, known for its perfect 
smoothness and symmetry, to simpler mathematical models, 
such as conic surfaces, polygons, or other geometric figures.

Sphere approximation is an actual task in numerical me
thods of calculations, computer graphics, geodesy, astronomy,  
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topography, and many other fields. This topic arouses con-
siderable interest among researchers due to the need to solve 
complex tasks related to the measurement and analysis of 
objects in three-dimensional space.

Therefore, the development of various approaches to 
sphere approximation, the analysis of their advantages and 
disadvantages, and the practical application of these methods 
are an urgent issue. In addition, modern technologies and 
software tools that allow solving sphere approximation tasks 
with high accuracy and speed deserve attention.

In the geometric sense, a sphere is a special surface.  
It has a Gaussian curvature, an average curvature, all lines on 
its surface are lines of curvature. Any piece of its surface can 
slide on its own without the deformation used in spherical 
joints. This property is also characteristic of the plane. There 
are other properties that somehow make these surfaces simi-
lar. As the radius of the sphere increases to infinity, its limited 
area turns into a plane, and all spherical figures turn into flat 
ones. Such a transition makes it possible to design spherical 
mechanisms on the basis of flat mechanisms.

The sphere is an important element of architectural forms. 
It has the largest volume with the smallest surface area. This 
means that heat loss in a house of this shape will be the smallest 
compared to other houses. Given this, approximation of the 
sphere by elements of the same type is an urgent task.

2. Literature review and problem statement

Parts of machines that create friction pairs are of interest to 
many researchers. The quality of the surface layers applied to 
the steel elements of the machine parts and the geometry of the 
contact surfaces have a significant impact on the wear resistance 
and durability of the parts. Research into the influence of the 
quality of the surface treatment of parts on microgeometry [1] 
confirms the close relationship between these parameters.

Scientists consider in detail the influence of surface 
treatment methods on the quality parameters of resulting 
coatings [2]. This is a technological approach to solving the 
issue of increasing the durability and wear resistance of parts. 
However, ensuring the necessary operational properties of 
surfaces can be achieved geometrically. Mathematical models 
are used for numerical simulations of many processes [3].

The properties of the surface of the sphere are used for the 
design of spherical mechanisms, in particular, to design bevel 
gears. For example, in work [4] the use of a spherical ellipse 
for the design of a bevel transmission, which is an analog of  
a transmission between parallel axes, is considered. In the cited 
work, ellipses act as non-circular wheels. In [5], the formation 
of an isometric grid on the surface of a sphere is considered.

Paper [6] shows an interesting application of spherical 
surface approximation for the estimation of lighting in 3D 
visualization. At the same time, the approximation is carried 
out by numerous rectangular blocks, which leads to a signifi-
cant distortion of the image.

Scientists considered the approximation of the sphere by 
various elements. Thus, the visualization of a spherical image by 
a set of locally flat grids tangent to the icosahedron is described 
in [7]. The authors claim that changing the resolution of these 
meshes independently of the resolution level allows for efficient 
representation of high-resolution spherical images. At the same 
time, it is possible to take advantage of the icosahedral spheri-
cal approximation with low distortion. Additional research [8] 
was aimed at cartographic analysis of such statements. It con-

firmed a 12.6 % improvement in semantic segmentation results. 
However, this indicator can be increased by applying to the 
sphere approximation of other planar elements. The most accu-
rate is the approximation of the sphere with ribbons or stripes.

Approximation of a sphere by a continuous tape is con-
sidered in work [9]. To this end, the sphere is assigned to the 
isometric grid of coordinate lines. A spherical line is taken as a 
guide curve – an analog of Archimedes’ spiral on a plane. In [10], 
the trajectory of the unit radius vector of the helical line, which 
turns it into a spherical curve, is taken as a guide curve. The 
approximation result obtained for this case is similar to the pre-
vious one. However, this is not the end of the problem of appro
ximation of the sphere by strips of expanding surfaces. In par-
ticular, existing approaches do not use slope lines. The use of a 
spherical slope line as a guide curve makes it possible to diversify 
the possibilities of approximation, which also affects the aesthe
tic appearance of the approximated sphere. In addition, a signi
ficant increase in the accuracy of the approximation is expected.

3. The aim and objectives of the study

The purpose of this study is to design a geometric model 
of the approximation of the sphere by strips of expanding 
surfaces. This will make it possible to expand the methods 
of approximation of the sphere, which can be applied when 
parqueting spherical shells of architectural structures.

To achieve the goal, the following tasks must be solved:
– to derive parametric equations of the strip of the unfolding 

surface, tangent to the sphere along the specified curve in such 
a way that the adjacent strips have a common line of contact;

– to construct a sweep of the strip tangent to the sphere, 
based on the theory of surface bending;

– to visualize variants of the approximated sphere and 
sweep of a separate strip.

4. The study materials and methods

The study of the properties of the spherical slope line led 
to the hypothesis that it can be used as a guide curve for the 
approximation of the sphere by the strips of the unfolding 
surfaces, which is the object of our study. To this end, the appa-
ratus of analytical and differential geometry was used, as well 
as means of computer visualization of the results.

The construction of the approximated sphere with strips 
was carried out in the environment of the software package 
«MATLAB», and the construction of the sweep of the strip 
was carried out using the graphic modeling system «Simu
link» of the same environment, in which the numerical inte-
gration was carried out. The adequacy of the model built was 
checked using analytical calculations. It is the graphic images 
of the approximated sphere that confirm the reliability of our 
results as they clearly show the coverage of the sphere by 
strips of unfolding surfaces without gaps and overlays.

5. Results of investigating the approximation of a sphere 
of unit radius by strips of expanding surfaces

5. 1. Deriving parametric equations of the strip that 
approximates the surface of the sphere

The parametric equations of a sphere of unit radius take 
the form:
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X = cos cos ;ε γ

Y = cos sin ;ε γ

Z = sin ,ε 	 (1)

where γ and ε are independent surface variables, and γ is 
numerically equal to the angle of rotation of a surface point 
when it moves along a parallel, and ε is the second angle, 
which is numerically equal to the angle of rotation of a sur-
face point when it moves along a meridian.

If two independent variables γ and ε are connected by  
a certain dependence, i.e., if we proceed to one variable, then 
a curved line will be described on the surface of the sphere. 
The slope line belonging to the sphere is described by the 
following parametric equations:

x a a a= −cos sin cos sin ;γ γ γ γ

y a a a= − −cos cos sin sin ;γ γ γ γ

z a a= −1 2 cos ,γ 	 (2)

where γ is an independent variable, the physical essence of 
which is the same as that of the surface, however, the point 
moves along the surface in a defined way, namely along the 
curve (2); a is a constant value less than one (a<1), which 
depends on the angle β of the rise of the line (2). In Fig. 1, a, 
according to equations (1), a sphere is constructed, and ac-
cording to equations (2) – a curve (2) on its surface.

 
 

 

 
 

 

a

b

Fig. 1. Slope curves on a sphere of unit radius: 	
а – a = 0.7, β = 44.4°, the curve has turning points at the limit 

position of the parallel; b – rotation of a part of the slope 
curve within the turning points by a given angle around 	

the OZ axis

For further calculations, one needs to have the first and 
second derivatives of equations (2):

′ = −( )x a a1 2 sin sin ;γ γ

′ = − −( )y a a1 2 cos sin ;γ γ

′ = − −z a a a1 2 sin .γ 	 (3)

′′ = −( ) +( )x a a a a1 2 sin cos cos sin ;γ γ γ γ

′′ = −( ) −( )y a a a a1 2 cos cos sin sin ;γ γ γ γ

′′ = − −z a a a2 21 cos .γ 	 (4)

The angle of elevation β of line (2) can be found by the 
formula:

tgβ = ′
′ + ′

=
−

z

x y

a

a2 2 21
.	 (5)

According to (5), the angle β is constant. For the value 
a = 0.7, it is equal to 44.4° (Fig. 1, a). The value of such an 
elevation angle is possible only on a limited area of the sphere 
between symmetrical parallels, which are marked by dashed 
lines. The turning points of the curve are located on these 
parallels. In Fig. 1, b, the section of the curve between the in-
dicated parallels is plotted with the rotation of this curve by 
7.5° around the OZ axis (higher density between the curves) 
and 15° (lower density between the curves). It can be seen 
from the drawings that the distance between the curves is 
constant. Based on this, it is possible to make an assumption 
about the possibility of approximating the sphere along the 
slope lines by strips of unfolding surfaces of constant width.

The size of the area of the sphere between the symmetri-
cal parallels, which in Fig. 1, a are indicated by dashed lines, 
depends on the value of angle β of the guide line elevation. At 
β = 90°, such a section is absent at all, as it degenerates into the 
equator of the sphere. As the angle β decreases, the size of this 
area increases. In order to construct the section of the curve 
between the limit parallels, it is necessary to set the limits of 
the change of the parameter (angle) γ. For example, in Fig. 2, 
spherical slope curves are constructed with an indication of 
the value of the angle β and the limits of change of parameter γ.

We shall look for a strip of the unfolding surface along the 
direction line of the slope on the sphere as the circumscrib-
ing surface of the one-parameter set of planes tangent to the 
sphere along this line. The normal vector for each plane of 
this set is the normal to the sphere. Its projections onto the 
coordinate axis coincide with the parametric equations of the 
guide curve (2). The rectilinear generatrix of the unfolding 
surface (torse) is the result of the intersection of two infinite-
ly close tangent planes. Being in two planes at the same time, 
the generatrix torse is perpendicular to the normal vectors of 
these planes. So, the directional vector of the generatrix can 
be defined as the vector product of two adjacent normals:

I N N dN N dN= × +( ) = × .	 (6)

The direction of the vector product will not change if 
the vector dN  is replaced by a vector parallel to it dN dγ . 
The coordinates of the vector dN dγ  are derivatives of equa-
tions (2) and are given in (3). As a result of vector multipli-
cation of expressions (2) and (3), we shall get the direction 
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vector of the rectilinear generatrix of torse, which, after 
reduction to unity, will be written:

I a a ax = +cos cos sin sin ;γ γ γ γ

I a a ay = −sin cos cos sin ;γ γ γ γ

I a az = −1 2 sin .γ 	 (7)

The unfolding surface (torse) is constructed as a linear 
surface, the rectilinear generatrices of which pass through 
each point of the guide curve (2) parallel to the guide vec-
tor (7), i.e.:

X x uIx= ( ) +γ ;

Y y uIy= ( ) +γ ;

Z z uIz= ( ) +γ ,	 (8)

where x(γ), y(γ), z(γ) are parametric equations (2) of the 
guide curve; u – the second independent variable of the 
surface – the length of the rectilinear generatrix of torse;  
Ix, Iy, Iz are the coordinates of the direction vector (7) of the 
rectilinear generatrix of torse.

 
 

 

 
 

 

a

b

Fig. 2. Slope curves on a sphere of unit radius with different 
elevation angles: а – а = 0.1 (β = 5.7°), γ = 0...10π; 	

b – a = 0.04 (β = 2.3°), γ = 0...25π

By substituting the equation of the curve (2) and the 
coordinates of the vector (7) in (8), the parametric equations 
of the unfolding surface are finally built:

X a u a a ua= +( ) + −( )cos cos sin sin sin cos ;γ γ γ γ γ γ

Y a u a a ua= −( ) − +( )cos sin cos sin cos sin ;γ γ γ γ γ γ

Z a a u a= − +( )1 2 cos sin .γ γ 	 (9)

When constructing the surface according to equations (9), 
the length of the line of contact of the strip with the sphere 
depends on the limits of the change of the parameter γ, and 
the width of this strip depends on the limits of the change of 
the parameter u.

5. 2. Deriving parametric equations of the strip sweep 
and constructing its contours

Construction of the sweep is carried out by means of 
differential geometry. The basis can be taken from the fact 
that the geodesic curvature of the directional tangent curve, 
which is common to the sphere and the torse, does not change 
when the strip is stretched on a plane. If the parametric equa-
tions of the curve on the surface are known, then the geodesic 
curvature can be found from the determinant:

k
d
ds

x y z

x y z

x y z
g = 





′ ′ ′
′′ ′′ ′′

γ 3

,	 (10)

where d ds ds dγ γ= ( )1: . Expression ds dγ  is the derivative 
of the arc s of the directional curve (2). It is determined 
through derivatives (3) of the curve according to the formula:

ds
d

x y z a a
γ

γ= ′ + ′ + ′ = −2 2 2 21 sin .	 (11)

The first line in the determinant (10) is the coordinates of 
the unit vector normal to the surface along the curve, which 
for the sphere coincides with the equations of the curve. 
After substituting equations (2), first (3) and second (4) 
derivatives and inverse dependence (11) and simplifications 
into (10), we obtained:

k ag = ctg γ .	 (12)

If the kg dependence of the spatial curve on the surface 
of the torse is known, then the parametric equations of the 
curve on the sweep will be written according to the known 
formulas of differential geometry:

x k s sg= ( )∫∫ cos ;d d

y k s sg= ( )∫∫ sin .d d 	 (13)

The expression in parentheses, which is the angle of 
rotation of the tangent to the curve on the sweep, can be 
integrated, taking into account the expression ds from (11):

k s a a a
a

a
agd ctg d∫ ∫= − =

−
γ γ γ γ1

12
2

sin sin .	 (14)

After substituting (14) into (13), further integration be-
comes impossible. To construct a guide curve on the sweep, 
you need to apply numerical integration of the resulting 
equations:

x a
a

a
a a= −

−







∫1

12
2

cos sin sin ;γ γ γd

y a
a

a
a a= −

−







∫1

12
2

sin sin sin .γ γ γd 	 (15)
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Through each point of the curve (15) on the sweep per-
pendicular to it a rectilinear generatrix of the torse passes. 
Taking this into account, the parametric sweep equations 
take the form:

X a
a

a
a a

u
a

a
a

= −
−







 −

−
−









∫1
1

1

2
2

2

cos sin sin

sin sin ;

γ γ γ

γ

d

Y a
a

a
a a

u
a

a
a

= −
−







 +

+
−









∫1
1

1

2
2

2

sin sin sin

cos sin ,

γ γ γ

γ

d

	 (16)

where u is the second independent variable – the length of 
the rectilinear generatrix on the sweep.

5. 3. Construction of strips based on the built para-
metric equations approximating the sphere and sweep of 
a separate strip

Parametric equations (9) make it possible to construct 
a strip of the sweep surface tangent to the sphere, and equa-
tion (16) – its contours on the plane, i.e., sweep. At the same 
time, the limits of change of independent parameters γ and u 
should be the same for the strip on the sphere and its sweep on 
the plane. For example, in Fig. 3, a, the strips tangent to the 
sphere are plotted along the lines at a = 0.7, shown in Fig. 1, b.

 
 
 

 

 
 
 

 

a

b

Fig. 3. Images constructed according to the built	
 equations (9) and (16): a – strips of surfaces tangent to the 
sphere and rotated around the OZ axis by 15°; b – sweep of 

a separate band

The parameters change limits are as follows: γ = 0...1.5π, 
u = –0.092...0.092. With the same values of the parameters, 
using numerical methods, a sweep of the strip is constructed 
according to equations (16) in Fig. 3, b.

In Fig. 4, a, we constructed a strip at a = 0.1, which 
is tangent to the curve on the sphere shown in Fig. 2, a. 
The parameters change limits are as follows: γ = 0...10π, 
u = –0.105...0.105.

 
 
 

 

 
 
 

 

a

b

Fig. 4. Image of the strips tangent to the sphere, constructed 
according to the derived equations (9): a – a separate band; 

b – three identical strips rotated around the OZ axis 	
by an angle of 120°

It would be possible to approximate the sphere with 
one strip. To this end, it would be necessary to take a larger 
width, but the approximation would be rough. A fairly accu-
rate approximation is achieved with three strips three times 
smaller in width (Fig. 4, b). In Fig. 5, a, a sweep of a separate 
band is constructed.

 

Fig. 5. The sweep of the strip that approximates 	
the sphere in Fig. 4

Finally, the sphere can be approximated by a single strip 
along the curve shown in Fig. 2, b. The approximated sphere 
and the sweep of the strip are shown in Fig. 6. The parame-
ters change limits are as follows: γ = 0...25π, u = –0.125...0.125.

For clarity, part of the strip in Fig. 6, a is not shown 
within the limits of the change of the parameter γ from  
8π to 10π. The inner surface of the sphere is visible through 
the hole.
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a

b

Fig. 6. Graphic images of the approximation of the sphere 	
by one strip: a – approximated sphere; b – strip sweep

6. Discussion of the procedure for approximating 
the sphere by strips of unfolding surfaces and the 

construction of sweeps of these strips

The resulting images of the approximated spheres con-
firm the reliability of the mathematical statements. A ques-
tion may arise regarding the reliability of the built sweeps 
of strips approximating the sphere. If necessary, this can be 
verified by finding the first quadratic shape of the surface (9) 
and its sweep (16). The peculiarity of the proposed method 
is that for the approximation of the sphere slope lines are 
used for the first time, the elevation angle of which can be 
specified. Works [7, 8] argue about the approximation of the 
sphere by compartments of surfaces of the same or different 
shape. In works [6, 10], the sphere is approximated by strips 
of unfolding surfaces, but the lines of contact are other 
curves, different from the slope line.

The figures of the approximated spheres (Fig. 3, a, 4, b, 
5, a) show that adjacent strips have a common line of contact. 
This is ensured by a correctly defined strip width, that is, the 
limits of the change of the u parameter. It should be noted 
that the theoretical finding of these limits causes difficulty, 
which is a drawback of the study, however, in this case, one 
can use the visualization capabilities of modern computer 
graphics software products. If the strip width is narrower 
than required, the computer image will show a gap between 
adjacent strips. This makes it possible to select the required 
width of the strip very quickly.

There are certain limitations for the proposed sphere 
approximation method, which are the impossibility of appro
ximating the sphere near its poles. However, these limitations 
are not essential. As shown in Fig. 1, the guide line is located 
between two symmetrical parallels. This means that the sphere 

can be approximated not completely, namely in the specified 
area. However, this applies to lines with relatively large ele
vation angles. If the elevation angle is reduced, the area of 
the sphere that cannot be approximated will also decrease 
accordingly. This area can be reduced to almost zero, but at the 
same time there will be only one lane. Evidence of this is the 
sphere approximated by one strip in Fig. 6, a at the elevation 
angle of the guide curve β = 2.3°. The disadvantage of this ap-
proximation is that in the region of the pole, the width of the 
strip should decrease, which is not predicted by the derived 
equations, in which the strip has a constant width. Further 
research can eliminate this shortcoming, but it is more expe
dient to approximate the area around the pole, for example, by 
a flat area outlined by a circle or a cone that is close to this area.

An important characteristic of a guide curve is the length 
of its arc. When finding the sweep, it plays a key role since the 
length of the arc on the strip approximating the sphere and on 
its sweep is constant. The length of the arc is determined by 
integrating expression (11), which in general rarely succeeds 
in integrating. In the considered case, it is not only possible 
but the expression itself after integration has a simple form. 
Owing to this, the parametric equations of the sweep (13) are 
greatly simplified since one of the integrals can be replaced by 
the corresponding expression. As a result, the parametric equa-
tions (16) include only one integral each, which require the 
use of numerical methods when constructing the strip sweep.

Thanks to the application of the theory of differential 
geometry and the devised technique, it became possible to 
approximate the sphere by several identical, including one, 
continuous strips. Parametric equations were derived for 
constructing sweeps of these strips. This provides an advan-
tage in comparison with known methods of approximating 
the sphere and thereby closes the problematic part of the 
transition from graphical methods of approximation and 
construction of sweeps to an analytical description of both 
the approximated sphere and strip sweeps.

Further development of our research may address the 
approximation of architectural objects, which include domes 
in the form of a sphere or its part. If such domes are covered 
with sheet material, then this material can only be an unfold-
ing surface when wrapping the sphere. By changing the angle 
of elevation of the guide curve, the width of the strip, you can 
give the roof an original shape and geometric expressiveness.

7. Conclusions

1. In the proposed technique, the slope curve on the sur-
face of the sphere serves as a guide curve, which allows the 
sphere to be approximated by both several and one strip of 
unfolding surface of a constant width. To implement such an 
approximation, a mathematical description was developed in 
the form of parametric equations both tangent to the strip 
surface and its sweep.

2. The proposed approximation technique involves the 
use of a differential geometry apparatus to construct a sweep. 
A feature of the resulting parametric sweep equations is that 
they require numerical calculation methods. The reliability 
of the obtained sweep equations is confirmed by the coeffi-
cients of the first quadratic form of the strip equations on the 
sphere and on the sweep.

3. The reliability of the resulting mathematical state-
ments is confirmed by the constructed images of various 
variants of the approximated spheres. Visualization of the 
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approximated sphere is carried out by multiplying a separate 
strip based on its parametric equations. Visualization of the 
strip sweep was also carried out, which makes it possible to 
fabricate flat blanks from sheet material to approximate the 
sphere or to cover spherical structures with sheet material in 
construction practice.
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