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1. Introduction

Applied problems on the optimal design of rod struc-
tures are usually stated as searching problems for unknown 
parameters of the structure, which ensure the extreme value 
of the specified optimality criterion in the search space 
determined by a set of given constraints. In this case, the op-
timization of structures is performed by varying the values 
of the structural parameters. At the same time, the topology 
of the structure, the types of cross-sections of structural 
members, the types of conjugation of elements to the struc-
tural nodes, the support conditions for the structure, as well 
as the scheme and magnitudes of loads are predefined and 
constant. A mathematical model of parametric optimization 
problems of rod structures includes a set of design variables, 
an objective function, as well as constraints that reflect the 
requirements for ensuring the necessary load-carrying ca-
pacity of the structure and its structural members [1].

In optimal design problems of rod structures, the un-
known dimensions of the cross-sections of structural ele-
ments are often considered as design variables, which must 
change discretely, that is, take values according to a defined 
finite set of possible options. Among the tools used to solve 
the applied problems of discrete optimization of rod struc-
tures, a special place is occupied by methods that implement 
a purposeful selection of a finite set of design decision op-
tions, in particular, metaheuristic methods [2, 3].

However, when using metaheuristic methods (stochastic 
search methods, evolutionary algorithms), despite their high 
efficiency, it is possible to obtain, as is known, design solu-
tions of structures that are only close to the optimum [4]. 
This allows us to state that it is appropriate to conduct a 
study aimed at finding a global optimum for the class of 
problems under consideration. Further scientific research on 
the issue of discrete optimization of rod structures is consid-
ered relevant.
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2. Literature review and problem statement

A large number of studies consider the problem of finding 
optimal sizes of cross-sections and parameters of the geometric 
scheme of truss structures in the presence of discrete variables. 
During the last decades, many metaheuristic methods have 
been proposed and developed by scientists and researchers. 
Work [3] provides an overview of various statements of opti-
mization problems for the considered class of structures and 
optimization algorithms based on metaheuristic methods. At 
the same time, the desired parameters are set both on numerical 
sets and on finite sets of an arbitrary nature. The search strate-
gy in such algorithms is based on the calculation and compari-
son of the values of some function of evaluating design decision 
at the points of the search space under consideration [4]. At the 
same time, requirements regarding unimodality, continuity, 
and differentiability of such a function are not put forward. This 
determines the possibility of using metaheuristic methods for a 
wide class of functions of the quality criterion and constraints 
of the mathematical model, including for functions that do not 
have an analytical description.

In work [5], which tackles the issue of finding the optimum 
in the tasks of optimizing the cross-sectional areas of elements 
and the node coordinates of truss-type structures, the authors 
used a modified genetic algorithm. This made it possible to 
avoid obtaining local optima during the optimization search. 
In [6], Jaya algorithm was applied to the class of problems 
under consideration. The authors developed its modification, 
which improves the speed of convergence to the optimal solu-
tion and reduces the number of structural analyzes during the 
search for the optimal point. Work [7] reports a new meta-
heuristic optimization method based on group search, which 
is applied to solving problems of optimizing the cross-sectional 
areas of elements and parameters of the geometric scheme for 
this type of structures. For the considered class of problems, 
the annealing simulation algorithm was also successfully ap-
plied in [8]. In papers [9, 10], the particle swarm method was 
used for truss optimization problems stated in a mixed space of 
variables and its modifications were proposed, which allowed 
the authors to obtain a better convergence to the optimum. 
In [11], the problem of minimizing the weight of the truss 
structure using the artificial bee colony algorithm is consid-
ered. At the same time, code-based constraints are considered 
in the mathematical model of the optimization problem. For 
the considered class of problems, the teaching-learning based 
optimization algorithm was also successfully applied in [12].

However, when applying the metaheuristic methods 
listed above, despite their high efficiency and productivity, 
the authors obtained design solutions for structures that are 
only close to the optimum [4]. This allows us to state that it 
is appropriate to conduct a study aimed at finding a global 
optimum for optimization problems stated in a mixed space 
of design variables.

On the other hand, one of the effective methods of solving 
parametric optimization problems of rod structures are gradi-
ent nonlinear optimization methods. Such methods are used in 
the event that the objective function and nonlinear constraints 
of the mathematical model represent continuously differen-
tiable functions of the design variables vector. The problems 
of parametric optimization of rod structures with variable 
parameters of the geometric scheme and the dimensions of the 
cross-sections of its elements belong to this class of problems.

Thus, in work [13], gradient methods were successfully 
used to solve optimization problems of structural members 

made of cold-formed profiles. In [14], the authors proposed 
a methodology for parametric optimization based on gra-
dient methods and applied it to steel structural systems. 
Work [15] solved the problem of parametric optimization 
of lattice frame structures, the elements of which are made 
of rectangular and square hollow sections. In these works, 
all design variables were assumed to be continuous, and the 
issue of the presence of discrete design variables and, accord-
ingly, a mixed search space was not considered.

Thus, a critical review of the above works proved that 
the issue of finding the global optimum in the problems of 
parametric optimization of rod structures in the presence of 
discrete design variables can be improved.

3. The aim and objectives of the study

The purpose of our study is to solve the problem of 
optimal design for rod structures in the presence of design 
variables of continuous and discrete types using gradient op-
timization methods. This will make it possible to construct a 
mathematical apparatus for application software in the field 
of nonlinear programming and to solve applied problems of 
structural optimization with its application.

The set goal is accomplished on the basis of solving the 
following research tasks:

– to state the problem and develop an algorithm for solv-
ing the problem of parametric optimization of rod structures 
in the presence of continuous and discrete design variables 
based on the gradient method;

– to develop a procedure of discretization for a contin-
uous optimal design solution for design variables, the vari-
ation of which should be carried out in accordance with a 
defined set of possible variants;

– to demonstrate the effectiveness of the proposed ap-
proach by comparing the results of optimization calculations 
obtained using the proposed numerical algorithm with the 
results reported in the literature.

4. The study materials and methods

The object of this study is to consider truss-type rod struc-
tures, which are investigated for the purpose of finding the 
optimal design solution in a mixed (continuous and discrete) 
space of variables. At the same time, the parameters of the geo-
metric scheme of the structure and the dimensions of the cross 
sections of its elements are considered as design variables.

In the current study, the problem of optimal design of 
truss structures is stated as a nonlinear programming prob-
lem, in which the constraints and the objective function are 
continuously differentiable functions of the design variables. 
To solve the stated problem, gradient methods are used, the 
choice of which depends on the nature of the constraint func-
tions and the objective function of the mathematical model.

The hypothesis of the study assumes that in the pres-
ence of a mixed space of design variables, for the solution of 
the considered class of problems, along with metaheuristic 
methods, gradient optimization methods can also be effec-
tively applied. At the same time, the search for the optimal 
design solution is performed in a continuous space of design 
variables. When moving along the direction of the search for 
the optimum point, hitting the nodes of the discrete grid of 
variables is associated with a significant complication of the 
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optimization algorithm, which can lead to deterioration of 
its convergence. That is why, when using gradient methods, 
the search for the optimum is performed only in the contin-
uous space of design variables. After obtaining a continuous 
optimum, the task of its discretization arises, which can be 
solved by developing a special procedure.

5. Results of optimization of cross-section 
sizes and parameters of the geometric 

scheme of truss structures

5. 1. Statement of the problem and al-
gorithm of parametric optimization of truss 
structures

The problem of parametric optimization of 
truss structures was considered. Such a prob-
lem was stated as a search for the optimal pa-
rameters of the geometric scheme of the struc-
ture and the dimensions of the cross sections of 
its elements, which ensure the extreme value of 
the determined criterion of optimality. At the 
same time, the constraints of the load-bearing 
capacity and rigidity of the structure must 
meet the requirements of the design codes. 
The topology of the structure, the types of 
cross-sections of its elements, the types of con-
jugation of elements to the structural nodes, 
the support conditions for the truss structure, 
as well as the scheme and the magnitude of the 
external loads are specified and do not change 
during optimization.

The stated optimization problem can be 
represented in the form of a nonlinear pro-
gramming problem [16], namely, the problem 
of finding such values of unknown parameters 
of the system, 1, :XNι =

{ } ,
T

X Xι=


	 (1)

which provide the smallest (or largest) value of 
the specified objective function:

( ) ( )* *

  
min ,
X

f f X f X
∈ℑ

= =




 

	 (2)

in the area of admissible design solutions ℑ  determined by 
the system of constraints-inequalities:

( ) ( ){ }0 | 1, ,ICX X Nηϕ = ϕ ≤ η=
 

	 (3)

where X


 is a vector of design variables (searched design 
parameters); NX is the number of unknown system param-
eters (design variables); f, φη are continuous functions of 
the vector argument; *X



 is the optimal solution (vector of 
optimal values of variable parameters); f* is the largest value 
of the objective function; NIC is the number of constraints- 
inequalities ( ),Xηϕ



 which determine the areas of admissible 
design solutions in the search space .ℑ

The vector of design variables contains as components 
the unknown parameters of the geometric scheme of the 
structure { }, ,

T

G GX X α=


 ,1, ,X GNα =  as well as the unknown di-
mensions of the cross-sections of its elements { }, ,

T

CS CSX X β=


  

,1, X CSNβ =  (Fig. 1):

{ }, ,
T

G CSX X X=
  

	 (4)

where NX,CS is the total number of unknown sizes of the 
cross-sections of the rod elements of the structure, NX,G is the 
total number of unknown parameters of the geometric scheme 
of the structure, NX,G+NX,CS=NX.

As an objective function, a defined technical and eco-
nomic indicator of the structure (material weight, material 
cost, manufacturing cost, construction cost, etc.) is consid-
ered. At the same time, they take into account the possibil-
ity of formulating an analytical expression for the objective 
function depending on the values of the design variables .X



 
In some cases, the weight of the construction material is tak-
en as the objective function (2) of the optimization problem:

( ) ( )* *

  
min , .G CS
X

M M X M X X
∈ℑ

= =




  

	 (5)

In the system of constraints (3), it is necessary to 
include load-carrying capacity constraints (strength and 
stability verifications) for all design cross-sections of struc-
tural members of the truss, which is subject to the effect of 
design load combinations of the ultimate limit states. In 
addition, as part of the system of constraints, it is necessary 
to consider displacement constraints (stiffness verifica-
tions) for nodes of the truss structure, which is subject to 
the action of design load combinations of the serviceability 
limit states. Additional requirements that describe the 
structural, technological, and operational features of the 

Fig. 1. Unknown parameters of the rod structure, which are considered as 
design variables: a – variable parameters of the geometric scheme; 	

b – variable dimensions of cross-sections
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structure under consideration can also be included in the 
system of constraints (3).

The calculated internal forces in the structural members 
of the truss structure, which are used in the strength and sta-
bility verifications of the system (3) and depend on the de-
sign variables .X



 were considered as state variables. These 
forces can be determined from the system of linear equations 
of the finite element method, 1, :ULS

LCCk N=

( ) ( ), ,, ,G CS ULS k ULS k GX X z p XΚ × =
  

 

	 (6)

where ( ),G CSX XΚ
 

 is the stiffness matrix of the finite-ele-

ment model of the truss structure, which is formed depend-
ing on the design variables ( ) 

,  
T

G CSX X X=
  

of the optimi-

zation problem (1) to (3); ( ),ULS k Gp X




 – a column vector of  

external nodal loads for the k-th design combination of loads 
of the ultimate limit states, which is formed depending on 
the unknown (variable) parameters of the geometric scheme 

GX


 of the truss structure under consideration; ,ULS kz


 is the 
resulting column-vector of nodal displacements for the k-th 
design combination of loads of the ultimate limit states 

( ), , ,  ;ULS
ULS k FEM k PS CSz X X= Ζ

 



 ULS
LCCN  is the total number of design 

combinations of loads of the ultimate limit states. Depending 
on the obtained column-vector of nodal displacements ,ULS kz



, for 
each i-th design cross-section of the j-th structural element, it is 
possible to compute the design values of internal forces for the 
corresponding combination of loads.

As state variables, the nodal displacements of the truss 
structure were also considered, which are used in the stiffness 
constraints of system (3) and depend on the design variables .X



These displacements can be determined from the system of lin-
ear equations of the finite element method, 1, :SLS

LCCk N=

( ) ( ), ,, ,G CS SLS k SLS k GX X z p XΚ × =
  

 

	 (7)

where ( ),SLS k Gp X




 is the column vector of external nodal 

loads for the k-th design combination of loads of the ser-
viceability limit states, which is formed depending on the 
unknown (variable) parameters of the geometric scheme 

GX


 of the truss structure under consideration; ,SLS kz


 is the 
resulting column-vector of nodal displacements for the k-th 
design combination of loads of the serviceability limit states  

( ), , ,  ;SLS
SLS k FEM k G CSz X X= Ζ

 



 SLS
LCCN  is the total number of design 

combinations of loads of the serviceability limit states. In 
this way, for each m-th node of the finite-element model, 
it is possible to calculate the design values of vertical and 
horizontal displacements depending on the column-vector of 
nodal displacements , .SLS kz



 At the same time, the displace-
ments were calculated only for the design load combinations 
of the serviceability limit states.

The system of constraints of mathematical model (3) 
should contain strength and stability verifications, stated for 
all structural members of the structure, which is subject to the 
action of design load combinations of the ultimate limit states. 
In the case of parametric truss optimization, normal stresses 
verifications in the design sections of its elements are involved 
in the system of constraints, 1, ,Bj N∀ =  1, :ULS

LCCk N∀ =

( )
( )

,

,

1 0;
t jk

j CS t ult

N X

A X
− ≤

σ




	 (8)

( )
( )

,

,

1 0,
c jk

j CS c ult

N X

A X
− ≤

σ




	 (9)

where NB is the total number of rod elements; ( )j CSA X


 is the 
cross-sectional area of the j-th element of the truss structure; 
σt,ult and σc,ult are allowable normal tensile and compressive 
stresses, respectively; ( ),t jkN X



 and ( ),c jkN X


 are the axial 
internal tensile and compressive forces, respectively, occurred 
in the j-th elements of the truss structure under the action of the 
k-th design combination of loads of the ultimate limit states and 
are calculated using the finite element method (6). In the case 
of statically indeterminate truss structures, the axial forces in 
the elements of the structures depend on the unknown param-
eters of the structural geometric scheme GX



 and the unknown 
dimensions of the cross sections of its elements .CSX



In the system of constraints (3) it is also necessary to in-
volve stability verifications for the compressed truss structural 
members due to flexural and flexural-torsional buckling. Such 
verifications are formulated for all rod elements in which axial 
compression occurs under the action of the design load combi-
nations of the ultimate limit states, 1, ,Bj N∀ =  1, :ULS

LCCk N∀ =

( )
( ) ( )

,

, ,

1 0;
,

c jk

y j G CS j CS c ult

N X

X X A X
− ≤

ϕ σ



  
		  (10)

( )
( ) ( )

,

, ,

1 0;
,

c jk

z j G CS j CS c ult

N X

X X A X
− ≤

ϕ σ



  
		 (11)

( )
( ) ( )

,

, ,

1 0,
,

c jk

c j G CS j CS c ult

N X

X X A X
− ≤

ϕ σ



  
		 (12)

where ( ), ,y j G CSX Xϕ
 

 and ( ), ,z j G CSX Xϕ
 

 are buckling coef-
ficients that correspond to flexural buckling relative to the 
main axes of inertia and are calculated depending on the 
design lengths lef,y,j, lef,z,j, the type, and geometric charac-
teristics of the cross section for the j-th structural member; 

( ), ,c j G CSX Xϕ
 

 is the buckling coefficient, which corresponds 
to the flexural-torsional buckling of the structural member 
and is calculated depending on the design lengths ( ), , ,ef y j Gl X



 

( ), , ,ef z j Gl X


 ( ), , ,ef T j Gl X


 the type, and geometric characteristics 

of the cross section for the j-th structural member. Buckling 

coefficients ( ), , ,y j G CSX Xϕ
 

 ( ), ,z j G CSX Xϕ
 

 and ( ), ,c j G CSX Xϕ
 

 

depend both on the variable parameters of the geometric 
scheme of the structure ,GX



 and the variable dimensions of 
the cross sections of its elements .CSX



In some cases, the system of stability constraints (10) to 
(12) can be simplified when only the Euler elastic buckling con-
straints for the rod elements are considered. Such constraints 
are formulated for all compressed structural member, in which 
axial compression occurs under the action of design load com-
binations of the ultimate limit states, 1, ,Bj N∀ =  1, :ULS

LCCk N∀ =

( )
( ) ( )

,

,min,

1 0,
,

c jk

j CS cr j G CS

N X

A X X X
− ≤

σ



  
	 (13)

where σcr,min,j – minimum critical stresses, which correspond 
to the Euler elastic buckling:
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( )
( ) ( ){ }

,min,

, , , ,

,

min , ,  , ;

cr j G CS

cr y j G CS cr z j G CS

X X

X X X X

σ =

= σ σ

 

   

	 (14)

( ) ( )
( )

2 2
,

, , 2
, ,

, ;
y j CS

cr z j G CS

ef y j G

E i X
X X

l X

π ⋅
σ =



 


	 (15)

( ) ( )
( )

2 2
,

, , 2
, ,

, ,
z j CS

cr z j G CS

ef z j G

E i X
X X

l X

π ⋅
σ =



 


	 (16)

where E is the modulus of elasticity of the structural materi-
al; ( ),y j CSi X



 and ( ),z j CSi X


 – radii of inertia of the cross-sec-

tion of the j-th structural member relative to the main axes 
of inertia, calculated depending on the variable dimensions 
of this cross-section .CSX



In the case when the design lengths of the rod 
elements are the same in both main planes of iner-
tia ( ) ( ) ( ), , , , , ,ef j G ef y j G ef z j Gl X l X l X= =

  

 the minimum critical 

stresses of elastic buckling according to Euler can be 
calculated as:

( ) ( )
( )

2 2
min,

,min, 2
,

, ,
j CS

cr j G CS

ef j G

E i X
X X

l X

π ⋅
σ =



 


		  (17)

where ( )min, j CSi X


 is the minimum radius of inertia of the 
cross-section of the j-th rod element, calculated depending 
on the variable dimensions of this cross-section .CSX



 Taking 
into account (17), the stability constraint (13) in the form 
of the Euler elastic buckling constraint can be rewritten as:

( ) ( )
( ) ( )

2
, ,

2 2
min,

1 0,
c jk ef j G

j CS j CS

N X l X

E A X i X
− ≤

π ⋅

 

 
	 (18)

or

( ) ( )
( )

2
, ,

2
1 0,

c jk ef j G

j CS

N X l X

E A X
⋅ − ≤

κ

 


	 (19)

where κ is a coefficient that depends on the type of cross section.
To the system of constraints (3), it is also necessary 

to include movement displacement constraints for certain 
nodes of the rod structure, which is subject to the action 
of design combinations of loads of the serviceability limit 
states, 1, ,Nm N∀ = 1, :SLS

LСCk N∀ =

( ),

,

1 0;
x mk

ux m

Xδ
− ≤

δ



	 (20)

( ),

,

1 0,
z mk

uz m

Xδ
− ≤

δ



	 (21)

where ( ),x mk Xδ


 and ( ),z mk Xδ


 are, respectively, the horizon-
tal and vertical displacements of the m-th node of the rod 
structure, which is subject to the action of the k-th design 
combination of loads of the serviceability limit states, calcu-
lated from the system of linear equations of the finite element 
method (7); δux,m and δuz,m are allowable horizontal and verti-
cal displacement of the m-th structural node; NN is the total 
number of structural nodes.

Additional constraints that describe the structural, tech-
nological, and operational features of the truss structure 
under consideration can also be included to the system of 
constraints (3). In particular, using additional constraints 
of the mathematical model, it is possible to describe the 
requirements for the cross-sectional dimensions of the rod 
elements that are adjacent to the same structural node [12]. 
Such constraints can be represented in the form of con-
straints on the upper and lower limits for the design vari-
ables values, 1, :XN∀ι =

1 0;
L

X
X

ι

ι

− ≤ 	 (22)

1 0,
U

X
X

ι

ι

− ≤ 	 (23)

where LXι  and UXι  are the lower and upper bounds for the 
value of the ι-th design variable Xι.

The parametric optimization problem of truss structures, 
stated as a nonlinear programming problem (4), (5), (8) to 
(12) or (19) to (23), can be solved using the gradient projec-
tion method. The method of projecting the gradient of the 
objective function onto the surface of active constraints with 
the simultaneous elimination of residuals in the violated con-
straints provides an effective search for the optimal solution to 
the problem of nonlinear programming. This statement refers 
to the case when the objective functions and constraints of 
the mathematical model are continuously differentiable func-
tions of the vector argument (design variables). The gradient 
method operates only with the first derivatives or gradients of 
the objective functions (5) and constraints (8) to (12) or (19) 
to (23) of the mathematical model. It is based on the iterative 
construction of such a sequence (24) of approximations of the 
design variables { } ,

T
X Xι=


 1, ,XNι =  which ensures conver-
gence to the optimum point *X



 (to the optimal values of the 
variable (unknown) design parameters) [17]:

1 ,t t tX X X+ = + ∆
  

	 (24)

where { } ,
T

tX Xι=


 1, XNι = – current approximation to the 

optimal solution *;X


  { } ,
T

tX Xι∆ = ∆


 1, XNι =  – the incre-
ment of the vector of design variables for the current approx-
imation ;tX



 t – iteration number.
An algorithm for solving the parametric optimization 

problem stated above for truss structures has been devel-
oped, which is given below.

Step 1. Determination of the initial design solution (set 
of design variables) and initial data for the optimization 
calculation.

A vector of design variables ( ),  ,
T

k G CS k
X X X=
  

 is deter-

mined, where k is the iteration index, k=0. The topology 
of the truss structure, the types of cross-sections of its 
elements, the types of conjugation of elements to the struc-
tural nodes, the support conditions for the truss structure, 
as well as the scheme and the magnitude of the external 
load are defined in advance and are constants during op-
timization.

The initial data for the optimization calculation of the 
truss structure are:

– design resistances of the structural material, namely 
the allowable stresses, taking into account the safety factor 
for the material;
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– coefficients for determining the design lengths lef,y,j, 
lef,z,j for all rod elements of the truss structure undergoing 
axial compression;

– allowable values of horizontal and vertical displace-
ments δux,m and δuz,m of the determined nodes of the consid-
ered truss structure;

– the lower LX


 and upper UX


 bounds for the design vari-
ables, as well as the determined objective function ( ).kf X



Step 2. Calculation of the geometric and design lengths 
of the structural members of the truss structure.

The geometric lengths lj of the rod elements of the truss 
structure are calculated based on the coordinates of its 
nodes, which depend on the unknown (variable) parameters 
of the structural geometric scheme .GX



 The design lengths 
lef,y,j, lef,z,j of the structural members are calculated using 
the geometric lengths lj and the initial data – coefficients 
of design lengths, which are assumed to be constant during 
the optimization process. The variation of the geometric 
lengths lj and the corresponding design lengths lef,y,j, lef,z,j in 
subsequent iterations is performed on the basis of the cur-
rent values of the variable parameters GX



 of the structural 
geometric scheme.

Step 3. Calculation of the dimensions and geometric 
characteristics of the design cross-sections of the structural 
members.

The geometric characteristics of the design cross-sec-
tions (areas, moment of inertia, elastic moments of resistance, 
radii of inertia, etc.) are calculated depending on the current 
values of the variable dimensions of the cross-sections .CSX



Step 4. Linear static analysis of the considered truss 
structure.

Using the finite element method (7), linear and angular 
displacements , .SLS kz



 are calculated for each m-th node of 
the finite-element model of the truss, which is subject to 
the action of the k-th combination of loads of the service-
ability limit states. Depending on the column-vector of 
nodal displacements ,SLS kz



, the corresponding calculated 
horizontal ( ),x mk Xδ



 and vertical ( ),z lk Xδ


 displacements are 
determined. Using the finite element method (6), linear and 
angular displacements , .ULS kz



 are calculated for each i-th de-
sign cross-section of the j-th structural member of the truss, 
which is subject to the action of the k-th design combination 
of loads of the ultimate limit states. Depending on the col-
umn-vector of nodal displacements ,ULS kz



, the corresponding 

calculated values of internal forces ( ),t jkN X


 and ( ), .c jkN X


 are 
determined.

Step 5. Calculation of state variables (normal stresses, 
buckling coefficients or critical buckling stresses, etc.).

The values of normal stresses ( ),x ijk Xσ


 at a specified point 
of the cross-section are calculated depending on the axial 
force occurring in the i-th design cross-section of the j-th 
structural member of the truss, which is subject to the action 
of the k-th design combination of loads of the ultimate limit 
states. Buckling coefficients ( ), , ,y j G CSX Xϕ

 

 ( ), ,z j G CSX Xϕ
 

 are 
determined depending on the corresponding design lengths, 
types of cross-sections, and geometric characteristics of the 
cross-sections of the structural members of the truss in ac-
cordance with the design codes.

Step 6. Verification of constraints and construction of a 
set of numbers (indices) of active constraints [18].

The verification of the constraints-inequalities (8) to 
(12) or (19) is performed for all design load combinations 

of the ultimate limit states and all design sections of the 
structural members of the truss. In addition, a verification 
of the constraints-inequalities (20), (21) is performed for the 
nodes of the truss structure under the action of design load 
combinations of the serviceability limit states. Additional 
constraints (22), (23) on the upper and lower limits of the 
variation of the design variables values are also checked.

Step 7. Determination of the increment for the current vec-
tor of design variables and calculation of the best approxima-
tion to the optimal solution. The increment vector kX∆



 for the 
current values of design variables kX



 is calculated according to 
the resolving system of equations of the method of the objective 
function gradient projecting onto the surface of active con-
straints with the simultaneous elimination of residuals in the 
violated constraints, described in [18]. The improved approx-
imation 1kX +



 to the optimal solution is determined by (24).
Step 8. Checking the stopping criteria for the iterative 

optimal point search procedure. If all the constraints of the 
mathematical model are satisfied with acceptable accuracy, 
and at least one of the stopping criteria described in [18] is 
met, then the transition is made to step 9. In the opposite 
case, it is necessary to return to step 1 at k←k+1.

Step 9. Discretization of the optimal solution ,kX


 ob-
tained in the continuous space of design variables.

Step 10. Optimal values for the unknown parameters of 
the truss design – ,kX



 the optimal value of the optimality 
criterion – ( ).kf X



5. 2. Discretization procedure for the optimal solution 
obtained in a continuous space of variables

The problem of nonlinear programming, stated in the 
mixed space of design variables, was considered. In such 
problems, some design variables must take values from given 
finite sets of possible values. For example, if the cross-sec-
tional dimensions of the rods are considered as variables, 
then, as a rule, they should correspond to certain assort-
ments of profiles and steel sheets. If you find the optimal 
solution of this problem in a continuous search space, then 
after obtaining a continuous optimum, the question of its 
discretization will arise. The discretization of the optimal 
solution obtained in the continuous space of design variables 
can be performed by a purposeful selection of possible solu-
tions to the problem of nonlinear programming around the 
point of the obtained continuous optimum.

Step 1. Let *X


 be the optimal design solution of the 
structure obtained in the continuous space of design vari-
ables. At the same time, the set of design variables includes 
continuous and discrete design variables:

{ }* * *, ,C DX X X=
  

 1, .XNι = ,	 (25)

where *
CX


 – continuous variables (for example, variable 
parameters of the geometric scheme of the truss structure):

{ }* *
, ,

T

C CX X χ=


 1, ;XCNχ = 	 (26)

*
DX


 – design variables that must vary according to a given 
finite set of options for possible values (for example, variable 
cross-sectional dimensions of structural elements):

{ }* *
, ,

T

D DX X δ=


 1, ;XDNδ = 	 (27)

NXC – total number of continuous design variables; NXD is 
the total number of discrete design variables, NX=NXC+NXD.
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Step 2. For each discrete design variable *,iX  * * ,i DX X∈


 
which must vary according to some finite set of possible val-
ues Xi={χn}, two possible variants of its value *

,
L

i D iX ∈X  and 
*
,
U

i D iX ∈X  can be determined, such that:
* * *
, ,

* *
,

* *
,

;

min;

min;

L U
i D i i D

L
i i D

D
i D i

X X X

X X

X X

 ≤ ≤
 − →


− →

	 (28)

here *
,
L

i DX  is the nearest smaller possible value of the variable 
*
iX  from the set Xi={χn} and *

,
U

i DX  is the nearest larger possible 
value of variable *

iX  from this set.
Step 3. Among all the design variables { }* *

, ,
T

D DX X δ=


 
1, ,XDNδ =  which must vary discretely, the one and * ,pX  

* * ,p DX X∈


 is chosen for which the length of the gradient vec-
tor of the objective function is the largest 1, :XDN∀δ =

, *
,

max ,p
D

f
X∇

δ

 ∂ =  
∂  

 	 (29)

and its further discretization is performed at the level of the 
nearest smallest possible value from the set Xi={χn}: * *

, .L
p p DX X←  

After that, the p-th variable is removed from the set of design 
variables: { }* * * ,pX X X← −

 

 the length of the vector of design 
variables decreases accordingly: NX←NX–1. The total number 
of NXD variables that must vary discretely also decreases ac-
cordingly: NXD←NXD–1.

Step 4. The search for the optimal solution is performed 
with a reduced vector of design variables *.X



 If at the same 
time (when * *

,
L

p p DX X← ) there is no optimal solution, then the 
discretization of the selected variable must be performed 
at the level of the nearest larger value from the set Xi={χn}: 

* *
,
U

p p DX X←  followed by the search for the optimal solution.

The third and fourth steps are performed until 
the design variables { }* *

, ,
T

D DX X δ=


 1, ,XDNδ =  which 
must vary according to the defined set of possible 
values, are completely fixed, that is, until NXD>0.

5. 3. Results of optimization of cross-sec-
tion sizes and parameters of the geometric 
scheme of the tower design

The methodology for solving the problem 
of parametric optimization of rod structures in 
the presence of continuous and discrete design 
variables, presented above, is implemented in the 
OptCAD software [14, 15], which is designed for 
solving a wide range of problems, in particular:

– linear static analysis of the rod structure;
– solution of a nonlinear programming prob-

lem, stated in an explicit form;
– verification the load-carrying capacity of 

structural members in accordance with the spec-
ified design codes;

– search for the values of the parameters of 
the rod structure, according to which the struc-
ture meets the specified requirements (require-
ments of the design codes and/or requirements of 
the designer);

– parametric optimization of rod structures 
according to criteria defined by the designer.

To evaluate the effectiveness of new methods, 
algorithms, and procedures, comparisons should 

be made with alternative methods, algorithms, and optimi-
zation procedures that are widely reported in the literature. 
It is advisable to perform such a comparison on verification 
examples used for testing new methods, algorithms, and pro-
cedures. The evaluation of the effectiveness of the proposed 
search methodology will be based on the comparison of the 
results of optimization calculations obtained when applying 
the proposed algorithm with the results reported in the lit-
erature. The initial data and the mathematical model of the 
optimization problem discussed below were taken similar to 
those given in the literature.

Fig. 2 shows the initial design solution for the construc-
tion of a plane 47-bar tower, which is designed for the action 
of several design combinations of loads. Initial data for the 
optimization calculation of the tower: material density – 
ρ=0.3 lb/inch3=8303.97 kg/m3, modulus of elasticity – 
E=30×104 ksi=2.068427×105 MPa. The absolute values of 
the allowable normal tensile and compressive stresses are 
σt,ult=20  ksi=137.895 MPa and σc,ult=15 ksi=103.42 MPa, 
respectively.

In the optimization process, three independent load 
combinations of the tower structure were considered, given 
below:

– combination I – concentrated force in the positive 
direction of the x–x axis Px=6 kips=26.689 kN and con-
centrated force in the negative direction of the z–z axis 
Pz=–14 kips=–62.275 kN in nodes 17 and 18 (Fig. 3);

– combination II – concentrated force in the positive 
direction of the x–x axis Px=6 kips=26.689 kN and con-
centrated force in the negative direction of the z–z axis 
Px=–14 kips=–62.275 kN at node 17;

– combination III – concentrated force in the positive 
direction of the x–x axis Px=6 kips=26.689 kN and con-
centrated force in the negative direction of the z–z axis 
Pz=–14 kips=–62.275 kN in the node (Table 1).

Fig. 2. 47-bar truss structure of the tower: a – initial design solution and 
external load application scheme; b –design scheme with the numbers of 

nodes and rods
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Table 1

Design load combinations of the tower structure 

Load Nodes Px Pz

Load I 17, 18 26.689 kN –62.275 kN

Load II 17 26.689 kN –62.275 kN

Load III 18 26.689 kN –62.275 kN

The parametric optimization problem of a 47-bar tower 
structure was stated as the problem of searching to the op-
timal values of the nodal coordinates of the tower and the 
optimal values of the cross-sectional areas of all its structur-
al members. Minimization of the structural weight (5) was 
considered as the objective function.

During the optimization calculation, the x and z coordi-
nates of the 15th, 16th, 17th, and 18th nodes (Fig. 2), as well 
as the z coordinates of the 1st and 2nd nodes, were taken as 
fixed. As design variables (4), the unknown (variable) areas 
of the cross-sections of the structural members of the tower 
were considered, as well as the unknown (variable) x and z 
coordinates for all unfixed nodes of the tower structure:

{ }1 2 3 47, , ,  ;CS A A AX A= …


{ }1 2 3 3 22 22, , , ,  , .G x x x z xX z= …


In addition, the variation of the unknown cross-sectional 
areas { }1 2 3 47, , ,  CSX A A A A= …



 of structural members of the 
tower must be consistent with the defined numerical set of 
possible values: A={0.1, 0.2, ..., 4.9, 5.0)} in2 or A={0.64516, 
1.29032, ..., 31.61284, 32.258)} cm2.

The lattice tower structure was designed to be symmetri-
cal about the z–z axis. Accordingly, the vector of design vari-
ables was reduced using the following symmetry conditions:

A1=A2; A3=A4; A5=A6; A7=A8; A9=A10; A11=A12; 

A13=A14; A15=A16; A17=A18; A19=A20; A21=A22; 

A23=A24; A25=A26; A27=A28; A29=A30; A31=A32; 

A33=A34; A35=A36; A37=A38; A39=A40;

–x1=x2; z1=z2; –x3=x4; z3=z4; –x5=x6; z5=z6; –x7=x8; z7=z8; 

–x9=x10; z9=z10; –x11=x12; z11=z12; –x13=x14; z13=z14; 

–x19=x20; z19=z20; –x21=x22; z21=z22.

The system of constraints of the mathematical model 
included strength conditions (8), (9), which were formulated 
for all structural members ( j=1...47) of the tower structure, 
which was subjected to three independent combinations of 
loads (k=1...3). Buckling constraints in the form of elastic 
buckling according to Euler (19) with a coefficient of κ=3.96 
were also involved in the system of constraints.

The dimensionality of the considered optimization prob-
lem was 44 design variables and 374 constraints.

The search for the optimal solution was initially imple-
mented in the continuous space of design variables using the 
improved gradient method [17]. The obtained optimal design 
solution of the structure is shown in Fig. 3, a, and Fig. 4, a. 
As a result, the optimal project solution of the tower with a 

structural weight of 830,736 kg was obtained (6th column 
of Tables 2, 3). The continuous optimum point was charac-
terized by the presence of 38 active constraints, namely:

– constraints on the lower limit of the variable cross-sec-
tional area for the 43rd, 44th, 45th, 46th, and 47th bar elements;

– tensile strength constraints for the 30th, 34th, and 36th 
structural members under the action of the 1st combination 
of loads;

– tensile strength constraints for the 30th, 34th, and 36th 
structural members under the action of the 3rd combination 
of loads;

– compressive strength constraints for the 2nd, 6th, 10th, 
14th, 28th, 32nd, 37th and 42nd structural members under the 
action of the 1st combination of loads;

– compressive strength constraints for the 37th structur-
al members under the action of the 2nd combination of loads;

– compressive strength constraints for the 14th, 18th, 
22nd, 28th and 32nd structural members under the action of 
the 3rd combination of loads;

– Euler buckling constraints in compression for the 16th, 
23rd, 33rd, 44th and 46th structural members under the action 
of the 1st combination of loads;

– Euler buckling constraints in compression for the 3rd, 
7th, 11th, 16th, 19th and 33rd structural members under the 
action of the 2nd combination of loads;

– Euler buckling constraints in compression for the 26th 
and 39th structural members under the action of the 3rd com-
bination of loads.

The maximum residual in the violated constraint was 
3.066×10-6 and was observed in the Euler buckling con-
straint for the 39th structural member under the action of the 
3rd combination of loads.

The search for the optimal design solution was subsequently 
implemented in the mixed space of design variables using the 
improved gradient method [17] and the proposed discretization 
procedure. The obtained optimal design solution of the tower 
structure is shown in Fig. 3, b, and Fig. 4, b. As a result, the 
optimal project solution of the tower with the structural weight 
835.403 kg was obtained (7th column of Tables 2, 3). The opti-
mum point in the mixed space of variables was characterized by 
the presence of 23 active constraints, namely:

– constraints on the lower limit of variable cross-sec-
tional areas for the 43rd, 44th, 45th, 46th and 47th structural 
members of the tower;

– tensile strength constraints for the 36th structural 
member under the action of the 1st load combination;

– tensile strength constraints for the 36th structural 
member under the action of the 3rd load combination;

– compressive strength constraints for the 2nd, 6th, 32nd 
and 42nd structural member under the action of the 1st load 
combination;

– compressive strength constraints for the 18th and 32nd 
structural members under the action of the 3rd load combi-
nation;

– Euler buckling constraints in compression for the 16th, 
23rd, 33rd, 44th and 46th structural members under the action 
of the 1st load combination;

– Euler buckling constraints in compression for the 3rd, 
7th, 11th, 19th and 33rd structural members under the action 
of the 2nd load combination.

The maximum residual in the violated constraint was 
1.061×10-6 and was observed in the Euler buckling con-
straint for the 44th structural member under the action of the 
1st load combination.
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The optimal solution to the considered problem in the 
continuous space of design variables (continuous optimum 
point) is characterized by the structural weight 830.736 kg. 
In the event that the space of design variables is mixed, that 
is, when along with continuous variables there are discrete 
design variables, the optimal solution will always be worse 

compared to the point of the continuous optimum. The 
application of the gradient method in combination with the 
proposed discretization procedure for solving the optimiza-
tion problem in a mixed space of variables made it possible 
to obtain an optimal solution located closer to the point of a 
continuous optimum.

Fig. 4. Optimal values of the nodal coordinates of the 47-bar lattice tower structure, when the search for the optimum was 
performed: a – in the continuous space of design variables; b – in the mixed space of design variables
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Fig. 3. Optimal configuration of the 47-bar lattice tower structure (OptCAD: screenshot): a – in the continuous space of design 
variables; b – in the mixed space of design variables
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Table 2

Optimal values of the variable nodal coordinates (m) and cross-sectional areas (cm2) of the elements of the 47-bar tower structure

Design variables Work [19] Work [20] Work [21] Work [5, 22]

This work

In the space of variables

Continuous Mixed

A1=A2 20.19351 19.3548 20.6451 21.2903 20.88492 20.64512

A3=A4 7.225792 7.74192 7.09676 7.09676 6.92424 7.09676

A5=A6 19.7419 18.0645 19.3548 20.6451 20.03136 19.3548

A7=A8 6.709664 8.38708 7.74192 7.09676 6.84839 7.09676

A9=A10 18.45158 17.4193 18.7096 19.3548 18.78865 18.06448

A11=A12 5.935472 5.16128 5.16128 5.16128 5.65248 5.80644

A13=A14 16.70964 15.4838 16.129 17.4193 16.71602 16.129

A15=A16 5.419344 7.09676 6.4516 5.80644 5.55334 5.80644

A17=A18 16.83868 16.129 16.129 18.0645 16.84554 16.129

A19=A20 4.451604 4.51612 5.16128 4.51612 4.74041 5.16128

A21=A22 16.5161 14.1935 16.129 16.129 15.72144 16.129

A23=A24 5.16128 8.38708 4.51612 6.4516 5.78871 4.51612

A25=A26 4.967732 3.2258 4.51612 4.51612 4.54050 5.16128

A27=A28 11.03224 11.6129 11.6129 11.6129 11.08176 10.96772

A29=A30 6.645148 6.4516 5.80644 6.4516 5.76587 5.80644

A31=A32 6.258052 7.74192 8.38708 6.4516 7.04009 7.09676

A33=A34 2.322576 2.58064 2.58064 2.58064 1.93811 1.93548

A35=A36 6.4516 5.80644 5.80644 7.09676 5.98377 5.80644

A37=A38 8.645144 7.74192 7.74192 9.6774 7.95810 7.74192

A39=A40 7.032244 5.16128 5.80644 5.16128 5.45067 5.80644

A41 5.677408 23.2258 4.51612 32.258 5.28297 5.16128

A42 7.290308 8.38708 8.38708 7.09676 6.81529 7.74192

A43 3.032252 0.64516 0.64516 0.64516 0.64516 0.64516

A44 3.54838 0.64516 0.64516 0.64516 0.64516 0.64516

A45 1.6129 0.64516 0.64516 0.64516 0.64516 0.64516

A46 4.322572 0.64516 0.64516 0.64516 0.64516 0.64516

A47 0.64516 1.29032 0.64516 0.64516 0.64516 0.64516

–x1=x2 2.737104 2.8956 2.6416 2.5537058 2.62926 2.60782

–x3=x4 2.26441 2.4638 2.2098 2.0581087 2.15312 2.24340

z3=z4 3.504692 3.175 3.2512 3.4848876 3.28688 3.25821

–x5=x6 1.69545 1.9304 1.778 1.6213684 1.71275 1.81104

z5=z6 6.463538 6.6294 6.5786 6.4562685 6.24454 6.31343

–x7=x8 1.457452 1.7526 1.5748 1.4260703 1.48874 1.57753

z7=z8 8.690864 8.0264 8.2804 8.3287616 8.41565 8.47303

–x9=x10 1.26619 1.4224 1.3462 1.2260783 1.28438 1.35863

z9=z10 10.596118 10.5156 10.4648 10.350835 10.42634 10.51832

–x11=x12 1.134364 1.27 1.1938 1.0781233 1.13681 1.16915

z11=z12 12.07389 11.7602 12.3444 11.908198 12.11689 12.39012

–x13=x14 1.043686 1.3716 1.143 1.1650777 1.16057 1.10920

z13=z14 13.03401 13.3096 12.8016 13.088384 13.06673 13.01564

–x19=x20 2.375916 2.5146 2.2606 2.0506715 2.27745 2.35978

z19=z20 15.848076 16.0274 16.1798 15.788053 16.07176 16.11410

–x21=x22 0.45466 0.0254 0.0508 2.54e-5 0.00001 0.00001

z21=z22 15.187168 14.9098 14.8336 14.908385 15.01564 15.06398

Weight, [kg] 861.826 873.524 848.990 848.161 830.736 835.403
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Table 3

Optimal values of variable nodal coordinates (m) and cross-sectional areas (cm2) of the elements 

of the 47-bar tower structure (continued)

Design variables Work [23] Work [24] Work [9] Work [25]

This work

In the space of variables

Continuous Mixed

A1=A2 19.3548 20.0 21.29028 21.29028 20.88492 20.64512

A3=A4 7.74192 7.09676 7.09676‬ 5.16128 6.92424 7.09676

A5=A6 18.06448 19.3548 21.29028‬ 19.99996 20.03136 19.3548

A7=A8 8.38708 7.09676 5.80644‬ 5.80644 6.84839 7.09676

A9=A10 17.41932 18.0645 19.3548 18.70964 18.78865 18.06448

A11=A12 5.16128 7.09676 6.4516‬ 9.6774 5.65248 5.80644

A13=A14 15.48384 16.7742 17.41932 18.06448 16.71602 16.129

A15=A16 7.09676 5.80644 5.80644‬ 2.58064‬ 5.55334 5.80644

A17=A18 16.129 17.4193 16.77416 15.48384 16.84554 16.129

A19=A20 4.51612 4.51612 4.51612 7.09676 4.74041 5.16128

A21=A22 14.19352 16.7742 16.129 14.19352‬ 15.72144 16.129

A23=A24 8.38708 5.16128 7.74192 7.74192 5.78871 4.51612

A25=A26 3.2258 5.16128 5.16128 3.87096 4.54050 5.16128

A27=A28 11.61288 10.9677 10.32256‬ 10.96772 11.08176 10.96772

A29=A30 6.4516 6.4516 6.4516‬ 6.4516‬ 5.76587 5.80644

A31=A32 7.74192 6.4516 5.16128 5.80644 7.04009 7.09676

A33=A34 2.58064 1.93548 1.93548 1.93548 1.93811 1.93548

A35=A36 5.80644 6.4516 6.4516‬ 7.74192 5.98377 5.80644

A37=A38 7.74192 8.38708 8.38708 10.32256‬ 7.95810 7.74192

A39=A40 5.16128 5.80644 7.09676 5.16128 5.45067 5.80644

A41 23.22576 5.80644 5.80644 6.4516‬ 5.28297 5.16128

A42 8.38708 7.74192 7.09676 8.38708 6.81529 7.74192

A43 0.64516 0.64516 1.93548 0.64516 0.64516 0.64516

A44 0.64516 0.64516 0.64516 3.87096 0.64516 0.64516

A45 0.64516 0.64516 0.64516 0.64516 0.64516 0.64516

A46 1.29032 0.64516 0.64516 0.64516 0.64516 0.64516

A47 0.64516 0.64516 1.29032 3.87096 0.64516 0.64516

–x1=x2 2.8956 2.784094 2.5238202 2.63160002 2.62926 2.60782

–x3=x4 2.4638‬ 2.3641812 2.11947506 2.07012032‬ 2.15312 2.24340

z3=z4 3.175 3.21691 3.2101663 3.6335335‬ 3.28688 3.25821

–x5=x6 1.9304 1.7971008 1.76567592 1.70222926 1.71275 1.81104

z5=z6 6.6294‬ 6.256528 5.54231302 6.42230364 6.24454 6.31343

–x7=x8 1.7526‬ 1.4267688 1.47321016 1.38481562 1.48874 1.57753

z7=z8 8.0264 9.049004 8.18457088‬ 9.49992004‬ 8.41565 8.47303

–x9=x10 1.4224 1.2318492 1.3055981‬ 1.01149404 1.28438 1.35863

z9=z10 10.5156‬ 11.083798 10.19969004‬ 11.27623094‬ 10.42634 10.51832

–x11=x12 1.27 1.076198 1.1902567‬ 0.78606396‬ 1.13681 1.16915

z11=z12 11.7602 12.462764 11.64087334 12.49665014‬ 12.11689 12.39012

–x13=x14 1.3716 1.056894 1.1909679‬ 0.93369638‬ 1.16057 1.10920

z13=z14 13.3096 13.234416 13.4075805‬ 12.954 13.06673 13.01564

–x19=x20 2.5146‬ 2.4209248 2.49742706 1.97271894 2.27745 2.35978

z19=z20 16.0274 15.900146 2.49742706 15.74523394‬ 16.07176 16.11410

–x21=x22 0.0254 0.03562604 0.41237916‬ 0.44897802 0.00001 0.00001

z21=z22 14.9098 15.172944 15.51557984 15.21183394 15.01564 15.06398

Weight, kg 873.524‬ 848.990 865.831 849.054 830.736 835.403



Applied mechanics

17

6. Discussion of the obtained results of the optimization 
calculation

The reliability of the obtained results of the optimiza-
tion calculation (Tables 2, 3) is confirmed by the rigor and 
correctness of the mathematical model of the optimal design 
problem for the class of structures under consideration. In 
addition, the reliability of the obtained results is confirmed 
by the stability of the obtained numerical solutions in rela-
tion to the initial data and the analysis of the convergence of 
the iterative search process.

The considered problem of optimal design of a 47-bar tow-
er structure was also solved in works [9, 19–25]. At the same 
time, various optimization methods and procedures were used 
(genetic algorithms and their modifications; Jaya algorithm; 
optimization method based on group search; particle swarm 
method and its modifications; teaching-learning based opti-
mization algorithm, etc.). Tables 2, 3 show a comparison of 
the results of the optimization calculation of the 47-bar tower 
structure. As can be seen from the results, the optimal project 
solution of the tower, obtained using the proposed approach, 
is better compared to the optimization results reported in 
[9, 19–25]. Therefore, when the search for the optimum is 
performed in a mixed space of design variables, gradient meth-
ods in connection with the proposed discretization procedure 
provide a better result compared to the results obtained using 
metaheuristic optimization methods.

The discretization of the design variables, the variation 
of which must be performed according to the given numeri-
cal sets of possible values, was performed step by step. With 
each fixation of a discrete variable, residuals in the con-
straints accumulates in the structure (reserve of load-carry-
ing capacity – strength, stability, etc.). After each fixation 
of some discrete variable, further variation of the continuous 
type variables (in the considered problem of variable param-
eters of the structural geometric scheme) made it possible to 
reduce these residuals to a minimum. This explains the best 
optimal solution obtained in the optimization problem of 
the 47-bar tower structure compared to the results obtained 
using metaheuristic optimization methods.

It should be noted that the presented methodology for op-
timizing the parameters of the geometric scheme and cross-sec-
tional dimensions applies only to the case of truss structures. 
However, the proposed procedure of discretization of the op-
timal design solution, obtained in a continuous space of design 
variables, is universal and can be applied to other types of rod 
structures. Its only limitation is the need to differentiate the ob-
jective function according to (29), which requires the continu-
ity of this function around the point of a continuous optimum.

The disadvantage of the proposed discretization proce-
dure of the optimal design solution, obtained in a continuous 
space of design variables, is the need to perform numerical 
differentiation, which requires a significantly greater num-
ber of repeated static calculations of the structure. On the 
other hand, the proposed gradual discretization of the vari-
ables, the variation of which should be carried out according 
to the given numerical sets of possible values, significantly 
increases the number of iterations when searching for the 
optimum point. However, at today’s stage of computer tech-
nology development, when applying technologies of parallel 
computing and multi-core processors, it can be seen that this 
shortcoming will not need to be eliminated.

The further development of our study may consist in ex-
panding the mixed space of design variables by assigning bina-

ry variables, which during the search for the optimum point can 
take only binary values. This will make it possible to consider, 
in particular, the topology structural optimization problem.

7. Conclusion 

1. We have stated the problem of finding the optimal 
parameters of the geometric scheme of the truss structures 
and the dimensions of the cross-sections of their elements. 
At the same time, the vector of design variables is of a mixed 
type, i.e., along with variables of a continuous type, there are 
variables whose variation must be performed according to a 
given set of possible values.

2. For the stated class of problems, it is proposed to 
search for the optimal solution in a continuous space of de-
sign variables. An algorithm for solving the problem of para-
metric optimization of rod structures has been developed us-
ing the method of projecting the objective function gradient 
onto the surface of active constraints with the simultaneous 
elimination of residuals in the violated constraints.

3. For design variables, the variation of which must be per-
formed in accordance with a given set of possible values, a dis-
cretization procedure of the optimal design solution obtained 
in the continuous space of design variables has been developed. 
A feature of the proposed methodology is the step-by-step 
discretization of variables, the order of which is determined by 
the components of the gradient vector of the objective function.

4. The comparison of the results of the optimization 
calculations reported in the current paper proved that in 
the case of a mixed space of variables, gradient methods in 
combination with the proposed discretization method pro-
vide a better optimal solution – located closer to the point 
of a continuous optimum. At the same time, the obtained 
optimum was compared with the results reported by other 
authors when applying various metaheuristic algorithms. 
On the considered problem of parametric optimization of a 
47-bar tower structure, a design solution with a weight of 
835,403 kg was obtained, which is 1.53...4.6 % better than 
the optimal solutions obtained by other authors.
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