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1. Introduction

The effectiveness of new rolling technologies is largely 
determined by the ability to solve issues related to increas-
ing mill productivity, reducing energy consumption, and 
improving the quality of rolled products. In most cases, this 
is a controversial and poorly solved problem. The complexity 
of this task increases many times if it is necessary to imple-
ment it simultaneously across the entire range of changing 
production conditions and parameters.

The reason for this complexity is largely the lack of 
knowledge of the features, effects, and processes that de-
termine the interaction of the lagging and advance zones 
in a single deformation zone. The interaction of the zones 
manifests itself in the fact that changes in kinematic and 
force parameters in a local zone lead to changes in the pro-
cess parameters of the entire deformation zone. The effect 
of asymmetric interaction of multidirectional zones in a 

single deformation zone occurs. The total effect of interact-
ing zones can be different and adjustable.

Issues of process sustainability are a controversial phe-
nomenon. One of the options may be processes with negative 
or zero advance, interaction parameters determined by the 
limiting focus of deformation.

Hereafter, the limiting zone of deformation will be con-
sidered, which corresponds to the process of loss of stability 
or the process of strip slipping in rolls.

In relation to this task, interaction effects are difficult to 
track, for various reasons, to show their attractive sides and 
the possibilities of their use. Research into development of 
new approaches to solving problems in the theory of rolling, 
taking into account their clarity, is relevant. Under these 
conditions, the most appropriate is a theoretical analysis 
based on modern generalized schemes for solving problems 
in continuum mechanics, including the theory of plasticity, 
with minimal simplifications and assumptions.
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The plane problem of rolling theory is analyt-
ically solved using the method argument of func-
tions of a complex variable. The solution to the 
plane problem has been strengthened from the point 
of view of the asymmetry of the process, which 
made it possible to consider the applied problem as 
the interaction of differently directed zones in the 
deformation zone. The interaction of lagging and 
advancing zones is represented as a combination of 
multidirectional processes in a single deformation 
zone. With a change in kinematic, power character-
istics in local zones, the process parameters change 
in the entire deformation zone. Stressed states of 
intermediate loading schemes between stable and 
unstable rolling are considered. A feature of the 
interaction of zones with the opposite flow of metal 
is the analogy with the action of back tension on the 
deformation zone in literally all parameters - this is 
the presence of tensile stresses in the lagging zone, a 
decrease in local specific pressures, a shift in maxi-
mum normal stresses towards the exit from the rolls, 
a change in the length of the advance zone, reduc-
tion in rolling force.

The studies confirm and repeat the general-
ly accepted provisions of the theory of rolling but 
reveal the effects of changes in the stress state under 
different loading models.

The results of the work make it possible to deter-
mine the modes of rolling processes visually and 
computationally under conditions of strong and 
weak interaction of zones with an oppositely direct-
ed metal flow.

The effects of plastic deformation with a decrease 
in the total effort in the processes that are within the 
reach of the limiting focus of crimping under condi-
tions of increasing kinematic load when the gripping 
angles vary between 0.077…0.168 are given

Keywords: loading asymmetry, counter-direc-
tional metal flow, plane problem, effects of plastic 
deformation

UDC 539.3
DOI: 10.15587/1729-4061.2023.293842

Received date 06.10.2023

Accepted date 08.12.2023

Published date 28.12.2023

mailto:naumenko.o.h@nmu.one


Applied mechanics

67

2. Literature review and problem statement

When rolling, the determining factor is the gripping 
ability of the rolls, on which the further course of the entire 
process depends.

Theoretical studies [1, 2] of rolling processes under a sta-
ble mode, taking into account internal and external forces, 
confirm the possibility of the rolling process with a negative 
advance [3].

At the contact, powerful shear deformations occur in the 
form of relative sliding of the metal along the surface of the 
rolls. This significantly changes the kinematics of the flow 
of the plastic medium. Features of the process appear that 
affect the power parameters, including features of multidi-
rectional metal flow. In [4], the process of localization of 
plastic flow in near-contact layers of metal is considered. 
Based on the mathematical model, a new numerical approach 
is proposed that makes it possible to simulate fully localized 
plastic flow. However, the use of numerical methods in the 
calculation of machines and structures, taking into account 
their interaction with the elastoplastic medium, is largely 
determined by the complexity or even the impossibility of 
analytical calculations due to the complexity of structural 
schemes, heterogeneity of material properties, and uneven-
ness of soil layers. Solving the problems considered in [5] is 
possible only within the framework of numerical methods, 
the most common of which is the finite element method. 
Some ways to overcome such difficulties are proposed in [6] 
using a procedure for constructing computational models of 
joint deformation and the mutual influence of rigid struc-
tures and the plastic external environment.

The requirements for controlled rolling technologies 
complicate the production process. Rolling accuracy de-
creases and metal consumption increases. In this regard, 
technologies are needed that reduce the rolling force. There 
is a need to devise new theoretical approaches.

The evolution of the theory is moving towards the de-
velopment of generalized methods for solving problems of 
continuum mechanics, identifying the features of the stress 
state under different physical, boundary, and extreme load-
ing conditions of the metal. Paper [7] describes well-known 
models of the behavior of a solid deformable body, represent-
ed in a systematic form: elastic deformable body, viscoelastic 
deformable body, plastic and fluid models.

With the rapid development of technology, the boundary 
conditions of many applied problems become more complex, 
which necessitates the expansion and complexity of pro-
cess models, finding not the solutions themselves but the 
conditions for their existence and generalizations. In this 
regard, an important circumstance is the response of the 
literature to the problem of generalizations in the theory of 
differential equations. Generalized solution methods include 
variational principles of mechanics, tested in many theoret-
ical studies, which are used in different areas of continuum 
mechanics [8]. A rather long recalculation complicates the 
analysis of solutions, which becomes more complicated 
upon further consideration. In addition, the finite element 
method may not always be sufficient to ensure the reliability 
of the obtained result due to simplifications in the theory 
of solving the variational problem itself. The finite element 
method is largely based on variational principles of me-
chanics. In [9, 10] it is shown that varying the displacement 
functional corresponds to solving only differential equilibri-
um equations and the corresponding boundary conditions. 

Varying the functional across stresses meets other criteria of 
the problem. The reliability of the result in accordance with 
the data from [11] occurs when a closed variational problem 
is solved. From the point of view of the approach of a closed 
variational problem, the variation of the functional should 
be carried out both in terms of displacements and stresses, 
which is not often implemented in practice due to computa-
tional difficulties.

The mathematical theory of plasticity is based on certain 
ideas, covering its range of applied problems, and allows 
one to generalize these solutions with approaches that are 
inaccessible to other schemes [12]. The issue is the nonlin-
earity of problems in plasticity theory, including boundary 
conditions, and the complexity of their analytical solution 
and generalization.

In [13], based on the modified theory of pair stresses, 
a mathematical model of Euler-Bernoulli beams was devel-
oped, and the deformation theory of plasticity was applied. 
For metal beams, taking into account geometric and physical 
nonlinearity, the phenomenon of changing boundary condi-
tions, i.e., structural nonlinearity, was discovered. This is 
close to the processes considered in our study.

In [14], metal loadings during plastic deformation are 
examined. But loads can be considered somewhat more 
broadly, for example, asymmetrical and symmetrical, which 
narrows the range of issues to be resolved.

When stating problems in mechanics, systems of equations 
are considered that can be classified as equations of mathe-
matical physics. First of all, these are hyperbolic, elliptic, and 
parabolic partial differential equations. Methods for solving 
them include separation of variables, characteristics, Riemann, 
Fourier, d’Alembert methods, integral transformations.

The closed problem of plasticity theory was proposed 
in [15]. The method of argument of functions of a complex 
variable is used, which is generalized to various problems of 
continuum mechanics. The method linearizes the solution 
using various substitutions that can close the problem using 
two functions designated by the argument. But the authors 
did not fully develop the theory of asymmetric loading, 
which limits the result and does not allow taking into ac-
count the peculiarities of the interaction of zones with the 
opposite flow of metal.

Many solutions to the theory of plasticity and elasticity 
use the method of stress functions [16], which shows a reli-
able result (it can be effectively used, with certain simplifi-
cations, as a test of the theory of argument of functions of a 
complex variable).

Paper [17] shows inconsistencies between the stressed 
and deformed state of a plastic medium due to mismatch of 
fields. Solutions are shown that make it possible to eliminate 
the contradictions between theoretical and experimental 
data due to the identified effects of twisting of conjugate 
slip planes. Such approaches are productive because they 
allow one to imagine the process of plastic deformation in a 
new way, but they still require improvement. Processes with 
effects with multidirectional flow of metal during rolling 
are proposed in a new way, allowing one to obtain not only 
theoretical, but also practical results.

Work [18] reports the analysis of differences in the nature 
of plastic fracture of plates under plane tension in the far zone 
and plane strain bending. A critical understanding of this 
problem is provided based on the results of a detailed numer-
ical study of fracture tests using the Gurson material model. 
This is especially true for large-scale industrial applications.
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In [19], transition conditions for additional variables are 
used (analogy of function arguments). This makes it possible 
to relate different types of differential equations. The fact 
that this idea is used is important. However, it is not extend-
ed to other generalized approaches (for example, finding 
conditions for the existence of solutions). Work [20] shows 
cyclic loading in the case of simple shear, which finds a corre-
sponding response of internal stresses. A basic trigonometric 
function is introduced into consideration. Its capabilities are 
shown when boundary conditions change. But there is no 
correspondence between it and other basic functions.

Article [21] provides an example of using the argument of 
a function as a coordinate one, which significantly expands 
the possibilities of the solution. In the future, they can be 
used as closing functions of the problem being solved. How-
ever, the proposed approaches only consider two extreme 
states: these results do not take into account the three-di-
mensional nature of the structures.

In [22], loading at the base of a certain discontinuity 
was studied. The heterogeneity of the stress state was char-
acterized by trigonometric and exponential expressions. A 
simplified analytical method is proposed that approximates 
the actual elastic-plastic behavior of the material. The com-
bination of functions allows one to expand the scope of their 
application through simplification of boundary conditions. 
All this allows us to assert that it is advisable to conduct a 
study to consider the influence of various factors on the force 
and deformation parameters of the rolling process.

Work [23] shows a solution to one of the main problems 
of engineering design: predicting the behavior of a material 
during fracture using a fundamental substitution. In arti-
cle [24], when solving a similar problem, it is proposed to 
take into account the design features of the part.

However, the purpose of the proposed substitution in the 
last two works is different. The use in [24] of one argument of 
the exponential dependence function does not allow its use 
in solving the problem.

The heterogeneity of the stress-strain state negatively 
affects the strength characteristics and durability of prod-
ucts [24, 25]. But as a result of the action of inhomogeneities, 
combinations of features are possible, leading to the effects of 
shape changes and loading of the tool.

Work [26] shows the R-function method, which can be a 
justification for the function argument method. However, it 
is further shown that its use is involved in other schemes, for 
example in the variational principles of mechanics. Differen-
tial relations for transition from one variable to another are 
used, but they are not applicable for generalizations using 
arguments of functions.

Work [27] demonstrates how the boundary conditions 
of the problem are mathematically justified based on the 
collocation method. Their determination is a problem in 
continuum mechanics. In addition, the nonlinearity of the 
boundary conditions does not allow one to find options for 
transformations in the solutions themselves.

In dynamic problems of the theory of elasticity, a wave 
equation of the hyperbolic type is often used. However, the 
function argument method proposed in [15] was used to 
solve another hyperbolic type equation in a dynamic prob-
lem. Generalized approaches to solving these equations were 
obtained using the Cauchy-Riemann differential relations, 
which made it possible to specify d’Alembert’s result [28].

In the Cartesian coordinate system, a solution to the prob-
lem of the theory of elasticity was proposed, also using the 

method of arguments of functions of a complex variable [29]. 
Another type of differential equations was worked out. An 
applied problem of the theory of elasticity under loading of a 
semi-infinite space is shown. The simplest Cauchy-Riemann re-
lations led to complete coincidence of the final result obtained 
using the stress function method proposed by other authors.

A similar approach was applied to solving the problem 
of elasticity theory in polar coordinates [30]. The system of 
staged equations is represented by other differential equa-
tions, where the defining equation, as in [29], is the Laplace 
equation. The argument method of functions of a complex 
variable was used. There are greater opportunities to satisfy 
more complex boundary conditions. Works [26, 27, 29, 30] 
are presented as fundamental for solving plane problems of the 
theory of elasticity using the method of argument functions. 
As a continuation of studies [28–30], the theory was refined 
and the applied problem of the action of a transverse force at 
the end of a console with a rigid embedment was solved [31]. 
Some difficulties arose in satisfying the stress boundary 
conditions. However, when the solution was complicated by 
introducing a hyperbolic cosine, the sine for the second argu-
ment of the function, the boundary conditions were satisfied. 
An interesting final result was obtained, a gradual reduction 
in the load at the end of the beam, affecting the overall stress 
state, which is confirmed by the Saint-Venant principle.

Our review of the literature [2, 5, 17] reveals that new 
challenges arise related to the latest experimental and the-
oretical research in the mechanics of deformed solids and 
mechanics in general. These statements suggest that there is 
a need to more fully use modern achievements of theory and 
science in solving complex technological problems.

A complex technological problem arises associated with 
the development of rolling schemes, in which it is possible 
to simultaneously increase the reduction and reduce the 
strength characteristics of the process. In this case, the gen-
eral unsolved task is the discovery of the effects of plastic 
deformation, which makes it possible to implement a control 
effect on the deformation zone.

3. The aim and objectives of the study

The purpose of this work is to determine the patterns of 
influence of the interaction of areas of a single deformation 
center with the counter-directional flow of metal, the effects 
of the gripping ability of the rolls, on the force parameters of 
the process, under conditions of changing deformation load-
ing. This will make it possible to use an effective approach 
to visually study the stress-strain state of the metal, taking 
into account intermediate schemes, multidirectional force, 
and deformation loading modes.

To achieve the goal, the following tasks were set:
– to build a physical and mathematical model of a plane 

problem of rolling theory under conditions of changing 
asymmetric interaction of zones with counter-directional 
flow of metal;

– to investigate and identify the features of plastic 
deformation with two-zone and single-zone deformation, 
changing interaction of areas with counter-directional flow 
of metal, the effects of the influence of the gripping ability of 
rolls on process parameters;

– to analyze the stressed state of the metal in the area of 
reach of the limiting source of deformation with increasing 
deformation loading.
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4. The study materials and methods

The object of our study is the stressed state of the metal 
under conditions of a two-zone and single-zone deformation 
zone. The changing interactions of areas with counter-di-
rectional flow of metal, including in the area of reach of 
the limiting deformation zone with increasing deformation 
loading, are analyzed.

The research hypothesis is to confirm, within the frame-
work of solving the problem, the asymmetry of the inter-
action of zones with counter-directional flow of metal in a 
single deformation zone.

The assumptions are presented as follows. The asymme-
try of interaction between zones of a single deformation zone 
and the counter-directional flow of metal is introduced into 
consideration. The conditions of a two-zone and single-zone 
deformation zone in the region of reach of the limiting 
deformation zone with increasing deformation loading are 
considered.

Loading and asymmetry of interaction are determined 
by technological production factors: the deformation zone 
shape factor, contact friction, and other parameters. The 
shape factor l/hav must be within 1…15. This is especially 
true for large values, because when rolling a thin strip, the 
stressed state of the metal is more “sensitive” to external 
influences and the manifestation of the effects of plastic 
deformation. The friction coefficient is assumed to be in the 
range of 0.05...0.5, which allows one to adjust the load over 
a wide range. The computational model of the process must 
respond to physical processes with counter-directional 
flow of metal, under conditions of a single-zone and two-
zone deformation zone. To do this, it is necessary to obtain 
a new solution to the problem that takes into account the 
increasing asymmetry of loading. It is necessary to show a 
physical model of the process that explains the appearance 
of the effects of interaction of zones with counter-direc-
tional flow of metal, to build a mathematical model that 
responds to a single-zone deformation zone and the avail-
ability of process stability to force and deformation loading 
parameters.

5. Results of determining the patterns of asymmetric 
interaction of the plastic medium with the counter-

directional flow of metal

5. 1. Construction of a mathematical model of a plane 
problem of rolling theory under conditions of asymmetric 
interaction of zones

The determining influence of the lagging zone through 
tensile stresses on the force parameters of the process 
with a change in compression is shown in [32, 33]. The 
stressed state of the metal under conditions of strip slip-
ping is characterized. In this case, the diagram of normal 
contact stresses has a dip along the entire length of the 
deformation zone, and the stress state coefficient is less 
than unity in this section. A pressing issue is confirmation 
of the reliability of the results obtained. To enhance the 
reliability of the result, there is a need to use fundamental 
approaches in solving problems of continuum mechanics 
and, in particular, the theory of plasticity. One of the 
fundamental approaches in mechanics is the direction 
associated with finding the result in a closed form. In this 
case, the solution in stresses must be confirmed by solu-

tions to the problem in strain rates or strains, a solution to 
the heat conduction equation, and boundary conditions. 
If the problem can be closed with generalizing functions 
and a mathematical model of a changing plastic medium 
can be obtained, then, according to the authors of [9–11], 
the reliability of the proposed solution is ensured. In ac-
cordance with this, the closed problem of plasticity theory 
is considered.

In [15], a closed plane problem of plasticity theory was 
stated and solved. The statement of the closed problem is a 
system of equations of the plane theory of plasticity, includ-
ing the heat equation:
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where σx is normal stress; τxy – tangential stress; k – resis-
tance to plastic shear deformation (variable value); ξx, ξy, 
γxy – linear and shear strain rates; t is the temperature of the 
metal at a given point.

The boundary conditions are specified in stresses and 
hence in strain rates:

( ) ( )sin 2 cos 2 ,
2

x y
n xy

σ −σ 
τ = − ⋅ φ − τ φ 

 

( ) ( )2 sin 2 cos 2 .
2

x y
n xy

ξ −ξ 
γ = − ⋅ φ − γ φ 

 
  ,

where γn is the shear strain rate characterizing the boundary 
condition; τn – tangential stress characterizing the boundary 
condition.

On the basis of a closed solution, an applied problem of 
the theory of plasticity is proposed, which makes it possible 
to demonstrate the capabilities of the method of argument 
of functions of a complex variable. More complex physical 
processes of rolling production associated with the count-
er-directional flow of metal under conditions of complex 
asymmetric loading are considered. Considering that the 
stressed state of a plastic medium is analyzed, the solution 
is represented in stresses, which simplifies the statement of 
the problem:
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From equations (1) it is clear that the number of un-
knowns is equal to the number of equations. The expression 
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for determining the intensity of tangential stresses of a plane 
problem is written for further transformations in the form:

( )2 21
4 .

2i x y xyT = σ −σ + τ 			   (3)

Using (3), we can write down the difference in normal 
stresses and, taking into account (1), obtain a generalized 
equilibrium equation [29]:

2 22 ,x y i xyTσ −σ = − τ 				    (4)

22 2 2

2 2
2 1 .xy xy xy

i
i

T
x y x y T

∂ τ ∂ τ τ ∂
− = ± − 

∂ ∂ ∂ ∂  
		  (5)

To go to the plasticity expression (1), it is necessary to 
use the Huber-Mises condition in the form:

.iT k= 		

In this case, there is nonlinearity, both in the boundary 
conditions (2), (4), and in the differential equation (5), 
which is fundamental for determining the tangential stress-
es. Dependences (4), (5) can be linearized, i.e., simplified, 
using trigonometric substitution:

sin ,xy

iT

τ
= ΑΦ 					     (6)

where АФ is an unknown function, considered as the first 
argument of the solution function. Taking into account (6), 
we have simplifications of the boundary conditions and lin-
earization of equation (5):

( )sin 2 ,n iTτ = − ΑΦ− φ 				    (7)

( ) ( )2 2 2

2 2

sin sin
2 cos .i i

i

T T
T

x y x y
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∂ ∂ ∂ ∂
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In accordance with [31, 34], for linear partial differential 
equations we use a fundamental substitution of the form:

exp ,iT Cσ= θ 					     (9)

where θ is an unknown function, considered as the second argu-
ment of the problem function. A distinctive feature of fundamen-
tal substitution (9) from [34] is that this function is not specified 
but determined. Expression (9) has worked well for solving 
symmetric problems [15], however, with different boundary 
conditions at the ends, it is not possible to link the solution into 
a single mathematical model under asymmetric loading. In this 
case, it is advisable to use in the solution not the constant value 
Сσ in the product (9) but to switch to a variable, i.e.:

exp ,iT Hσ= θ 					     (10)

where Hσ is an unknown coordinate function determined in 
the process of obtaining the final result.

For the desired functions of equation (8), the tangential 
stress, in combination with (6) and (10), can be represented:

exp sin .xy Hστ = θ ΑΦ
				  

(11)

With the introduction of two argument functions, the 
statement of the problem changes somewhat; its statement 
can be as follows: what conditions must the argument func-
tion of expression (11) meet in order to close the solution to 
the problem, turning equation (8) into an identity.

As further analysis shows, the optimal solution approach 
is to use a complex variable function [35]. Let us represent 
the tangential stress (11) in the form:
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τ = 		  (12)

The right-hand part of expression (5):
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The sequence of determining the tangential stress func-
tion of equation (8) is considered in detail. Taking into 
account (12), the second derivative with respect to the x 
coordinate of equation (8) is determined:
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where θxx, (Hσ)x, АФx are partial derivatives with respect 
to the x coordinate. The mixed derivative of the right-hand 
part of the generalized equilibrium equation when substitut-
ing (13) will be written:
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= 
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
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.

 
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 
 
  
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(15)

Using expressions (14), (15) in equation (8), taking into 
account the second derivative of the y coordinate, we have:
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	 (16)

In the operators of both exponentials of equation (16), 
the same brackets (θx+АФy) and (θy–АФx) appeared in 
the process of transformations. Moreover, these brackets 
create nonlinearity, and it is quite reasonable to take them 
equal to zero. As a result, we arrive at the Cauchy-Rie-
mann relations of the form:

,x yθ = −ΑΦ  

.y xθ = ΑΦ 				    (17)

Moving on to the second derivatives in ratios (17), we get:

0,xx yyθ + θ =  

0.xx yyΑΦ +ΑΦ = 			   (18)

These are Laplace’s equations, the solutions of which 
are harmonic functions. Using relations (17), (18), the 
problem of identifying the arguments of the functions 
θ and АФ is eliminated. It should be added that dif-
ferential relations (17), (18) are generalized invariant 
characteristics (conditions) [26], which make it possible 
to close the problem for equation (8). After substitu-
tion (17) and simplifications, differential equation (16) 
takes the form:
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One can show that the operators in square brackets are 
zero, that is:

2 0,xx yy xyθ −θ + ΑΦ =
 

2 0.xx yy xyΑΦ −ΑΦ − θ =
	

Hence:

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ){
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exp 2 0.
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xx yy xy
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σ σ σ

σ σ σ

 θ+ ΑΦ − − −

 − θ− ΑΦ − + = 	 (19)

Under the condition Hσ=Cσ=const, equation (19) turns 
into an identity because partial derivatives of constant quan-
tities are equal to zero. One of the solutions to the system of 
differential equations (19) for the function Hσ may be the 
expression:

0 12 2 ,

l l
C x C x

H
lσ

   − + +   
   = 			   (20)

where C0, C1 are constants that determine unequal stresses 
at the entrance and exit from the deformation zone; l is the 
length of the deformation zone.

It should be emphasized that the function introduced 
into the consideration has a special purpose associated with 
describing the asymmetry of the plastic interaction process. 
As a result, an analytical solution of the inhomogeneous, 
nonlinear second-order partial differential equation (8) was 
obtained:

exp sin ,xy Hστ = θ ΑΦ 				    (21)

provided:

,x yθ = −ΑΦ
 

,y xθ = ΑΦ
 	

0,xx yyθ + θ =  0.xx yyΑΦ +ΑΦ =  

The attractiveness of expression (21) is that not the 
solutions themselves to differential equations (8), (16) are 
obtained but the conditions for their existence.

Further, it should be noted that the introduction of 
the function Hσ into consideration turned out to be a suc-
cessful mathematical technique since in the differential 
equation (16) the unknown derivatives of this variable 
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with respect to coordinates were combined with the Cau-
chy-Riemann relations. This made it possible to exclude 
them from further consideration and simplify the task.

From the equilibrium equations (1), with a known 
functional dependence (21), it is possible to determine the 
normal components of the stress tensor. From the equilib-
rium equations [32, 36] taking into account the deviatoric 
component:

( )
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exp cos

y

x
y

y

H

H
x

H

σ

σ

σ
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∂  

+ ΑΦ θ ΑΦ  
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H
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σ

σ

σ

 θ ΑΦ+
∂ σ −σ  

= − + θ θ ΑΦ+ 
∂  + ΑΦ θ ΑΦ  

After separating the variables and integrating them, let’s 
write:

( )1 0exp cos ,x H T f yσ ′σ = θ⋅ ΑΦ − +σ +

( )2 0exp cos ,y H T f xσ ′σ = − θ ΑΦ− +σ +

where:

( ) ( )1 exp cos exp sin d ,
y x

T H H xσ σ
 = θ ΑΦ+ θ ΑΦ ∫

( ) ( )2 exp cos exp cos d .
x y

T H H yσ σ
 = θ ΑΦ− θ ΑΦ ∫

It can be shown that they can be taken as equals:

1 2 .T T T= =

In this case, the normal stresses are as follows:

( )0exp cos ,x H T f yσ ′σ = θ ΑΦ− +σ +

( )0exp cos .y H T f xσ ′σ = − θ ΑΦ− +σ +

Taking into account the plasticity condition, another 
dependence can be obtained:

( )exp cos ,x H f yσσ = − θ ΑΦ+  

( )3 exp cos .y H f xσσ = − θ ΑΦ+

This is realized due to the average stress 0′σ , equal to:

0 2 exp cos .H Tσ′σ = − θ ΑΦ+
			   (22)

To substantiate expression (22), it should be emphasized 
that in the closed system of equations the condition of continu-
ity of deformations is used, which in the spherical form of the 
stress state is determined by the following equation [28, 29]:

2 2
2 0 0

0 2 2
0.

n n
n

x y

′ ′∂ σ ∂ σ′∆ σ = + =
∂ ∂

			   (23)

This is Laplace’s equation, denoted in the solution 
by equations (18). As the analysis shows, the solution to 

equation (23) can be dependence (22) provided that the 
argument functions of the Cauchy-Riemann relations are 
satisfied, i.e.:

0 2 exp cos ,H Tσ′σ = − θ ΑΦ+

at:

,x yθ = −ΑΦ  ,y xθ = ΑΦ  		

0, 0.xx yy xx yyθ + θ = ΑΦ +ΑΦ =
		

As a result, using the method of argument of functions 
of a complex variable, an analytical solution to the plane 
problem of the theory of plasticity under stress was obtained, 
taking into account the variable value of Hσ:

( )0exp cos ,x H f yσσ = θ ΑΦ+σ +

( )0exp cos ,y H f xσσ = − θ ΑΦ+σ +

exp sin ,xy Hστ = θ ΑΦ

0 exp cos ,nHσσ = θ ΑΦ

at:

,x yθ = −ΑΦ
 

,y xθ = ΑΦ
 

0, 0.xx yy xx yyθ + θ = ΑΦ +ΑΦ = 	 (24)

The value of boundary conditions lies in the fact that 
they are different at the input and exit from the source of 
deformation (asymmetry). In the substitution we have:

0 0
0

0 0

,
exp cos

k
C

ξ
=

θ ΑΦ
1 1

1
1 1

,
exp cos

k
C

ξ
=

θ ΑΦ
 

0 0tan ,ψ = ΑΦ  1 1tan ,ψ = ΑΦ  

where АФ0 and АФ1, θ0 and θ1, k0 and k1, ξ0 and ξ1 – the val-
ue of the functions АФ and θ, shear resistance; coefficients 
that take into account the influence of support and tension 
during rolling at the entrance and exit from the deforma-
tion zone.

For further analysis, it is necessary to determine the ar-
gument of the function АФ and θ. Having solved the Laplace 
equations, we reconcile them with the Cauchy-Riemann 
conditions. We have the first argument function for the trig-
onometric relationship:

( )

( )

6 6

6 0 0

6 0 0

2
2 2

2

2 ,
2

l l
x y x y

l
x X X y

l
x X X y

   ′ ′ ′′ΑΦ = ΑΑ + −ΑΑ − − φ =   
   

  ′= ΑΑ − + + +  
  

  ′′+ΑΑ − − − − φ  
  

		  (25)

where φ=(l–x)/R – angle of inclination of the contact area; 
X0 – position of the neutral section relative to the origin; 

6,′ΑΑ  6′′ΑΑ  – constants that determine the values of trigono-
metric functions along the edges of the deformation zone. 
For example, given boundary conditions; x=l/2, y=h1/2, 
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φ=0, АФ’=АФ1–α, at x=–l/2, y=h0/2, φ=α, АФ’=–АФ0 the 
integration constants are determined:

1
6

1

2 ,
lh

ΑΦ −α′ΑΑ =  0
6

0

2
2 .

lh
ΑΦ + α′′ΑΑ = 		  (26)

As the analysis shows, expressions (26) to some extent 
characterize the interaction of the lagging and advance 
zones. Taking into account the Cauchy-Riemann relations 
and Laplace equations (17), (18), the function θ is found. 
We have:

( ) ( )

( )( )

2 2
6 6 0

6 6 0

1
2

.lag adv

x X y

l l x X

 ′ ′′θ = − ΑΑ +ΑΑ + − − 

′ ′′− ΑΑ −ΑΑ − 		  (27)

Taking into account (25) and the boundary conditions, 
a neutral angle shall be determined showing the position 
of the neutral cross-section at the contact at the source of 
deformation:

( )
1

0

.
12 2 1
2

ΑΦ −αα
γ =

 ΑΦ + α − ε 
 

			   (28)

The analysis shows that it is possible to accept:

( )1 0 ,f a bfΑΦ = ΑΦ = − 				   (29)

where α is the grip angle; ε – relative compression; f – fric-
tion coefficient; a, b are constant coefficients; as a first 
approximation, a=b=1 can be taken. Using expression (27), 
taking into account the boundary conditions, allows us to 
find the constants θ0 and θ1:
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′ ′′+ ΑΑ −ΑΑ 	

By substituting the value for the expression Ci, taking 
into account (25) to (29), we obtained working formulas 
for calculating the stressed state of the strip during rolling, 
including for a single-zone deformation zone (with limited 
gripping ability of the rolls):

( ) ( )0 1
0 1

0 1
0

exp exp
cos 2 cos 2
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k kl l
x x

k
l

   − θ−θ + + θ−θ   ΑΦ ΑΦ   σ = − ΑΦ+

( ) ( )0 1
0 1

0 1

exp exp
cos 2 cos 2

sin .xy

k kl l
x x

l

   − θ−θ + + θ−θ   ΑΦ ΑΦ   τ = ΑΦ

Mathematical analysis (30) reveals that, taking into 
account the boundary conditions, two damped mutually 
inverse functions penetrating each other appear at the 
edges of the deformation zone, forming overlap zones. 
These overlap zones can influence the distribution of 
generalized functions along the length of the deforma-
tion zone. From the point of view of the physical model, 
the indicated mathematical overlap zones and different 
boundary conditions along the edges of the deformation 
zone analytically characterize the interaction of multidi-
rectional metal flows in a single deformation zone. Using 
formulas (30), the values of relative contact stresses were 
calculated.

5. 2. Studying the features of plastic deformation under 
conditions of a two-zone and single-zone deformation zone

Fig. 1, 2 show diagrams of contact normal and tan-
gential stresses for processes with different values of the 
friction coefficient f and the shape factor l/hav. Relative 
stresses are designated as σy/2k and τxy/k, relative length 
of the deformation zone x/l. The external influence is rep-
resented by parameters through the friction coefficient and 
the deformation zone shape factor. Fig. 1 shows the stress 
distribution along the length of the deformation zone de-
pending on the friction coefficient.

Tangential stresses represent a two-zone and single-zone 
source with a minimum friction coefficient of 0.05. In the 
lag zone, the normal stress diagrams mainly have a concave 
shape, which is characterized by a weakening of the load in 
the area; in the advance zone – convex, which is character-
ized by increased load. This leads to increased asymmetry 
of contact stresses between the lagging and advance zones 
within a single deformation region. The tangential stresses 
in the lagging zone are indicated by maximum values and 
advance zones of varying lengths.

Fig. 2 shows the stress distribution along the length of 
the deformation zone depending on the shape factor l/h. As 
it increases, several parameters of the diagrams change. The 
magnitude of the stresses increases, and the shape of the 
stress diagrams changes significantly.

The maximum values of normal stresses shift towards 
the entrance to the deformation zone, and the tangential 
stresses in the lag zone also shift in the same direction. The 
length of the advance zone is the same for all loading modes. 
In general, such qualitative indicators of the distribution of 
contact stresses are known and supported by experimental 
studies [37, 38]. The peculiarity of our data is that the the-
oretical problem was solved for a single deformation zone, 
which increases the reliability of the result (30).

The presented distribution of contact stresses is con-
firmed by experimental data [37], Fig. 3.

This asymmetry of stress distribution 
is based on a certain physical model of the 
process, characterized by the interaction 
of zones of multidirectional metal flow. In 

the lag zone, Fig. 4, there are buoyant 
contact forces of normal pressure px 
and retractive friction forces τx, which 
are directed in opposite directions, 
causing the appearance of longitudinal 
tensile stresses in the plastic medium.

In the advancing zone, these forces are 
co-directed and located opposite the rolling 
progress, Fig. 4.
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In the first case, there is a decrease in the stressed state 
of the strip; in the second, there is an increase in the influ-
ence of supporting contact forces in the advance zone. With 
increasing compression (decreasing the gripping ability of 
the rolls), the effect of the buoyant force increases, which 
increases the tensile component. The interaction of the 
zones increases; the influence of the supporting forces of 
contact friction in this part of the deformation zone is weak-
ened [32]. At the same time, the deflection of the normal 
stress diagrams increases (decreased contact stresses).

According to Fig. 1, Table 1 gives the results of mea-
surements of the stressed state of the strip depending on the 
external influence associated with the friction coefficient.

Table 1

Results of the strip stress state study at l/h=15.49; 
α=0.077; f=0.05…0.5

Coefficient of friction f 0.5 0.4 0.3 0.2 0.1 0.05

Maximum stress state coefficient nσ 15.9 14.4 10.6 6.5 3.1 1.5

Average stress state coefficient nσ 6.9 6.3 5.0 3.4 1.9 1.1

Parameter f/α 6.49 5.19 3.90 2.60 1.30 0.65

Fig. 1. Distribution of relative contact stresses along the 
length of the deformation zone depending on contact friction, 

at l/h=15.49; α=0.077; f=0.05…0.5: a – distribution of 
normal stresses; b – distribution of tangential stresses
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Fig. 2. Distribution of contact stresses along the length of 
the deformation zone depending on the shape factor 	

at l/h=1.03...15.49; α=0.077; f=0.3: a – distribution of 
normal stresses; b – distribution of tangential stresses
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Fig. 3. Experimental data on the distribution of contact stresses 
as a function of the shape factor ld/hav: a – ld/hav =6.9; 6.1; 

b – ld/hav =4.9; 4.1; c – ld/hav =3.0; 2.0; d – ld/hav =0.9; 042; 
ld – deformation zone length: hav – average height [37]
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When analyzing the data in Table 1 and Fig. 1 some 
features of the process appear. With a friction coefficient 
of 0.05, the stability coefficient of the rolling process is 
less than one and equal to 0.65. With this parameter of the 
stability coefficient, there should be no metal gripping by 
the rolls. This conclusion is confirmed by the tangential 
stress diagram in Fig. 1. A single-zone deformation zone 
is shown (the diagram does not cross the neutral line). At 
the same time, Table 1 and Fig. 1 show that the local and 
general indicators of the stress state are greater than one, 
and accordingly equal to nσ=1.1;1.5. This indicates a stable 
rolling process. There is some contradiction that needs to be 
justified. This phenomenon can be explained by the fact that 
the rolling process is realized with a negative advance, or an 
advance equal to zero [1–3].

Fig. 2, with a friction coefficient f=0.3 shows diagrams 
of the distribution of contact stresses with a change in the 
thickness of the strip, i.e., the shape factor. The friction co-
efficient is significantly greater than the grip angle, which 
eliminates the appearance of a single-zone deformation zone. 
As the shape factor decreases, the contact stresses decrease, 
which corresponds to studies [37] and Fig. 3.

Table 2 gives the results of a study of the stressed state 
of the strip depending on the deformation zone shape factor 
l/hav. Continuing the analysis, we are convinced that there 
are general trends in changes in the stressed state of the 
metal, Fig. 2, Table 2.

Table 2

Results of studying the stressed state of the strip depending 
on the deformation zone shape factor at l/h=15.49…1.033; 

α=0.077; f=0.3

Shape factor l/hav 15.49 11.07 8.61 5.16 3.10 1.03

Maximum stress coefficient nσ 10.6 5.7 4.2 2.2 1.9 1.3

Average stress factor nσ 5.0 3.3 2.6 1.7 1.5 1.2

Parameter f/α 3.90 3.90 3.90 3.90 3.90 3.90

A similar dependence of the influence of the shape factor 
takes place in Fig. 3. Comparative analysis enhances the reli-
ability of the resulting mathematical model (30). The influ-
ence of one more indicator is considered: relative compression 
or grip angle, which is largely decisive when gripping metal 
with rolls. For a correct assessment, processes with the same 
shape factors and sets of friction coefficients, but with differ-
ent grip angles, are considered. Fig. 5 shows the distribution of 

contact stresses depending on the friction coefficient f, with-
out slipping of the rolls, with the same value of the shape fac-
tor equal to 11.07, with a minimum grip angle equal to 0.077.

Table 3 gives the results of a study of the stressed state 
of the strip depending on the friction coefficient for a given 
deformation zone shape factor l/hav.

The general patterns that occur during rolling with 
the shape factor l/h=15.49 are present in processes with 
the shape parameter l/h=11.07. As the friction coefficient 
increases, the stress state coefficients increase. A stable 
process is realized, including a single-zone deformation zone.

Table 3

Results of studying the stressed state of the strip depending 
on the friction coefficient at l/h=11.07; α=0.077; f=0.5…0.05

Coefficient of friction f 0.5 0.4 0.3 0.2 0.1 0.05

Maximum stress state coefficient nσ 7.4 6.9 5.7 4.1 2.5 1.6

Average stress state coefficient nσ 4.0 3.8 3.3 2.6 1.8 1.3

Parameter f/α 6.49 5.19 3.90 2.60 1.30 0.65

Comparing the data in Tables 1, 3, one should pay at-
tention to the differences. In Table 3, at the same friction 
coefficients, the stress state coefficients are lower, which is 
a reliable fact.

The process is considered when the friction coefficient 
is less than the grip angle. In this case, the capture index 

Fig. 4. Strength characteristics of the deformation zone 
during rolling

Fig. 5. Distribution of contact stresses along the length of 
the deformation zone at l/h=11.07, α=0.077 depending on 

the friction coefficient f: a – distribution of normal stresses; 
b – distribution of tangential stresses
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is f/α=0.65. It shows that at a friction coefficient of f=0.05, 
a violation of the stability of the rolling process should be 
expected. And this is confirmed by the diagram of the distri-
bution of contact tangential stresses, in which a single-zone 
deformation zone is indicated, Fig. 5. The diagram of the 
distribution of normal contact stresses shows that with such 
a friction coefficient there are no characteristic signs of 
strip slipping, no signs of concavity of the diagram along the 
length of the deformation zone, including the lag zone. This 
indicates that there is no partial slippage of the strip. This 
contradiction can be explained by the fact that the rolling 
process is possible with a negative advance, or an advance 
equal to zero, [1–3]. It follows that the physical and math-
ematical models (30) take into account this process factor 
and allow them to respond adequately to it.

Analysis of Table 3 provides confirmatory data for the 
adoption of a physical model of the process, which will allow 
one to evaluate the stressed state of the strip during the slip-
ping process. A comparison was made of the normal stress 
diagram (shape factors 15.49 and 11.07, Fig. 1, 5, for a friction 
coefficient of 0.05) and the data given in Tables 1, 3. There is 
a discrepancy between the general tendency of the influence 
of these factors on the stress state in the deformation zone. 
Indeed, with a larger value of the shape factor l/h=15.49, 
the stress state (nσ=1.5;1.1) should be greater than for the 
shape factor l/h=11.07 (nσ=1.6;1.3). However, Tables 1, 3 
show inverse dependences under conditions of a single-zone 
deformation zone. This can be explained from the standpoint 
of the accepted physical model of the process. Near the lim-
iting source of deformation, the influence of buoyancy forces 
increases, and with a decrease in the cross-sectional area of 
the strip (shape factor l/h=15.49), the effect of tensile stresses 
in the lagging zone increases significantly. This causes a de-
crease in contact stresses in this zone and a greater concavity 
of the normal stress diagram, Fig. 1. This leads to another 
conclusion: the concavity of the normal stress diagrams is a 
characteristic of the influence of tensile stresses in the lag-
ging zone, which is reflected in the physical and mathematical 
models of the process.

In continuation of the analysis of the stressed state of 
the metal under the same loading parameters, a process 
with a large capture angle is considered. Fig. 6 shows the 
distribution of normal and tangential stresses that respond 
to the loss of stability of the rolling process, with compa-
rable friction coefficients and grip angles. In this case, the 
compression was increased from α=0.077 to α=0.129, with 
the deformation zone shape l/h=11.04 in the range of friction 
coefficients f=0.05...0.5.

Therefore, the mathematical model (30) must react not 
only to the coefficient of friction, the factor of shape, but also 
to the angle of capture, which increases the possibilities of 
evaluating the process and identifying features.

Table 4 gives the results of a study of the stressed state 
of the strip depending on the friction coefficient for a given 
deformation zone shape factor l/hav. With an increase in the 
friction coefficient, the stress state coefficients increase, as 
was the case in the data in Tables 1, 3. However, comparing 
the results of Tables 1, 3 and Fig. 1, 5, it can be seen that in 
the latter case the stress state coefficients are greater. This 
indicates the response of the model to the grip angle, which 
has increased. In the case of the capture angle α=0.129, 
already two tangential stress curves (f=0.05; 0.1) do not 
intersect the zero line, i.e., already two processes are real-
ized under the conditions of a single-zone deformation zone. 

A process with a complete loss of stability with a minimum 
coefficient of friction has emerged.

Characteristics of the normal stress diagram during loss 
of process stability: minimum friction coefficient f=0.05, 
grip angle α=0.129; parameter characterizing the stability of 
the rolling process f/α=0.39<1; stress factor nσ<1.

Table 4

Results of studying the stressed state of the strip depending on 
the friction coefficient at: l/h=11.04, α=0.129, f=0.05…0.5

Coefficient of friction f 0.5 0.4 0.3 0.2 0.1 0.05

Maximum stress factor nσ 8.9 8.1 6.3 4.1 1.7 0.7

Average stress factor nσ 4.2 3.9 3.2 2.2 1.1 0.6

Parameter f/α 3.88 3.10 2.33 1.55 0.78 0.39

The distribution of contact normal stresses has a clearly 
concave shape along the entire length of the deformation 
zone for nσ less than unity. Tangential stresses define a 
single-zone deformation zone with a margin. With such 
diagrams, rolling with a negative advance is impossible. 
Using this form of the diagram of normal and tangential 
stresses, the process of loss of stability, i.e., metal slipping 
in the rolls, will be determined in the future, Fig. 6. It is 
noteworthy that the mathematical model (30) characterizes 
the distribution of tangential and normal stresses during 
the process of strip slipping in rolls. From a comparison 

Fig. 6. Distribution of contact stresses along the length of 
the deformation zone depending on contact friction, 	

at l/h=11.04, α=0.129, f=0.05…0.5: a – distribution of 
normal stresses; b – distribution of tangential stresses
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of Fig. 5, 6 it is clear that at the same process parameters, 
with increasing compression, the maximum contact stresses 
increased. The deflection of the diagrams in the lag zones 
increases; the peak of normal stresses shifts towards the en-
trance to the deformation zone. However, complete slipping, 
according to [32], occurs when the normal stress diagram is 
realized with a complete concavity of the diagram along the 
length of the deformation zone. In the second single-zone 
deformation zone, stable rolling is realized, in accordance 
with works [1–3]. There is no concavity of normal stresses 
along the entire length.

To identify interaction effects, it is possible to compare 
the data in Tables 3, 4 in progress, with different small 
friction coefficients. Comparing the data with a friction 
coefficient of 0.2 and different grip angles, we have: with 
less compression f=0.2; α=0.077; nσ=4.1;2.2; at a larger 
angle f=0.2; α=0.129; nσ=4.1;2.2. If the local stress state 
coefficients are equal, a smaller angle corresponds to a 
larger average stress state coefficient, and a larger angle 
corresponds to a smaller one. Thus, the coefficients char-
acterizing the interaction of zones with the opposite flow 
of metal decreased by 15.4 %, which is a rather interesting 
fact. Under conditions of changed interaction, the average 
stress state does not increase in accordance with compres-
sion but decreases. This provision will be subsequently 
strengthened.

When moving to the friction coefficient f=0.1, a sin-
gle-zone deformation zone appears, which is confirmed 
by the parameter f/α=0.78, less than unity. Comparing 
the data in Tables 3, 4, we analyze the following values 
of the stress state coefficients: with grip angle α=0.077; 
nσ=2.5;1.8, with grip angle α=0.129; nσ=1.7;1.1. With an 
increase in compression by 40.3 %, the stress state coeffi-
cients decreased by 32.0 % and 38.9 %, respectively. De-
spite the decrease in stress state coefficients, the process 
at a given friction coefficient proceeds without slipping 
of the rolls. This is confirmed by the fact that the stress 
state coefficients in the advance zone are greater than one, 
and there is no dip in the normal stress diagram along the 
entire length of the deformation zone. Thus, according to 
the gripping parameters, we have a single-zone deformation 
zone, and according to the stress state coefficients, a stable 
rolling process, which confirms the previously drawn con-
clusions of [1–3].

Further, comparing the data in Tables 3, 4, with a fric-
tion coefficient f=0.05, we have the process parameters: 
with less compression f=0.05; α=0.077; nσ=1.6;1.3, with 
greater compression f=0.05; α=0.129; nσ=0.7;0.6. The cap-
ture parameter f/α=0.39 shows that there is a single-zone 
deformation zone, Fig. 6 (tangential stresses). The coeffi-
cients of maximum and average support dropped to values 
nσ=0.7;0.6, i.e., to values of both coefficients less than one. 
According to all the given indicators, roll slippage occurs, 
which is shown by the calculated parameters and the type 
of concave diagram of contact normal stresses, Fig. 5. 
There is a fact of restructuring of the stressed state of the 
metal under conditions of strip slipping. The change in the 
stressed state of the strip under these conditions, i.e., loss of 
stability, is clearly demonstrated. This proves the adequacy 
of model (30) when the external influence changes under 
extreme conditions.

The very fact of the influence of the grip angle on the 
parameters of the stress state in the complex of influence 
of various factors was shown, Fig. 1, 5, 6. A peculiarity 

was determined that at this stage of the study a certain 
pattern of decreasing force load with increasing deforma-
tion load is visible. This fact should be studied in more 
detail, leaving all process parameters constant, except for 
the capture angle, to obtain the result in terms of clarity 
of the process, confirmed capabilities of the mathematical 
model (30). It is useful to consider several processes with 
the same shape factor and friction coefficient, but at dif-
ferent grip angles.

Fig. 7 shows diagrams of the distribution of contact 
stresses depending on the grip angle for the same values of 
the friction coefficient and shape factor. According to the 
diagrams of the distribution of tangential stresses, there 
are two-zone centers of deformation (we are not talking 
about extreme rolling processes). Features of the obtained 
diagrams, Fig. 7: there are processes that combine opposite 
changes in local force loading parameters and those common 
to the entire deformation zone.

The obtained result is given in Table 5. With the friction 
coefficient f=0.4, all three processes are far from prohib-
itive. Stability coefficients are in the range of 2.38...5.19. 
This characterizes them as sustainable processes. Tangential 
stresses also respond to compression at the entrance to the 
deformation zone. Despite the stability of the rolling process 
under all deformation modes, the tangential stresses for a 
grip angle of 0.168 have a minimum length and magnitude of 
the tangential stress in the advance zone [29, 32].

Fig. 7. Distribution of contact stresses along the length of the 
deformation zone depending on the grip angle: at l/h=11.04, 

α=0.077;0.129;0.168, f=0.4: a – distribution of normal 
stresses; b – distribution of tangential stresses
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Table 5

Results of studying the stressed state of the strip depending 
on the grip angle at l/h=11.04, f=0.4

Grip angle α 0.77 0.129 0.168

Maximum stress state coefficient nσ 6.9 8.1 9.4

Average stress state coefficient nσ 3.8 3.9 3.3

Parameter f/α 5.19 3.10 2.38

Under this mode, in the lagging zone, tensile stresses 
reach maximum values, which affects the deflection of the 
normal stress diagram. An increase in compression has a 
dual effect on the deformation site. The maximum normal 
stresses increase and at the same time the stresses in the 
lag zone decrease. Due to the increasing deflection of the 
diagrams in the lag zone, with increasing compression, the 
average normal stresses decrease along the entire length of 
the deformation zone. From Table 5 it can be seen that at 
grip angles, respectively α=0.077;0.129;0.168, the maximum 
stress coefficient is equal to nσ=6.9;8.1;9.4. This is natural 
when, with increasing compression, the stressed state of the 
deformation zone in a given zone increases. The maximum 
support coefficients accordingly increase by 13.8…14.8 %. 
However, the average stress coefficients change differently. 
They do not grow but decrease. This is affected by the in-
fluence of the interaction of zones with the opposite flow of 
metal within the deformation zone. Indeed, at the beginning, 
the stress state did not actually change when moving to a 
grip angle of 0.128, and then its decrease reached a signif-
icant value. For average stress state coefficients, changes 
take place nσ=3.8;3.9;3.3. With an increase in compres-
sion by 54 %, the decrease in the average stress coefficient 
was 15.4 %. There is only one explanation for this effect: the 
presence of increasing tensile stresses in the lagging zone.

5. 3. Analysis of the stressed state of the metal under 
conditions of interaction of zones with counter-direction-
al flow of metal

The interaction of zones with counter-directional metal 
flow should be interpreted as the effect of rear external ten-
sion on the deformation zone [37].

The effect of posterior external tension on the deforma-
tion site is characterized by:

– reduction of specific pressures in the lag zone;
– displacement of the maximum normal stress towards 

the exit of the metal from the rolls;
– reducing the advance zone.
The same parameters characterize the effect of interac-

tion of zones with counter-directional flow of metal in the 
deformation zone. It follows from this that the appearance 
of tensile stresses due to the counter-directional flow of 
metal is enhanced by a high index of the deformation zone 
shape factor. This noticeably increases tensile stresses due 
to the small rolling height. It is of interest to evaluate the 
rolling process, which in its parameters approaches the 
limiting process. This is possible by reducing the friction 
coefficient.

Another illustrative example of the operation of model (30) 
is offered. Fig. 8 shows the distribution of contact stresses de-
pending on compression, with shape factor l/h=11.04, friction 
coefficient f=0.3. The process is similar to the previous one, 
only with a lower friction coefficient.

Table 6 gives the values of the stress state coefficients 
and parameters f/α, which decreased, at the same grip angles 
α=0.077; 0.129; 0.168. Reducing the parameters f/α brings 
the process under study closer to the limiting process, to 
metal slipping in rolls, which can change the conditions of 
interaction of zones in the deformation zone. In this regard, 
qualitative changes should occur in the contact stress dia-
grams, Fig. 8. There is a restructuring of processes from sta-
ble formation modes to modes under which there is a partial 
or complete loss of stability of the process, with different 
diagrams of contact stresses.

Table 6

Results of studying the stressed state of the strip depending 
on the grip angle at l/h=11.04; f=0.3

Grip angle α 0.077 0.129 0.168

Maximum stress state coefficient nσ 5.7 6.3 5.7

Average stress state coefficient nσ 3.3 3.2 2.1

Parameter f/α 3.90 2.33 1.79

The result from Table 6 is considered in comparison with 
the data in Table 5, Fig. 7. There is a decrease in the stress 
state with a decrease in the friction coefficient for all stud-
ied parameters for both processes, which is understandable. 
However, with a friction coefficient of 0.3, there is a decrease 
in the average stress coefficient with increasing grip an-

Fig. 8. Distribution of contact stresses along the length of the 
deformation zone depending on the grip angle, at: l/h=11.04; 

α=0.077;0.129;0.168; f=0.3: a – distribution of normal 
stresses; b – distribution of tangential stresses
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gle, Table 6. Significant deflections of the normal stress di-
agrams are observed, especially for maximum compression, 
which is confirmed by a decrease in the average stress state 
coefficient within the range of 2.1...3.3. A two-zone deforma-
tion zone is realized. This process according to Table 6 and 
diagrams in Fig. 7, 8 seems stable.

It should be noted that against the background of 
changes, there is a redistribution of all force parameters 
presented in Fig. 8. Feature: reduction of maximum stress 
state coefficients, which is the determining factor before the 
process loses stability. In Fig. 8, the tangential stresses at the 
beginning of the deformation zone are in accordance with 
the compression, as for the diagrams, Fig. 7. Prerequisites for 
approaching the limiting process appear.

The next stage of research: the process is considered at 
the same compression, deformation zone shape coefficient, 
but with a lower friction coefficient equal to 0.2, comparable 
to the maximum grip angle. Fig. 9 shows diagrams of contact 
normal and tangential stresses at the corresponding process 
parameters. A feature of these processes is the completion 
of restructuring changes in strength characteristics in the 
deformation zone, which were already identified in previous 
studies.

Table 7 gives the results of studying the stressed state of 
the strip depending on the grip angle, with l/h=11.04 and 
friction coefficient f=0.2.

Table 7

Results of studying the stressed state of the strip depending 
on the grip angle at l/h=11.04; f=0.2

Grip angle α 0.077 0.129 0.168

Maximum stress state coefficient nσ 4.1 1.7

Average stress state coefficient nσ 2.6 1.2

Parameter f/α 2.60 1.55 1.19

From the data in Table 7 it can be seen that the minimum 
grip angle of 0.077 radians corresponds to the maximum 
stress coefficient equal to nσ=4.1. For the same grip angle, 
the maximum is the average stress state coefficient equal 
to nσ=2.6. An intermediate angle of 0.129 radians, which 
is 40.3 % greater than the minimum, corresponds to a 
maximum stress coefficient equal to nσ=1.7, which is 58 % 
lower than the previous one. The average stress factor, equal 
to nσ=1.2, is also 54 % less than the previous one. At the 
maximum value of the grip angle, which was 54 % greater 
than the minimum value, the pressure dropped below the 
critical level and the rolling process lost stability. It is clearly 
shown that under conditions that are as close as possible to 
the limiting rolling process, there is not a gradual decrease 
in pressure on the rolls, but a sharp drop in load, accompa-
nied by a complete loss of stability. To assess the interaction 
process at the source of multidirectional metal flow zones in 
development, it is advisable to evaluate and compare the data 
of the last three processes.

For clarity, Table 8 compares the stress state indicators 
of tables with a shape factor of 11.04 at maximum and aver-
age values of the stress state coefficients, friction coefficients 
f=0.4; 0.3; 0.2. Together we consider restructuring processes 
characterized by the peculiarities of the interaction of zones 
in a single deformation zone.

Table 8

Comparative analysis of the results of studying the stressed 
state of the strip depending on the grip angle and friction 

coefficient, at l/h=11.04

Parameter name 
Grip angle

0.077 0.129 0.168

Friction coefficient 0.4 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2

Maximum stress factor 6.9 5.7 4.1 8.1 6.3 1.7 9.4 5.7 less than 1

Average stress factor 3.8 3.3 2.6 3.9 3.2 1.2 3.3 2.1 less than 1

From Table 8 it can be seen that each grip angle corre-
sponds to data on three friction coefficients, for the max-
imum and average stress state coefficients. Therefore, it 
becomes possible to compare processes not only by friction 
coefficients but also by grip angles. All three grip angles 
are characterized by a general tendency for the stress state 
coefficients to change depending on the friction coefficient. 
However, no clear trends are observed when changing cap-
ture angles. If, at a friction coefficient of 0.4, the maximum 
values of the stress state change in accordance with the grip 
angles, then for the average coefficients of the stress state 
this correspondence is violated. It can be argued that there 
is an accessibility zone determined by the inverse influence 
of the grip angle on the force parameters of rolling. With an 
increase in the grip angle, the parameters of the stress state 

Fig. 9. Distribution of contact stresses along the length of the 
deformation zone depending on the grip angle, at: l/h=11.04; 

α=0.077;0.129;0.168; f=0.2: a – distribution of normal 
stresses; b – distribution of tangential stresses
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do not increase but decrease. When the friction coefficient 
decreases to 0.3, these trends intensify. The maximum 
stress coefficients remain practically unchanged with in-
creasing grip angle. And the average decreases by 36 %. At 
a friction coefficient of f=0.2, metal slipping in the rolls or 
a complete loss of stability of the process is observed. This 
is accompanied by a dip in the normal stress diagram along 
the entire length of the deformation zone. The coefficient 
determining the stability of the process f/α is within unity, 
which is quite acceptable.

The accessibility zone can be characterized as the prox-
imity of a process with a limiting source of deformation, 
through the friction coefficient, to the process under consid-
eration. It should be emphasized that the identified effects of 
plastic deformation presented above take place only in the 
accessibility zone. Otherwise, studies show that such effects 
are not observed.

The constructed physical model is based on the different 
nature of the stress state in the lagging and advance zones. 
Contact stresses weaken in the lagging zone and increase 
in the advance zone, which affects the asymmetry of stress 
distribution along the deformation zone. This determines the 
nature of the interaction and the rolling force.

In relation to the accessibility zone, the asymmetric in-
teraction of sections with counter-directional flow of metal 
by mutually inverse damping functions penetrating each 
other, forming an overlap zone, is mathematically character-
ized. This made it possible to use a fairly effective approach 
to visually study the stress-strain state of the metal, taking 
into account intermediate schemes and multidirectional 
force and deformation loading modes.

In the work, the reliability of the result is confirmed in 
several areas. These include experimental data [37]; funda-
mental approaches related to the statement and solution of a 
closed problem in the theory of plasticity; development and 
testing of the method argument of functions of a complex 
variable.

Experimental data [37] confirm the qualitative calculated 
characteristics of the stress distribution along the length of 
the deformation zone, which respond equally to the effects of 
plastic deformation. Indeed, comparing the calculation results 
in Fig. 2 and experiment, Fig. 3, it is clear that the influence of 
the shape factor is unambiguous, both in theory and in exper-
iment; the effects of the influence of the counter-directional 
flow of metal in the lagging and advance zones appear, equal-
ly influencing the shape of the normal stress diagrams. The 
maximum values of contact stresses with increasing thickness 
shift to the middle of the deformation zone, and with a shape 
factor equal to unity, the diagram acquires a symmetrical 
shape, as during upsetting, which is confirmed by numerous 
experimental data. Such coinciding analogies indicate confir-
mation of the physical model of the process and the response 
of mathematics to complex force loading patterns of mutually 
penetrating zones of lag and advance.

Fundamental approaches related to the statement and 
solution of a closed problem in the theory of plasticity en-
hance the reliability of the results obtained. This is due to 
the fact that the solutions in stress are confirmed by the 
solutions of the deformation problem and are consistent with 
each other through physical coupling equations. Ultimately, 
generalized defining functions appear that make it possible 
to close the problem by constructing a mathematical model 
of a plastic variable medium. This approach is classic and 
should not be neglected.

A generalized method for solving problems in continu-
um mechanics was repeatedly confirmed by publications in 
highly rated journals in various fields. Including the theory 
of elasticity [29–31], plasticity [15], and the theory of dy-
namic processes [28]. There are publications in such journals 
on geomechanics [39]. The method presents generalizations 
related not to finding solutions to differential equations 
but to identifying the conditions for their existence, which 
include differential invariant Cauchy-Riemann relations and 
Laplace equations. This makes it possible, while maintain-
ing the qualitative indicators of the mathematical model, to 
change the quantitative result due to the boundary condi-
tions, which is typical for solving semi-inverse problems of 
continuum mechanics.

6. Discussion of results of studying the stressed state 
of metal under conditions of interaction of zones with 

counter-directional flow of metal

Using the data of this study, it is possible to make a num-
ber of fundamental generalizations when solving problems 
in continuum mechanics, and in particular in the theory of 
plasticity. Using the example of solving an applied problem 
in the theory of rolling, the capabilities of the method of 
argument of functions of a complex variable in the theory of 
plasticity are shown. The peculiarity of the method is that it 
is not the solutions to the problem themselves that are found 
but the conditions for their existence, which allows them to 
be applied to different areas of continuum mechanics.

Using the same approaches to obtaining results in 
the theory of elasticity [26–28], dynamic processes [28], 
plasticity theory [15], and geomechanics [39], analytical 
solutions were obtained that reflect the processes of various 
applied problems.

Generalizations in applied problems of continuum me-
chanics are invariant relations imposed on the function ar-
gument in the form of Cauchy-Riemann differential relations 
and Laplace equations. The approaches of the argument 
method of functions of a complex variable in the theory of 
plasticity and, in particular, the theory of rolling, made it 
possible to solve the problem and construct a mathematical 
model of asymmetric rolling. In a single deformation zone, 
the interaction of zones with counter-directional flow of 
metal was taken into account. Such objects are (20) to (22), 
(24), (30), Fig. 1‒9, Tables 1‒7.

A special feature of the proposed approach is the con-
sideration of a single source of deformation, which made it 
possible to determine the real physical and corresponding 
mathematical model of the process; take into account the 
interaction of zones with counter-directional flow of the me-
dium in the deformation zone. The physical model is clearly 
presented in Fig. 4. In the lag zone, the force impact from the 
roll on the metal is fundamentally different from the force 
impact from the roll in the advance zone. The pushing and 
pulling forces in the lagging zone are directed in opposite 
directions, which, according to the literature data by various 
authors [32], causes the appearance of tensile stresses in this 
zone. In the advance zone, a different loading pattern is ob-
served; these reactive forces are codirected in the direction 
opposite to the movement of the strip in the rolls, which 
enhances the influence of the supporting forces of contact 
friction on contact stresses. Thus, in the deformed metal of 
the lagging zone, supporting stresses from contact friction 
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and tensile stresses from multidirectional forces from the roll 
act, which reduces the effect of supporting forces of contact 
friction on normal stresses. This physical model of the pro-
cess was adopted as the determining one in the construction 
of the mathematical model.

This made it possible to identify the effects of plastic 
deformation associated with the combination of loading 
and unloading processes, kinematic and force parameters 
of rolling. The influence of local impact on the processes 
of the entire deformation zone is shown. It is shown that 
within the zone of accessibility of the limiting source of 
deformation, the effects of a decrease in the force load 
with an increase in the deformation effect are observed. 
This phenomenon occurs both for a two-zone deformation 
zone and for a single-zone deformation zone, which char-
acterizes the rolling process under conditions of negative 
or zero advance. It should be emphasized that such effects 
are not observed beyond the accessibility of the limiting 
deformation zone. Repeated testing of the method in dif-
ferent models of continuum mechanics, comparison of the 
simulation results of this study with experimental and 
theoretical data by other authors confirm the reliability 
of the result obtained.

The limitations of this method are determined in the 
process of using it in relation to various applied problems of 
continuum mechanics. It becomes obvious that the method 
is limited to the use of a fundamental substitution that char-
acterizes one of the basic functions.

The disadvantages of this study include the lack of data 
on the heterogeneity of the stress-strain state of the plastic 
medium throughout the entire source, not only on the con-
tact surface.

The development of this research may consist in devel-
oping a process model that takes into account the influence 
of the heterogeneity of the distribution of the stress-strain 
state of the metal throughout the entire volume of a single 
deformation zone.

7. Conclusions 

1. Physical and mathematical models of the plane 
problem of rolling theory have been constructed under 
conditions of changing asymmetry of the interaction of 
zones with multidirectional metal flow, under conditions 
of a two-zone and one-zone single deformation zone. A fea-
ture of the physical model is the asymmetric interaction 
of zones in a single deformation zone under conditions 

of complex counter-directional loading of the metal. A 
special feature of the mathematical model is that it takes 
into account the interaction of deformation zones that 
inversely penetrate each other through overlap zones. As 
a result, a method for solving problems of continuum me-
chanics in relation to the theory of plasticity, the method 
of argument of functions of a complex variable, was fur-
ther advanced.

2. On the basis of the resulting mathematical model, the 
features of the stressed state of the plastic medium were 
studied. A zone of accessibility of the limiting source of de-
formation has been identified when the grip angles change 
within the range of 0.077...0.168, i.e., the zone of influence of 
the grip angle on the effects of reducing the force load with 
an increase in the deformation effect.

3. An analysis of the stressed state of metal was carried 
out under conditions of increasing interaction of zones with 
counter-directional flow of metal. It is shown that the inter-
action of the zones is equivalent to the action of posterior 
tension in the deformation zone. The influence of local im-
pact on the processes of the entire deformation zone is shown 
with a shape factor in the range of 1.0...15.00.
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