
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (127) 2024

52

DETERMINING THE EFFECT OF
A FLOATING POINT ON THE

FALCON DIGITAL SIGNATURE
ALGORITHM SECURITY

O l e k s a n d r P o t i i
Doctor	of	Technical	Sciences

Deputy	Head	of	State	Special	Communications
State	Service	of	Special	Communications		

and	Information	Protection	of	Ukraine
Solomyanska	str.,	13,	Kyiv,	Ukraine,	03110

O l e n a K a c h k o
PhD

Department	of	Software	Engineering
Kharkiv	National	University	of	Radio	Electronics

Nauky	ave.,	14,	Kharkiv,	Ukraine,	61166
Head	of	Department

Department	of	Programming	**
S e r h i i K a n d i i

Postgraduate	Student*
Research	Associate-Consultant**

Y e v h e n i i K a p t o l
Corresponding author

Postgraduate	Student*
Information	Protection	Systems	Analyst**

E-mail:	kaptevg@gmail.com
*Department	of	Security	Information	Systems	and	Technologies

V.	N.	Karazin	Kharkiv	National	University
Svobody	sq.,	6,	Kharkiv,	Ukraine,	61022

**Institute	of	Information	Technologies	PrJSC
Kolomenska	str.,	15,	Kharkiv,	Ukraine,	61166

The object of research is digital signatures.
The Falcon digital signature scheme is one of
the finalists in the NIST post-quantum cryp-
tography competition. Its distinctive feature is
the use of floating-point arithmetic. However,
floating-point arithmetic has so-called round-
ing noise, which accumulates during compu-
tations and in some cases may lead to signif-
icant changes in the processed values. The
work considers the problem of using round-
ing noise to build attacks on implementation.
The main result of the study is a novel attack
on implementation, which enables the secret
key recovery. This attack differs from exist-
ing attacks in using two separately secure
implementations with different computation
orders. As a result of the analysis, the con-
ditions under which secret key recovery is
possible were revealed. The attack requires
300,000 signatures and two implementations
to recover key. The probability of success-
ful attack ranges from 70 % to 76 %. This
probability is explained by the structure of
the Gaussian sampling algorithm used in the
Falcon digital signature. At the same time, a
necessary condition for conducting an attack
is identical seed during signature generation.
This condition makes the attack more theoret-
ical than practical since the correct implemen-
tation of the Falcon makes probability of two
identical seeds negligible. However, the possi-
ble usage of floating-point noise shows poten-
tial existence of additional attack vectors for
the Falcon that should be covered in security
models. The results could be used in the con-
struction of digital signature security models
and their implementation in existing informa-
tion and communication systems

Keywords: quantum-resistant transforma-
tions, lattice-based cryptography, attack on
implementation, NIST PQC, NTRU

UDC 004.056.5
DOI: 10.15587/1729-4061.2024.295160

How to Cite: Potii, O., Kachko, O., Kandii, S., Kaptol, Y. (2024). Determining the effect of a floating point on the

falcon digital signature algorithm security. Eastern-European Journal of Enterprise Technologies, 1 (9 (127)), 52–59.

doi: https://doi.org/10.15587/1729-4061.2024.295160

Received date 06.11.2023

Accepted date 25.01.2024

Published date 28.02.2024

1. Introduction

Cryptographic protection of information is an integral
part of modern information and telecommunication systems.
In particular, digital signatures are widely used to verify
data integrity and authenticate users both on the Internet
as components of separate protocols, such as TLS, and in
banking and other strategically important areas for the state
as part of public key infrastructure. Such widespread use of
digital signatures makes it important to study the security
of these crypto transformations.

At the same time, existing digital signature standards
are vulnerable to attacks using quantum computers, which,
against the background of the rapid development of quantum
technologies in the future, poses a threat to the security of
existing information and telecommunication systems. To

overcome this problem, the US National Institute of Stan-
dards and Technology held an open NIST PQC competi-
tion on quantum-resistant (post-quantum) cryptography.
In 2022, a number of candidates for standardization were
selected based on the results of the competition. The scientif-
ic research of the NIST PQC finalists is important because
these crypto transformations will replace today’s standards
in the future.

The Falcon digital signature scheme [1] is a finalist in the
NIST PQC competition [2]. One of the features of Falcon is
the use of floating-point arithmetic. Noise in the least signif-
icant bits is a special property of floating-point arithmetic,
which is determined by the order of calculations [3]. This
leads to additional risks and calls for a more detailed study
into the impact of this phenomenon on the security of the
digital signature scheme.

Copyright © 2024, Authors. This is an open access article under the Creative Commons CC BY license

53

Information and controlling system

Summarizing the above, research on the security of
quantum resistant digital signatures is important since these
cryptographic transformations will be standardized in the
near future and they will ensure the security of informa-
tion and telecommunication systems. In particular, Falcon,
as a finalist in the NIST PQC competition, needs careful
investigation. Therefore, research into the development of
methods for bypassing and exploiting the vulnerabilities of
digital signature schemes to design new attacks is relevant.
This especially applies to its special property − the use of
floating-point arithmetic.

2. Literature review and problem statement

In [4], it was proposed to use the Gaussian distribution on
lattices to overcome the problem of information leakage about
the secret basis of the lattice. But the questions related to the
practical implementation of the proposed method remained
unresolved since effective implementation required the use
of floating-point arithmetic, and there were no studies on the
influence of floating-point in cryptography at that time. An
option to overcome the relevant difficulties may be to replace
calculations with floating point in calculations with rational
numbers. This is the approach used in work [5]. However,
this approach turned out to be too impractical. The reason
for this was too great a slowdown of implementations. In [6],
a new Gaussian sampling algorithm using floating-point
arithmetic and an analysis of the required accuracy of this
algorithm were proposed. The above research results showed
that hundreds of bits of precision are required. It was shown
in [7] that the required accuracy could be reduced to 53 bits
with the correct selection of parameters. But the result used
a number of heuristics and the question of the exact analysis
of the general case remained unresolved. In work [8], Renyi
divergence was used to justify the safety of using 53 bits of
accuracy, which put an end to the theoretical side of the issue.

In [9] it was proposed to use the Fourier transform to speed
up work with polynomials in cryptographic systems on lattices.
However, there is no analysis of the influence of floating-point
arithmetic accuracy in the cited work. In [10], a side channel
attack on the Falcon digital signature was proposed, which
uses the features of multiplying polynomials in the Fourier
representation. It has been shown that it is possible to protect
against this attack with the help of the correct implementation
of calculations. But in [11], a new attack on the implementation
was proposed, which made it possible to recover the secret
base using power analysis. The conditions for this attack were
improved in work [12]. The authors managed to fully recover
the secret key. However, the attack needed 45,000 signatures.

All this gives reason to assert that it is expedient to carry
out research into the development of new attacks on the imple-
mentation that use the properties of floating-point arithmetic.

3. The aim and objectives of the study

The purpose of our study is to determine the impact of
floating-point arithmetic on the security of the Falcon ref-
erence implementation. This will make it possible to develop
a new attack on the Falcon scheme. The study will enable
identification of additional attack vectors on both the Falcon
scheme and other digital signature schemes that use float-
ing-point arithmetic, which should be taken into account in

security models. That also provides prerequisites for improv-
ing both the security of digital signature schemes and security
models for digital signature schemes, as well as expanding the
possibilities for evaluating digital signature schemes.

To achieve the goal, the following tasks were set:
– to determine the conditions of impact of rounding

noise on the security of the Falcon;
– to build an attack on Falcon;
− to estimate the probability of implementation of the

proposed attack.

4. The study materials and methods

The object of our research is the security of the Falcon
against attacks based on the use of features of the application
of floating-point arithmetic.

The main hypothesis of the study assumes the existence
of the impact of floating-point computing noise on the Fal-
con security.

For the research, the Falcon scheme [1, 2] adopted for
standardization based on the results of the NIST PQC com-
petition and its reference implementation was used.

The features of the cryptographic transformation from
the composition of the Falcon, which was used in the study
of the influence of floating point on the security of cryp-
tographic transformations, are given below.

Description of Falcon transformation. Falcon uses the
transformation in the field q[X]/(xn+1), where q=12289
and n is the power of two (512 or 1024). The secret key is
the polynomials f, g, F, Gq[X]/(xn+1), the coefficients of
which are small and the NTRU equation is fulfilled:

mod 1.nfG gF q x- = + (1)

The public key is a polynomial [] ()/ 1 ,n
qh X x +∈ for

which the equation is fulfilled:

1 mod 1mod .n qfh g x-= ⋅ + (2)

The polynomials f, g, F, G form the basis of the NTRU
lattice:

.
g f

B
G F

-
= -

 (3)

For calculations in Falcon, fast Fourier transform is used
for optimization. The Fourier representation of an arbitrary
polynomial b is denoted as .b Accordingly, the Fourier rep-
resentation of the basis B is defined as follows:

.
g f

B
G F

 -
 = -

 (4)

The Falcon specification provides for the use of field
[] ()/ 1 .n

q X x + , properties. In particular, the following iso-
morphisms are used:

[] ()()
[] ()() [] ()

≅ + ≅

≅ + ≅ +

/

/2

2
2

2/ 1 ...

... / 1 / 1 .n

n
n

n

X x

X x X x (5)

Formula (5) means that any polynomial in [] ()/ 1n
q X x +

has an isomorphic representation in the form of a vector of

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (127) 2024

54

the largest number of operations because the vector
()0 1ˆ ˆ ˆ,z z z= is the result of the ffSampling algorithm, which

actively uses the Fourier transform and is the most com-
plex part of the Falcon from an algorithmic point of view.

Suppose that there are two implementations of the
Falcon, which with the same values of seed (a random
value used in ffSampling) and nonce for the same keys
give different signatures due to noise during calculations.
Hereafter, the corresponding variables are denoted by
superscripts. For example, ()0 0

0 1,s s is the vector s in the
first signature and ()1 1

0 1,s s is the vector s in the second
signature.

The notation 1
0
0

0 0z zδ = - and 1 0
1 1 1 .z z= -δ is introduced.

Statement 1. For given δ0, δ1, the relationship between
the public key h and the secret key f, g, F, G is described by
the relation:

1

0 1

0 .
g G

h
f F

= δ
δ + δ

+δ (8)

This result can be obtained from a direct analysis of Fal-
con transformations.

The calculation of the signature s=(s0,s1) on the key f, g,
F, G is considered below. According to the definition of the
signature algorithm, we have:

() 1

0 1 0 1

0 1 0 1

ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ(,0)

ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ
.

ˆ ˆ ˆˆ ˆ0 ˆ ˆ ˆ ˆ

s t z B tB zB c B B zB

c z g z G c z g z G

z f z F z f z F

-= - = - = - =

 + - -
 - = - - +

 (9)

So, there is equality:

00 1 ,s c z g z G= - -

11 0 .s z f z F= + (10)

Considering the connection between the signature, the
message, and the public key, described by equality (7), we have:

0 0
0 1

1 1
0 1

0 0 1 1
0 1 0 1

0 1 1 0
0 0 1 1

0 1
0 0
1 0
1 1

.

s s h c

s s h c

s s h s s h c c

s s s h s h

s s
h

s s

 + = ⇒
+ =

+ - - = - ⇒

- = - ⇒

-=
-

That is, h can be expressed in terms of ()0 0
0 1,s s and ()1 1

0 1, .s s
Substituting (10) into the expression for h, we get:

() ()
() ()

0 1 0 1
0 0 1 1

0 1 0 1

0 0

1 1 0 0

1 0 1 0
1 1

0 0
1 0

1 1
1 0

.

c z g z G c z g z G
h

z f z F z f z F

g z z G z z

f z z F z z

- - - + += =
+ - -

- + -
=

- + -
 (11)

Since 1
0
0

0 0z zδ = - and 1
1
0

1 1z zδ = - , expression (11) implies
expression (8), which had to be proved.

If you choose the message m so that δ1=0, and δ0 is
some small enough to use the algorithm for finding the
greatest common divisor of a polynomial (ideally – δ0),
then it may be easy to recover the secret key. Note that the

two polynomials y [] ()/2/ 1 ,n
q X x + a vector of four poly-

nomials y [] ()/4/ 1n
q X x + , etc.

In particular, this property was used by the authors of
Falcon to build a sampling algorithm. In the general case,
the Sampler sampling algorithm takes as input some lattice
basis A, the target vector cc, and returns a sufficiently small
vector s, for which the following is performed:

mod .sA c q= (6)

In Falcon, the sampling algorithm ffSampling recur-
sively performs the sampling procedure. Calculations start
at n and recursively climb into the field q[X]/(xn+1).
To this end, ffSampling uses the so-called “Falcon Tree”
data structure, which stores information about basis (4)
in a computationally convenient form. Implementation
details can be found in the specification [1]. The only es-
sential factor for this attack is that ffSampling works with
Fourier representations and returns the Fourier represen-
tation of the polynomial s. According to the specification,
the structure “Falcon Tree” [1] basis (4) has the notation

().T T B=
The signature procedure (simplified) can be described

as follows:

Algorithm Sign.
Input data: message m in the format of a bit string, the

basis – the NTRU lattice .B
Output: signature (s1, nonce), where s1 are polynomials

in q[X]/(xn+1), nonce is a random bit string used to ran-
domize the message:

1. Obtain nonce from a uniform distribution.
2. Calculate the random polynomial c as a hash of the

value from m||nonce.
3. Calculate () 1ˆˆ ,̂0 ˆ .t c B-= ⋅
4. Calculate the vector ()0 1ˆ ˆ ˆ,z z z= using the ffSampling

algorithm (and ()ˆT T B=) for the target point .t

5. Calculate () ()0 1
ˆˆˆ ˆ ˆ ˆ,s s s t z B= = - in the Fourier basis and

the corresponding vector s=(s0,s1) using the inverse Fourier
transform.

6. If the norm of the vector s is small enough, then return
the signature (s1, nonce), otherwise, return to step 4.

According to the Falcon specification, the signature is
checked using the equation:

0 1 .s s h c+ = (7)

Equation (7) establishes the relationship between the
signature, the message, and the public key. The polynomial
s0 from the signature (s1, nonce) can be reconstructed as
s0=c–s1h. If the polynomial is reconstructed correctly, the
signature is considered valid.

5. Results of investigating the influence of floating point
on the security of Falcon

5. 1. Determining the conditions of influence of
rounding noise on the security of digital signatures

Rounding noise occurs in the least significant bits of
variables but tends to increase with the number of calcu-
lations, so it makes sense to expect the largest difference
in variables for which the most complex transformations
are used to calculate. The calculation ()0 1ˆ ˆ ˆ,z z z= requires

55

Information and controlling system

situation when δ0=0, and δ1≠0 is not possible due to the
structure of the ffSampling algorithm (Fig. 1).

If δ1≠0, then, by definition, the values 1
1 ,z 0

1z will differ.
Then, at step 10 of the ffSampling algorithm, the values 0,t′
will differ, which in turn will lead to changes in the calcula-
tion of 1

0,z 0
0z at steps 10–13.

5. 2. Building an attack on Falcon
From formula (8) and the defined conditions of signifi-

cant impact of rounding noise on security, it follows that it is
possible to calculate the secret key ,f g as:

 () ()1 0 1 0 0 1
1 1 1 1 0 0/ gcd , ,f s s s s s s= - - -

() ()0 1 1 0 0 1
0 0 1 1 0 0/ gcd , ,g s s s s s s= - - - (12)

where gcd is the greatest common divisor of polynomials.
Reference implementation of Falcon [13] provides two

interfaces for users. The first interface calculates ()ˆT T B=
in the signature generation procedure. The second interface
involves passing ()ˆT T B= as an argument. In implementa-
tions, this leads to a change in the order of calculations and
accordingly to the occurrence of situations where the attack

conditions are fulfilled. The first interface is implemented by
the sign_dyn function, the second interface by the sign_tree

function. Both interfaces accept a polynomial
c instead of a message. The hash_to_point_
vartime function is used to form the polyno-
mial c. Keygen generation function is keygen.

All the listed functions take as a param-
eter a generator of pseudo-random numbers,
which deterministically defines their behav-
ior. The generator is implemented by the
inner_shake256_context structure. Accord-
ingly, if we fix the generator initialization
order before calling each function, then the
behavior of each function can be reproduced.
The following variables were used in the im-
plementation of the attack:

1) seed – to initialize the generator for
keygen;

2) seed2 – to initialize the generator for
sign_dyn and sign_tree;

3) nonce – to initialize the generator for
hash_to_point_vartime.

At the same time, the initialization of the generator for
keygen, sign_dyn, and sign_tree is as follows:

inner_shake256_context sc;
inner_shake256_init(&sc);
inner_shake256_inject(&sc, seed, 48);
inner_shake256_flip(&sc);
Ініціалізація генератора для hash_to_point_vartime:
inner_shake256_init(&sc);
inner_shake256_inject(&sc, nonce, 40);
inner_shake256_inject(&sc, message, 33);
inner_shake256_flip(&sc),

where message – 33-bit message.

5. 3. Assessing the probability of attack implementation
To detect differences in signatures, signature generation

by the sign_dyn and sign_tree functions was run 106 times
for 10 random key pairs for a random 33-byte message from
a uniform distribution. The results for Falcon512 and Fal-
con1024 are given in Tables 1, 2, respectively.

 Fig.	1.	The	ffSampling	algorithm	from	the	Falcon	digital	signature	scheme

Table	1

Random	signature	generation	results	for	Falcon512

Seed of key pair
Number of instances

(δ0,δ1)≠(0,0)
Number of instances

δ0≠0, δ1=0
1 2 3

7C9935A0B07694AA0C6D10E4DB6B1ADD2FD81A25CCB148032DCD739936737F2DB-
505D7CFAD1B497499323C8686325E47

40 35

4AAFF542A5F00256495D2DF0BC45F51FE81D508D2C609F84FA-
F1708024A9AA57994E9B452595D0894BE211A3D4759C96

31 28

68F3A6BECC53478296AA6860483396929B42941E2740D932EBB6A5AE-
CF7797349AC68E602651A53D58489A9854B541D2

20 17

B5068BF4E738E850F8B8F9BC7D02672E5437B759A7C96080F5DDD4AC6D23D04BC1AF-
3580CCE29F3E747757D7BCC84E99

12 8

ED90AA994C90CF9C327D757D9991CC0E28AFA9BC54928BC1558DA8E47FF4E36AA-
4351B3926ECF0FAD93F94161A7854AE

42 31

FB044BD398AE04D9D08D2992292E7C913FB2844DC41C7D96D77ADA7B096481252DB-
2F366831AD837DD7147FF8071FC7B

41 27

C8E85F2DCA8FB5281781BAF9FC44C0C9A5FDEC8D36EEAF2ECD16D925748260D1DB-
43703F056703CE782C79445D94EA28

31 23

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (127) 2024

56

From Tables 1, 2, it follows that the probability of
() ()0 1, 0,0δ δ ≠ is about 0.00003. On average, the attack
works 76 % of the time for Flacon512 and 70 % of the time
for Falcon1024. Fig. 2, 3 show specific examples of secret key
recovery (only polynomials f and g; polynomials F, G are not
shown because they are uniquely recovered from polynomi-
als f, g) for Falcon512 and Falcon1024 on the corresponding

screenshots of the software implementation. Examples are
for seed 7C9935A0B07694AA0C6D10E4DB6B1ADD2F-
D81A25CCB148032DCD739936737F2DB505D7CFAD-
1B497499323C8686325E47. For clarity, the first 25 coeffi-
cient values are given.

The analysis of specific cases showed that all cases
(δ0,δ1)≠(0,0) can be divided into the following classes.

1 2 3
28F4B1954E721DF4F5D58E4D1F0366CFEFCDAE8AA934FE95EBBA753A79C941B76BD-

B23E1862136B5DFB4AFB187D29729
36 27

C52535F970985882F44DAC6AB36FDBDC738DF6F2AC096DD75A5D18C95EC3683AD-
C56F853DB256459B9E804B7D469A495

23 14

43862DB0C7BE7D28EB9191E1F8735FB24CA4E68F543169F4CA5450B65D34E3ADC4AE-
4CF93E3E3FA938E461F8B8556126

37 29

Continuation	of	Table	1

Table	2

Random	signature	generation	results	for	Falcon1024

Seed of key pair
Number of instances

(δ0,δ1)≠(0,0)
Number of

instances δ0≠0, δ1=0
7C9935A0B07694AA0C6D10E4DB6B1ADD2FD81A25CCB148032DCD739936737F2DB-

505D7CFAD1B497499323C8686325E47
33 22

4AAFF542A5F00256495D2DF0BC45F51FE81D508D2C609F84FA-
F1708024A9AA57994E9B452595D0894BE211A3D4759C96

32 28

68F3A6BECC53478296AA6860483396929B42941E2740D932EBB6A5AE-
CF7797349AC68E602651A53D58489A9854B541D2

46 37

B5068BF4E738E850F8B8F9BC7D02672E5437B759A7C96080F5DDD4AC6D23D04BC1AF-
3580CCE29F3E747757D7BCC84E99

32 26

ED90AA994C90CF9C327D757D9991CC0E28AFA9BC54928BC1558DA8E47FF4E36AA-
4351B3926ECF0FAD93F94161A7854AE

28 21

FB044BD398AE04D9D08D2992292E7C913FB2844DC41C7D96D77ADA7B096481252DB-
2F366831AD837DD7147FF8071FC7B

26 21

C8E85F2DCA8FB5281781BAF9FC44C0C9A5FDEC8D36EEAF2ECD16D925748260D1DB-
43703F056703CE782C79445D94EA28

28 21

28F4B1954E721DF4F5D58E4D1F0366CFEFCDAE8AA934FE95EBBA753A79C941B76BD-
B23E1862136B5DFB4AFB187D29729

24 13

C52535F970985882F44DAC6AB36FDBDC738DF6F2AC096DD75A5D18C95EC3683AD-
C56F853DB256459B9E804B7D469A495

34 19

43862DB0C7BE7D28EB9191E1F8735FB24CA4E68F543169F4CA5450B65D34E3ADC4AE-
4CF93E3E3FA938E461F8B8556126

31 15

Fig.	2.	Example	of	key	(f,	g)	recovery	for	Falcon512

 Fig.	3.	Example	of	restoring	key	(f,	g)	for	Falcon1024

57

Information and controlling system

Case I. δ0≠0. Accordingly, the structure of the sampling
algorithm is also δ0≠0, so formula (12) will not give the
correct result. Such cases are about 24 % for Falcon512 and
about 29 % for Falcon1024.

An example for this case for Falcon512 is:

seed:7C9935A0B07694AA0C6D10E4DB6B1ADD2F-
D81A25CCB148032DCD739936737F2DB505D7CFAD-
1B497499323C8686325E47.

seed2:B021D1D163606744EE32CBA2B2A4652E-
48F3E6F2C808F846167FFFCA7B515690ECACEA-
9BEA04B5E0FC954FB27347D9D1.

n o n c e : A E 7 8 A 1 8 6 A 2 4 5 7 2 9 E E 3 D 9 F 3 0 3 1 0 B -
0028F4E316CC3B227D0951058B5CE25CBBC88B8F-
287046E46CD55.

message:DA3912941533D3BA0E823075C47FCE-
BAEFC4063EFE6CED337988FE558A6DE7EACE.

An example for this case for Falcon1024 is:

seed:7C9935A0B07694AA0C6D10E4DB6B1ADD2F-
D81A25CCB148032DCD739936737F2DB505D7CFAD-
1B497499323C8686325E47.

s e e d 2 : D 6 E 7 3 C 4 B 1 C B 5 D 4 5 4 1 E -
2562018FEE6B59469F7689D3FD3923C42D655760F-
7C0A5964A4D0DD143350B9204FE23EF8AAE88.

n o n c e : F 9 6 D C 16 2 A B 0 6 8 C 0 2 0 1 3 9 9 14 10 8 6 B -
7 9 3 2 B 0 A 7 3 7 2 6 6 E C A 6 7 8 7 0 C 1 3 6 6 D 2 2 A 6 1 B C -
994C4CAFE23BDFB790.

message:D59841626C664717FC1548670C2455EF-
B14A3285A54EA0AD172EB524CEC3C8382F.

For the δ1=0, according to the value of δ0, the following
options can be distinguished:

1) Case II-a. When δ1=0 and δ0=a, a. In this case,
formula (12) works. Moreover, the value a is not a large
number (less than 10). Such cases for Falcon512 make up
about 29 % of the total number and about 26 % for Fal-
con1024.

An example for this case for Falcon512 is:

seed:7C9935A0B07694AA0C6D10E4DB6B1ADD2F-
D81A25CCB148032DCD739936737F2DB505D7CFAD-
1B497499323C8686325E47.

s e e d 2 : E D2 0 3 21FC 513F D 6 CE 6 BE 3B 72 D 3 0B -
B9243AF83BE48BB11E8DDA4ACA454827971A6D1DB-
F79E49D5B487A8911C3FE6C80E8.

nonce:CB 4872E 3C 4B517FF810A 9A DA E5DFB-
6DEEC5AB2206A0E7255C9B8F3D553BFC22FBBB-
0D592652878A7.

message:2A3975549DDC553E098247AC3548E7A32A
240F2B15BD0FD73E9C34E0421560974C.

An example for this case for Falcon1024 is:

seed:7C9935A0B07694AA0C6D10E4DB6B1ADD2F-
D81A25CCB148032DCD739936737F2DB505D7CFAD-
1B497499323C8686325E47.

s e e d 2 : A 3 9 A 5 F 2 1 1 9 3 1 5 9 E 8 4 1 3 3 9 E 9 F -
FA14928927D3419CF9CC7E7AE060965C62250E-
37686F97E345A87107DC9D989D3692FA61.

n o n c e : 9 B B C A B 9 9 1 3 5 2 E 4 8 E C 8 A 1 0 6 7 0 B -
C 0 9 0A 4 9DB 4 BB 6 A A D2 6 B 5 5A A DA 1E A E B 5 6 D -
C164700DDAB9E68E63D0EF.

m e s s a g e : 1 5 7 9 C A 9 5 D E 6 7 D 2 1 B 3 1 D -
0 5 2 F E 6 1 7 8 E 7 9 1 6 C B 2 1 5 5 0 9 2 7 2 F 4 9 B 3 C -
2201C93AA01EB620.

2) Case II-b. When δ1=0 and δ0=a∙xn/2, a. In this case,
formula (12) holds. Moreover, the value a is not a large num-
ber (less than 10). Such cases for Falcon512 make up about
38 % of the total number and about 35 % for Falcon1024.

An example for this case for Falcon512 is:

seed:7C9935A0B07694AA0C6D10E4DB6B1ADD2F-
D81A25CCB148032DCD739936737F2DB505D7CFAD-
1B497499323C8686325E47.

seed2:1C010D6173B05C89D4384562986A675BD-
D 6 5 8 0 C 9 E E 8 1 F 3 8 3 E 3 6 3 E C E 6 C E 4 5 F 1 F -
3C71673210DFFC33E4803DF1FC6243BF3.

nonce:C1959DD1DEF7AB02A7C452EA192E0CD-
403CDC825433E51A 3CD422F5B30 0EF 7F8391D-
CFF59FB45CEC.

message:DF17CA32F3FD0D62748606086753C-
C98A4B073A98E9CAFB1ADB04D62962D83473A.

An example for this case for Falcon1024 is:

seed:7C9935A0B07694AA0C6D10E4DB6B1ADD2F-
D81A25CCB148032DCD739936737F2DB505D7CFAD-
1B497499323C8686325E47.

seed2:B3233E8F302418961966363C1F9AAE5F5F-
010354B30CCB6310C1146B20E865E5588132AA751DC-
4F8A39DA9ED994AA4D3.

n o n c e : 8 E 6 3 C 1 6 3 0 C 0 B C 4 1 7 A A 1 6 6 E -
C 74 A EE 0FC 4 479 C 0B7C 4 4 2CCDEC176 62 A4 4 D -
6E789DBF75F4D3FFF4614AA.

message:392FCF43930FB262D8564D8965033F-
89CA47452EBDD7E6B3686CC315F7E35BA9A7.

3) Case II-c. When δ1=0 and δ0=a+b∙xn/2, where a,b.
This case is a combination of the previous cases and formu-
la (12) will also hold, but this case is interesting because δ0,
is a polynomial. This situation occurs about 7 % of the time
for Falcon512 and 9 % of the time for Falcon1024.

An example for this case for Falcon512 is:

s e e d : 4 A A F F 5 4 2 A 5 F 0 0 2 5 6 4 9 5 D 2 D F -
0 B C 4 5 F 5 1 F E 8 1 D 5 0 8 D 2 C 6 0 9 F 8 4 F A -
F 1 7 0 8 0 2 4 A 9 A A 5 7 9 9 4 E 9 B 4 5 2 5 9 5 D -
0894BE211A3D4759C96.

seed2:6F1A9CBCB96BB97F7A8D3BAC7E4097C-
8B478A7845C586E947F06173E9E1D45E0FF49EF-
783CE0487FB588CED4C750FB41.

n o n c e : 0 5 9 3 4 7 E 4 9 9 0 A 9 A 2 9 4 B 9 9 A 7 9 A 5 F -
0 3 B 9 0 7 8 E 3 2 A 4 C 9 D C 5 7 7 4 5 A D C A -
5E60ACD1D36F872A7013B9665595B.

message:F65F1869F151887A07982CD9BD46B8093E-
787B8AD3B91CFBCAD8A36AE0E16297BE.

An example for this case for Falcon1024 is:

seed:7C9935A0B07694AA0C6D10E4DB6B1ADD2F-
D81A25CCB148032DCD739936737F2DB505D7CFAD-
1B497499323C8686325E47.

seed 2 :B 0F1BC 0 47 ED3 3 6F F 2 92 3F6 0D5 02FC-
89314CC05B1B0A9E0BD7A8005274D9C7AB60CEE-
55388A8F15B5C736FFE284420F64.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/9 (127) 2024

58

nonce:05DA9F05EBEC410923479AC5C8B2FC3B-
62BEB53AE28C92C78822064C84EBCFFA81DB32BEC-
53EFE3F.

message:49DC80378E4716F90FF4CAB599D43AE-
C27AA689A5776D9BBFC207B533275514B5D.

Analysis of specific cases showed that the difference arises
in the ffSampling algorithm. At the deepest level of the recur-
sion in steps 3–4, due to the noise of floating-point arithmetic
for individual coefficients, the SamplerZ call returns values
that differ by ±1, and Fourier representation divergence occurs
when ascending to the field q[X]/(xn+1). Case I occurs when
there is a difference in the calculations in steps 7–9 of the ff-
Sampler algorithm. Case II-a in step 7, case II-b in step 12, and
case II-c is a combination of II-a and II-b. At the same time, the
difference in values caused by rounding noise was 10-14. Coeffi-
cients that had less rounding noise did not change.

6. Discussion of results of investigating the effect of
floating point on the security of Falcon

An attack on the recovery of secret keys using formu-
la (12) is possible because the reference implementation of
the Falcon has two interfaces that use different calculation
orders. The difference in calculations is sufficient that the
Gaussian sampling algorithm in Fig. 1 at the deepest recur-
sion level returned values that differed by only ±1. Since the
probability of a sufficiently large difference in several coef-
ficients is small, an error most often occurs precisely in one
coefficient. When performing all calculations, this difference
turns into some small integer factor (in practice, the largest
value obtained is (7)) of polynomials at the lowest level of
recursion. If the difference occurs in the polynomial z0, then,
according to formula (11), the situation δ0≠0, δ1=0 arises,
which is a necessary condition for the operation of formu-
la (12) and the implementation of the attack.

The specificity of the proposed attack is the use of two
different software interfaces of the same scheme. Attacks in
works [10, 11] also used features of floating-point arithme-
tic, but previous attacks focused only on the features of one
interface. Compared to [12], the proposed attack uses fewer
signatures and has a higher probability of recovering the
secret key. The proposed attack shows that two individually
safe implementations can be dangerous together.

The practical utility of the attack is that it shows how to
use the rounding noise itself to cryptanalyze digital signatures.
The attack reveals that the Falcon needs to specify more pre-
cise conditions for using floating-point arithmetic than spec-
ified in the specification because in existing implementations
implemented according to the specification, rounding noise
is an additional source of randomness that is not taken into
account by existing models, making additional attacks possible.
When developing new digital signatures that use floating-point
arithmetic, there is a need for additional analysis that will de-
monstrably guarantee the absence of influence of the order of
floating-point arithmetic on the results of calculations.

A limitation of our results is the low probability of an attack,
which leads to the need to obtain a large number of signatures.

Another, more significant, limitation of the attack is the need
for the same seed, which makes the attack purely theoretical.

Among the shortcomings of our study, one may include
the lack of research into the necessary accuracy of calcula-
tions under which the attack will stop working. For the further
development of this direction, it is important to obtain an as-
sessment of the conditions for applying the described approach.

7. Conclusions

1. Rounding noise in a floating-point calculation can
lead to two similar but different signatures. If the difference
is small enough, the secret key can be recovered. A small
noise in the arguments of the sampling algorithm of order
10-14 allows one to get exactly such a situation.

2. Reference implementation of Falcon provides two inter-
faces with different calculation order. This results in varying
rounding noise in the least significant bits of the variables, caus-
ing the sampling algorithm to produce values that differ by ±1.
After passing this difference through all calculations, the two
signatures differ by some small factor.

3. The probability of an attack is small enough. Given
this, about 3∙105 signed messages are needed for implementa-
tion. Although the attack is only possible when the Falcon is
misused, it shows that floating-point computations can lead
to attack vectors that were previously impossible.

Conflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial,
personal, authorship, or any other, that could affect the study
and the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

The data will be provided upon reasonable request.

Use of artificial intelligence

The authors confirm that they did not use artificial intel-
ligence technologies when creating the current work.

Acknowledgments

The authors express their gratitude for the support
provided in the preparation of the current paper, as well as
useful comments and suggestions, to the research team at
Institute of Information Technologies PrJSC.

References

1. Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU. Available at: https://falcon-sign.info/

2. Post-Quantum Cryptography. NIST. Available at: https://csrc.nist.gov/projects/post-quantum-cryptography

59

Information and controlling system

3. Tran, T., Liu, B. (1977). Accumulation of roundoff errors in floating point FFT. IEEE Transactions on Circuits and Systems, 24 (3),

132–143. https://doi.org/10.1109/tcs.1977.1084316

4. Gentry, C., Peikert, C., Vaikuntanathan, V. (2008). How to Use a Short Basis:Trapdoors for hard lattices and new cryptographic

constructions. Available at: https://eprint.iacr.org/2007/432.pdf

5. Lyubashevsky, V., Prest, T. (2015). Quadratic Time, Linear Space Algorithms for Gram-Schmidt Orthogonalization and Gaussian

Sampling in Structured Lattices. Lecture Notes in Computer Science, 789–815. https://doi.org/10.1007/978-3-662-46800-5_30

6. Ducas, L., Nguyen, P. Q. (2012). Faster Gaussian Lattice Sampling Using Lazy Floating-Point Arithmetic. Lecture Notes in

Computer Science, 415–432. https://doi.org/10.1007/978-3-642-34961-4_26

7. Prest, T. (2015). Gaussian Sampling in Lattice-Based Cryptography. Paris: ENS PARIS. Available at: https://theses.hal.science/

tel-01245066

8. Prest, T. (2017). Sharper Bounds in Lattice-Based Cryptography Using the Rényi Divergence. Lecture Notes in Computer Science,

347–374. https://doi.org/10.1007/978-3-319-70694-8_13

9. Ducas, L., Prest, T. (2016). Fast Fourier Orthogonalization. Proceedings of the ACM on International Symposium on Symbolic and

Algebraic Computation. https://doi.org/10.1145/2930889.2930923

10. Karabulut, E., Aysu, A. (2021). FALCON Down: Breaking FALCON Post-Quantum Signature Scheme through Side-Channel

Attacks. 2021 58th ACM/IEEE Design Automation Conference (DAC). https://doi.org/10.1109/dac18074.2021.9586131

11. Guerreau, M., Martinelli, A., Ricosset, T., Rossi, M. (2022). The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on

Falcon. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022 (3), 141–164. https://doi.org/10.46586/

tches.v2022.i3.141-164

12. Zhang, S., Lin, X., Yu, Y., Wang, W. (2023). Improved Power Analysis Attacks on Falcon. Lecture Notes in Computer Science,

565–595. https://doi.org/10.1007/978-3-031-30634-1_19

13. Falcon source files (reference implementation). Available at: https://falcon-sign.info/impl/falcon.h.html

