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the exchange of blockchain information between nodes. 
The third protocol – JSON-RPC is built on the Hypertext 
Transfer Protocol (HTTP) protocol for the interaction of 
external applications with the blockchain node.

Peer Discovery and other network protocols do not involve 
storing, connecting, or providing all network nodes, as the sys-
tem works in a decentralized manner. Each node that connects 
to the network actually connects to a subset of nodes, so it is 
impossible to get a list of all nodes from a single node.

Collecting all network nodes is an important task of 
blockchain network analysis for both its developers and ex-
ternal analysts. It allows developers to understand the scale 
of the network and track its dynamics. Analysts need to find 
specific nodes, or nodes that meet certain criteria (for exam-
ple, located in a certain region) for further analysis.

Therefore, scientific studies on this topic are important 
because they show how to analyze node detection protocols 
for a selected network, determine its limitations, and how 
to bypass these limitations for further analysis. Our study 
describes in detail the principles of the protocol for finding 
nodes in the Rootstock network, the formats and sequence 
of messages used.

The results of such studies are needed in practice be-
cause they provide approaches and means for obtaining all 
available nodes of a decentralized peer-to-peer (P2P) system 
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The object of this study is the protocol for detecting nodes 
in the Rootstock blockchain network and crawling tools. Node 
discovery protocols are the foundation of any decentralized 
peer-to-peer network. In blockchain systems, full nodes store 
and maintain a complete copy of all transactions performed 
in the network. However, they do not store information about 
all other nodes, such as their IDs or IP addresses. Each 
node usually maintains an incomplete list of nodes to which 
it connects to exchange blockchain data. In decentralized 
networks, nodes join and leave the network and their IP 
addresses can change, making it impractical to maintain a 
complete, up-to-date list of all nodes. Therefore, the only way 
to get a list of all nodes in the network is to poll each node 
sequentially.

The developed method involves sending specially formed 
messages to nodes to obtain their neighbors. The graph search 
algorithm is used to traverse all received neighboring nodes. 
This allows one to consistently detect all network nodes. 
Identifying the desired sequence of messages requires a 
preliminary analysis of the node software RSKj in the part of 
node discovery protocol.

Effectiveness of the proposed method was verified using the 
developed software and an experiment in the main network. 6 
verification nodes were deployed in different physical locations 
and at different times. All test nodes were detected in less than 
10 minutes. The developed method found 222 nodes that have 
209 unique IP addresses.

Results of this study show how to perform analysis of 
node discovery protocol. They provide the means to obtain 
information about the available nodes of the Rootstock 
blockchain system, enabling the analysis of both the blockchain 
network in general and individual node
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1. Introduction

Blockchain nodes are one of the key elements of the net-
work. They receive, verify, and broadcast transactions and 
blocks. Although nodes in blockchain networks are equal, 
some of them can perform special functions [1]. One such type 
of node is the boot node, which is the first node to which a new 
node connects. They usually do not implement the underlying 
blockchain logic but only serve to provide information about 
network nodes for further connection. Another special type 
of nodes is mining nodes. These nodes implement all the same 
logic as normal nodes but in addition, with the help of the 
mining process, they generate new blocks from the received 
transactions (in some blockchain networks, the mining pro-
cess is replaced by the staking process [2]). In addition, some 
blockchain networks, such as Rootstock (RSK) [3], may have 
additional types of nodes that enable their specific protocol to 
operate. Thus, RSK has PowPeg nodes that provide two-way 
communication with the Bitcoin network [4].

Usually, the network interaction of blockchain nodes is 
implemented by three protocols. The first protocol is Peer 
Discovery, it is responsible for discovering nodes in the 
blockchain network and uses the User Datagram Proto-
col (UDP). The second protocol is Wire, it uses the Trans-
mission Control Protocol (TCP) protocol and implements 
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also important to consider the different scales and complex-
ities of networks.

In study [10], authors conducted a detailed data col-
lection of Bitcoin nodes during the year, from July 2021 
to June 2022, covering 127,613 nodes. They found that the 
number of Bitcoin nodes fluctuates in response to fluc-
tuations in the Onion network. The authors also selected 
2,694 Bitcoin key nodes and analyzed their important char-
acteristics. As a result, they used machine learning to group 
these nodes by various attributes and infer centralization 
in the Bitcoin network. Bitcoin node research has unsolved 
issues, such as the analysis of inaccessible nodes and the 
need to improve clustering algorithms and datasets. These 
challenges highlight the need for continuous improvement 
in node discovery methods for blockchain networks to better 
understand their structure and vulnerabilities. In addition, 
each blockchain network has its own specific characteristics, 
so analysis and detection methods may require adaptation.

Article [11] describes a new TopoShot method for detect-
ing the topology of a blockchain network. TopoShot can be 
used with major Ethereum clients such as Geth and Parity. 
One of the challenges of this research is to extend the meth-
odology for continuous monitoring and analysis of the dy-
namic topology of the main Ethereum network in real time 
since the structure of the network and its connections can 
change rapidly. Additionally, applying this method to other 
blockchain networks may require significant adaptation due 
to differences in network protocols and client software.

Work [12] investigates the topology of the Bitcoin net-
work, which is important for the distribution of transactions 
and blocks. The authors developed AddressProbe, a method 
that detects connections in the Bitcoin P2P network. The 
research examines protocol messages for obtaining neighbor 
nodes. Topology analysis allows one to identify nodes with 
a high degree of connection, as well as identify influential 
nodes that are connected to mining pools. Among the un-
solved problems of the developed method is the problem of 
reliability. The method relies on unofficial specifications of 
the Bitcoin client, which may change in the future. Applying 
the AddressProbe method to other blockchain networks can 
be difficult due to the differences in their operation, indi-
cating the need for more flexible methods to understand the 
structure of different blockchain networks.

Paper [13] describes Kadcast, a new method of distrib-
uting blocks in blockchain networks. Kadcast leverages an 
existing network architecture, Kademlia, for cost-efficient 
data delivery. The protocol is based on UDP and includes 
error correction technology for greater reliability while re-
maining easy to use. Applying the results of this research to 
node discovery and data collection in blockchain networks 
may require adaptation to handle different network condi-
tions and different architectures.

Study [14] reports characteristics of the Bitcoin P2P net-
work based on measurements carried out from 2015 to 2018. 
Network characterization provides information about the 
behavior of nodes and their operators, for example, providing 
evidence that the Bitcoin P2P network has experienced Syb-
il attacks in the past. One of the challenges of research is the 
uncertainty about the causes of some effects in the network 
due to the lack of data from remote nodes. Regarding the 
application of the developed node detection methods to other 
blockchain networks, adaptations are needed to take into 
account different network structures and protocols.

through proper communication with nodes using the Peer 
Discovery protocol. This, in turn, allows researchers and 
developers to analyze the blockchain network as a whole, as 
well as individual nodes.

2. Literature review and problem statement

Paper [5] presents NodeMaps, a framework for collecting, 
analyzing, and visualizing data from various popular block-
chain platforms such as Cosmos, Stellar, Bitcoin, and Light-
ning Network. The authors compare how these platforms are 
distributed around the world, what hosts they use, and what 
software clients they have. They found that Bitcoin and the 
Lightning Network have a large geographic coverage and 
many nodes operate through the TOR network, which en-
sures privacy. Instead, Cosmos and Stellar blockchain nodes 
are more likely to operate on large cloud platforms or data 
centers. But this method cannot be applied to the Rootstock 
network since the node search protocol is different.

In paper [6], the authors explain what they mean by 
inaccessible network nodes, and then present the Passive 
Announcement Listening method. This method allows one 
to estimate the number of unreachable nodes by analyzing 
messages on the network that report active IP addresses. 
Using the PAL method, the authors examine data from 
the Bitcoin network over a period of more than five years 
(from 2015 to 2020). Unsolved problems of the PAL method 
include its accuracy in identifying unreachable network 
members and adaptation to dynamic network conditions. 
Its application to other blockchain networks is difficult due 
to the variety of P2P structures and protocols, requiring 
specific modifications adapted to the unique protocols and 
characteristics of each network.

Study [7] analyzes the P2P reliability of the Ethereum 
network with the help of a developed tool for gathering 
data about nodes. The study found a strong concentration 
of nodes in several autonomous systems and suspicious pat-
terns that could indicate a Sybil attack. Applying this detec-
tion method to other blockchain networks such as Rootstock 
is difficult. The reason for this is that the crawler requires 
adaptation to match the unique mechanisms and structural 
features of each network.

Paper [8] demonstrates that Go Ethereum (Geth), an 
implementation of Ethereum, is vulnerable to Eclipse-type 
attacks. The attack uses the Kademlia peering logic used by 
Geth, allowing for easy isolation of long-lived remote victim 
nodes with little resources. The authors discuss the funda-
mental properties of Geth’s node discovery logic that allow 
for a suitable attack. They analyze the node discovery proto-
col in the Ethereum network, but the results of this analysis 
cannot be directly used for other blockchain networks.

Paper [9] studies the topology of the Bitcoin network, 
in which nodes are scattered around the world. The work 
presents BTCmap – a framework for detecting and building 
a map of the Bitcoin network. This framework includes two 
modules: for collecting address databases from each node 
and a Bitcoin node emulator for neighbor selection and 
topology generation. Applying the BTCmap framework to 
other blockchain networks has potential but also faces some 
challenges. Each blockchain network has its own unique 
characteristics and architecture, which may require adapta-
tion and modification of the framework for effective use. It is 
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Work [15] considers the Ethereum P2P network. The 
authors analyze the P2P network structure of the Ethereum 
system for two months in the mainnet, collecting data from 
more than 217,514 different nodes. The collected data made 
it possible to analyze the status of nodes, the type of node 
services, the geographic distribution of nodes and Internet 
service providers. The study also highlights several out-
standing issues, including the need for more detailed anal-
ysis of information dissemination, which could be improved 
by collecting more data and increasing the number of net-
work connections. In addition, there is potential to develop 
criteria for inclusion of transactions by miners. Applying 
these detection methods to other blockchain networks will 
require adaptation to the unique characteristics of each 
network, which highlights the need to use individualized 
approaches in analyzing blockchain networks.

In [16], authors propose the Ethna method, which mea-
sures the degrees of Ethereum nodes and determines the 
delay in message propagation in the P2P Ethereum network. 
Experiments were also carried out in the work to analyze 
the topological features of the corresponding P2P network. 
However, issues such as the need for continuous analysis 
to track network evolution remain overlooked. In addition, 
node detection methods developed for the Ethereum net-
work cannot be directly applied to other P2P systems.

Work [17] considers how crawling BitTorrent network 
nodes can be used to rebuild pirated search engines and to 
monitor user actions. The authors of the paper developed the 
Vuze DHT scanner, which was used to demonstrate the lim-
itations of the node discovery protocol, including the ineffi-
cient provision of user anonymity. Research on node crawl-
ing in the BitTorrent network highlights unsolved problems, 
such as the difficulty in permanently shutting down illegal 
torrent nodes due to their easy recovery. In addition, it raises 
questions about user privacy and the effectiveness of legal 
action against individual users. Applying this BitTorrent 
network crawling method to other P2P networks can be 
useful for understanding their activity. However, different 
architectures and protocols, such as in blockchain systems 
or decentralized storage systems, may require individual 
adaptation of these methods.

The general review of the literature [5–17] allows us to 
state that the issue of analyzing the node search protocol and 
developing tools for crawling is important for network devel-
opers, its participants, and analysts. However, no studies were 
found that focused on the Rootstock blockchain network. In 
addition, no information about the state of the network in 
terms of the number of deployed nodes and their location is 
revealed. Node discovery protocols are decentralized, so a sin-
gle node cannot provide information about the entire network. 
To get a list of all network nodes, you need to poll each node. 
Although many of the protocols are well known and have a 
sufficient theoretical basis, their implementation in different 
systems differs. Available sources do not provide information 
about the Rootstock network node search protocol.

3. The aim and objectives of the study

The purpose of our study is to develop a method for de-
tecting and identifying nodes in the Rootstock blockchain 
network. This will make it possible to effectively identify 
all nodes operating in a given blockchain network, their IP 
addresses, and public keys. This information can be used for 

further analysis of both the nodes themselves and for correla-
tion with on-chain data. In addition, it will make it possible 
to create a “map” of the blockchain network and draw con-
clusions about its dynamics and state.

To achieve the goal, the following tasks were set:
– to analyze the Peer Discovery protocol of the Root-

stock network blockchain;
– to determine the main stages of the node detection 

method;
– to develop a prototype of node detection software;
– to evaluate the effectiveness of the proposed method. 

4. The study materials and methods

The object of our study is the Peer Discovery protocol 
of the Rootstock blockchain network. The main hypothesis 
assumes the application of the graph traversal algorithm and 
the use of the defined specifics of the protocol implementa-
tion in the RSKj software [18] for effective search of network 
nodes.

Rootstock is a sidechain of the Bitcoin network imple-
mented using the process of merged mining. RSK imple-
ments the Rootstock Virtual Machine (RVM), which is sim-
ilar to the Ethereum virtual network, allowing the creation 
of smart contracts. Other improvements that RSK brings to 
the Bitcoin ecosystem include faster block generation and 
lower transaction costs. Today, there is only one software 
implementation of a network node – RSKj.

This work uses the current version of RSKj at the time 
of the research – Fingerroot 5.3.0. Analysis of the protocol 
was performed through the RSKj source code review and 
through the analysis of the documentation of a similar pro-
tocol in the Ethereum blockchain network [19].

The theory of algorithms is used to build the node search 
method, namely, graph search [20].

The experimental part involves the deployment of a cer-
tain number of nodes in the main network (mainnet), which 
will be used as a check that the software-implemented meth-
od managed to find the relevant nodes when searching for all 
of them. Verification nodes are deployed at a given frequency 
on the Vultr cloud platform [21]. Machines are deployed 
automatically using a developed Python script that uses the 
Vultr API [22]. The machines have the following character-
istics that correspond to the recommendations [23]:

– processor: 1 virtual processor;
– RAM: 8 GB;
– drive: 50 TB;
– operating system: Ubuntu 22.04 LTS.

5. Results of investigating the method of detection and 
identification of Rootstock network blockchain nodes

5. 1. Peer Discovery protocol analysis
Peer Discovery is the general name of protocols for find-

ing nodes in P2P networks, which are often implemented 
using the distributed hash table Kademlia [24] on the UDP 
protocol. Rootstock network is no exception. The main 
logic of the protocol is implemented in the PeerExplorer 
class [25]. An example of the analysis is shown in Fig. 1.

The PeerExplorer class handles message processing and 
works with other parts of the protocol, such as a distributed 
table of nodes.
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5. 1. 1. Distributed hash table
Kademlia DHT is implemented in the NodeDistance-

Table class [26] and mixes slots with nodes according to their 
distance to the current node. Table parameters include [27]:

– 256 slots (buckets);
– 16 nodes in a slot.
An important element of the algorithm is the node 

identifier (NodeId). The node’s RSK identifier is the node’s 
public key without the first byte of the format [28]. The 
distance between the nodes is calculated based on this ID, 
or more precisely, based on the hash of the ID keccak256(ke-
ccak256(NodeId)). The distance is the position of the most 
significant bit of the value of XOR operation over the hashed 
values of the identifiers of two nodes (Fig. 2) [29].

For a slot with a distance of 1, the hash of the node IDs is 
almost identical and differs only by one least significant (zero) 
bit. In practice, this means that more nodes will fall into slots 
with a longer distance than slots with a shorter distance.

5. 1. 2. Message format
The protocol is implemented using four types of RLP 

messages [30]: two types of requests and two types of re-
sponses. RLP messages are wrapped with additional infor-
mation and sent. In general, the packet sent via the UDP 
protocol has the structure shown in Fig. 3.

Fig.	3.	Peer	Discovery	message	structure

The fields have the following values:
– Data – RLP message;
– Type – type of RLP message (PING, PONG, FIND_

NODE or NEIGHBORS);
– Signature – ECDSA data signature (Type and Data 

fields), specified by parameters v (32 bytes), r (32 bytes), 
and s (1 byte). The signature uses the node’s private key;

– MDC is a checksum that is formed on the basis of the 
rest of the data, namely, keccak256(Signature+Type+Data).

All RLP messages have 2 man- 
datory fields rlpCheck and rlp-
NetworkId. rlpCheck is a unique 
identifier (Universally Unique 
Identifier – UUID), used to 
check that the response came 
to the specified request, that 
is, the response must contain 
the same rlpCheck value as the 
request. rlpNetworkId is the 
network identifier; in the RSK 
network, possible values are 775 
and 8100, for mainnet and test-
net, respectively. The format of 
the 4 types of messages is given  
below:

– PING. Request response, 
used to check the availability of 

the node and to initialize the connection. Upon receiving 
this message, the receiving node sends a PONG response 
and also sends a PING if the connection between the nodes 
is not initialized.

Although a message of this type in other blockchain 
networks [19] involves specifying UDP (for this protocol) 
and TCP (for Wire protocol) ports separately, in RSKj the 
same port is used:

[[rlpIp, rlpPort, rlpPort], [rlpIpTo, rlpPortTo, rlpPortTo], 
rlpCheck, rlpNetworkID]. 

 

 
  

Fig.	1.	PeerExplorer	class	analysis	process

 

 
  

Fig.	2.	Visualization	of	the	calculation	of	distance	between	nodes
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In addition, the message format is supposed to indicate 
the connection parameters of the sending node and the re-
ceiving node, RSKj specifies the parameters of the sending 
node instead of the receiving node, so the final message for-
mat takes the following form:

[[rlpIp, rlpPort, rlpPort], [rlpIp, rlpPort, rlpPort], rlp-
Check, rlpNetworkID], 

where rlpIp is the IP address of the sender of this message, 
rlpPort is the connection port;

– PONG. Reply to PING message. When receiving a 
PONG response, the receiving node tries to add the send-
ing node to the Kademlia table. Adding to the table means 
that the connection between the nodes is established. If the 
bucket for the current distance is full, no addition to the ta-
ble occurs and the connection is not considered established.

As in the PING message, the message duplicates the con-
nection parameters of the message sender and uses one port 
for UDP and TCP protocols:

[[rlpIp, rlpPort, rlpPort], [rlpIp, rlpPort, rlpPort], rlp-
Check, rlpNetworkID], 

where rlpIp is the IP address of the sender of this message, 
rlpPort is the connection port;

– FIND_NODE. Query of neighboring nodes. The mes-
sage has the following format: [rlpNodeId, rlpCheck, rlpNet-
workId], where rlpNodeId is the ID of the node (based on the 
public key of the node) for which neighboring nodes will be 
provided;

– NEIGHBORS. Reply to FIND_NODE message. One 
message provides up to 20 neighboring nodes (MAX_
NODES_PER_MSG) of Kademlia tables per message. 
Among them are 15 nearest neighbors [31] and 5 random 
ones [32]. Nearest neighbors are neighbors with the smallest 
logical distance between them and between rlpNodeId (spec-
ified by the request). The response is provided only if the 
node is considered connected, i.e., it is itself in the Kademlia 
distributed table.

The response has the following format: [[node1, node2, 
node2, …., node20], rlpCheck, rlpNetworkId], where node 
is a neighboring node given by the following list [rlpHost, 
rlpUDPPort, rlpTCPPort, rlpId]. rlpHost – IP address or 
host name of the node, rlpUDPPort – UDP connection port, 
rlpTCPPort – TCP connection port, rlpId – node ID based 
on the node’s public key.

5. 1. 3. Sequence of messages
A typical sequence for obtaining neighbors when node A 

queries node B for neighbors is as follows:
Step 1. Node A sends a PING request to Node B.
Step 2. Node B sends a PONG response to node A. Node 

A adds node B to its distributed table.
Step 3. Node B sends a PING request to node A.
Step 4. Node A sends a PONG response to Node B. Node 

B adds Node A to its distributed table. If the slot in the table 
for the distance between these nodes is full, no addition is 
made. Instead, the connection to the most recently pinged 
node is checked to remove it from the table if it is no longer 
active. At this stage, node A does not know whether node B 
has added it to the corresponding slot.

Step 5. Node A sends a FIND_NODE request to Node B.

Step 6. If node B contains node A in its connection table, 
then neighboring nodes are selected and sent in the NEIGH-
BORS message. If it does not contain it, then the response 
is not sent.

5. 2. The main stages of the node detection method
The main stages for searching for network nodes based 

on the breadth-first search algorithm are formed:
Step 1. Create a queue that will contain nodes from 

which you need to query neighboring nodes. Create a list of 
all received nodes.

Step 2. Specify the nodes from which to start the search. 
Add initial nodes to the queue and list of received nodes. The 
initial nodes are the same as those specified as boot nodes in 
the RSKj configuration file [33].

Step 3. Get a node from the queue from which to request 
nodes in the next steps.

Step 4. Connect to the node. To establish a connection, 
you need to send PING, receive PONG, receive PING, send 
PONG.

If the node to which the connection is made has all the 
slots in the distributed hash table for a given distance filled, 
then when processing the PONG response, it will not add 
a new node to the list of connections. Therefore, it will not 
respond to the new node’s requests to provide neighbors.

This stage can be optimized: generate the private key of 
the node until the public key is obtained, which will make it 
possible to obtain a smaller distance K to the node to which 
the connection is made. Thanks to this, the node will add us 
to a closer slot, that is, a less crowded slot. This will increase 
the chances of establishing a connection on the first try;

Step 5. Ask neighboring nodes from the connected node. 
Send a FIND_NODE request and get a NEIGHBORS re-
sponse. Add new neighbor nodes (that are not in the list of all 
received nodes) to the queue and to the list of received nodes.

Since the list of nodes transmitted in the response is 
non-deterministic (15 nearest neighbors and 5 random 
ones), it is impossible to statically determine the number 
of requests that need to be sent to get all the neighbors of 
the current node. Therefore, a heuristic approach is used to 
determine the number of messages: send messages until a 
new node is received for the last L messages, but at least M 
requests.

If the node does not respond to the node request, it may 
mean that the connection in Step 4 has not been established. 
In this case, return to the previous step (but a limited num-
ber of times);

Step 6. If the queue is not empty, return to Step 3. It 
is also possible to improve this step. Since the blockchain 
network is dynamic, nodes are constantly connected and 
disconnected from it. Therefore, it is possible to poll al-
ready processed nodes to re-obtain nodes with a certain 
periodicity.

5. 3. Development of a prototype of node detection 
software

The prototype of the node detection software is imple-
mented in Python. To speed up the search, the algorithm 
is implemented multi-threaded using ThreadPoolExecutor 
and queue (synchronized queue). The coincurve library 
is used for asymmetric cryptography, namely, private key 
generation, message signature, and other operations. The 
pycryptodome library is used for hashing.
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The software connects to multiple nodes simultaneously 
in 15 different threads and polls neighboring nodes. For bet-
ter isolation, separate ports (from 1000 to 9999) are used for 
different nodes. Fig. 4 shows a schematic diagram where the 
software connects to multiple nodes simultaneously and uses 
different ports to receive messages.

The method software involves sending PING, FIND_
NODE requests, and also sending a PONG response. The 
NEIGHBORS response is not sent, only received, and pro-
cessed. In messages, the rlpCheck field is 
generated as a random UUID. Since the 
experiment is carried out in the main 
network (mainnet), the network identifier 
rlpNetworkId is set to 775.

When collecting nodes, the following 
information is registered:

– IP address of the node;
– UDP and TCP ports for Peer Dis-

covery and Wire protocols;
– node identifier;
– node detection time.
The Geolocation DB web service API 

[34] is used to obtain IP address geolo-
cation.

5. 4. Evaluating effectiveness of the 
proposed method

To check the effectiveness of the pro-
posed method, the following experiment 
is conducted. The software of the devel-
oped method collects a list of all available 
blockchain nodes of the RSK network. To 
verify that it detects all nodes, test nodes 
are used, which are additionally deployed 
for the duration of the experiment with a certain period and 
in different physical locations. Discovery means receiving a 
node in the NEIGHBORS message.

Two variations of the developed method are used to 
search for nodes: a normal and an optimized version. The 
optimization consists in the fact that the public key that 
identifies us as a node is chosen in a special way. The private 
key is iterated randomly until a public key is generated that 
gives a distance to the node (whose neighbors are queried) 
that is less than or equal to 250 with a maximum of 256. This 
increases the chances of getting into an unfilled Kademlia 
table slot on the first try, since what the smaller the distance, 
the less filled the slot. For both variants of the method, 
FIND_NODE requests are sent to the same node until a new 
node is received in the last 100 messages, but not less than 
1000 requests.

The results of the experiment are given in Table 1. The 
experiment uses 6 test nodes. Nodes are deployed within 
3 hours. The node discovery software starts after all test 
nodes are deployed. During the experiment, the deployment 
time of the node and the time of its detection by the devel-
oped method are recorded.

Fig. 5 shows a plot of the detection of 
all unique network nodes over time. Opti-
mizing the selection of the public key made 
it possible to significantly reduce the time 
of searching for nodes due to the absence of 
waiting for an available space in the table 
slot of neighboring nodes.

In general, the developed method re-
vealed 220 (without optimization) and 
222 (with optimization) unique nodes. 
Unique nodes are nodes that have a 
unique pair of IP address and node ID. 
That is, it is possible to have several 
nodes with different identifiers but one 

IP address. The detected nodes have 209 unique IP ad-
dresses. Fig. 6 shows their physical location using the 
geojson.io service [35].

The collection of nodes took approximately 1 hour 
and the entire experiment with deployment of nodes took 
4 hours.

 

 
  

Fig.	4.	Multi-threaded	connection	to	nodes

Table	1

Detection	of	test	nodes

Node 
number

Physical  
location of the 

node (city)

Node  
deployment 

time

Software  
detection 

time

Detection time 
by optimized 

software

1 Sydney 10:09 13:03 13:02

2 Tokyo 10:48 13:01 13:01

3 Manchester 11:08 13:06 13:02

4 Seoul 12:00 13:03 13:02

5 Seattle 12:12 13:22 13:01

6 Warsaw 12:57 13:01 13:01

 

 
  Fig.	5.	Number	of	new	nodes	discovered	over	time
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 6. Discussion of results of investigating the method of 
detection and identification of nodes of the Rootstock 

blockchain network

Node discovery protocols are the foundation of any de-
centralized P2P network. They determine how nodes find 
other network nodes, ensure its distribution, and form a cer-
tain network topology. In such systems, nodes can connect 
to every node in the network or only to a subset of nodes. In 
blockchain systems, nodes usually do not store information 
about each node in the network and only connect to a small 
subset of nodes to optimize resources and communication 
efficiency.

P2P systems include file exchanges, communication 
systems, blockchain networks, and others. Depending on the 
functions of the system, a different network topology and the 
use of different node detection protocols are possible.

The protocol for detecting nodes in the Rootstock block-
chain network is built on the basis of a table of neighboring 
nodes – Kademlia, which takes into account the logical 
distance between nodes. This distance is determined based 
on the hash values of the nodes’ public keys. Visualization 
of the calculation of the distance between nodes is shown 
in Fig. 2. Kademlia is used in file sharing networks and 
various blockchain networks. It is suitable for decentralized 
systems that require a decentralized network topology. The 
advantages of Kademlia include the efficiency and speed of 
data retrieval, scalability, and low resource costs. Kademlia’s 
disadvantages include security issues (such as vulnerability 
to Sybil attacks) and the difficulty of maintaining a dynamic 
network with constantly changing nodes.

However, there is no documentation of the Rootstock 
network node discovery protocol. Although the blockchain 
protocol of the Ethereum network is also used by Kademlia, 
it is not exactly identical to the node detection protocol of 
the Rootstock network. Therefore, the Ethereum protocol 
specification [20] or available studies [15, 16] cannot be 
directly used to build a crawler in the Rootstock network. 

That is why the analysis of the source code of the software 
of the RSKj node was carried out, which made it possible to 
gain an understanding of the structure and mechanisms of 
the protocol.

In the Rootstock network, the node discovery protocol is 
implemented using only 4 types of messages (2 for a request 
and 2 for a response). In addition, a specific sequence of 
messages was defined, which ensures detection and connec-
tion with neighboring nodes in the network. In general, the 
simplicity of the protocol and implementation is a strength 
of the network, as it reduces the probability of errors and 
simplifies the analysis process.

Since the nodes in the blockchain network are equal, and 
by default the parameters of the Peer Discovery protocol in 
RSKj are the same, it is impossible to determine the criteria by 
which a node can be considered a higher priority for providing 
neighboring nodes. Under this condition, if the network is rep-
resented as a graph, it will be considered unweighted.

To search for nodes, namely, traversal of an unweight-
ed graph, it is possible to use both depth-first search 
and breadth-first search. Among the advantages of using 
breadth-first search is the ease of parallelization, where each 
thread simply fetches the next node from the queue. There-
fore, a breadth-first search algorithm was chosen to search 
for blockchain network nodes.

An important element is that the size of the slots in the 
Kademlia table is quite small. Therefore, quite often situa-
tions may arise when a node cannot establish a connection 
with another node because the slot of the corresponding 
distance is full. In order for a node to have more chances 
to establish a connection with the selected node, the logi-
cal distance between them should be as small as possible. 
And since the distance is determined on the basis of node 
identifiers (public keys), the process of getting a node into 
a free slot was optimized by sorting keys to obtain a smaller 
distance. This optimization is absent in similar studies of the 
Ethereum network [7, 8, 11, 16, 17] and was implemented in 
this work as an additional element.

 

 
  

Fig.	6.	Physical	location	of	node	IP	addresses
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The next important aspect is the number of neighbor 
grant requests that need to be sent to a single node to ob-
tain its neighbors. 15 nearest neighbors and 5 random ones 
are provided per message. Therefore, when sending any 
number of messages, it is impossible to be sure whether all 
neighboring nodes have received them or only some part. A 
heuristic approach is used for this: messages are sent until a 
new node (which has not yet been discovered by the given 
node) is received in the last 100 messages, but in any case, at 
least 1000 requests are sent. Since the blockchain network is 
dynamic, nodes are constantly connected and disconnected 
from it. Therefore, previously polled nodes are also polled to 
re-obtain nodes with a certain frequency.

When implementing the method, the multi-threaded 
ThreadPoolExecutor and queue mechanisms of the Python 
language were used to speed up the search. The software 
connects to multiple nodes simultaneously in 15 different 
streams, although the number of streams can be higher. It 
is even possible to allocate a separate flow for each node. 
However, in order to avoid potential blocking of requests 
by Intrusion Prevention Systems, it was decided to choose 
a limited number of threads – 15, which satisfy sufficiently 
fast collection of all nodes.

As a result of the experiment, information was collected 
about 222 nodes of the network, which includes IP addresses 
of nodes, UDP and TCP ports for Peer Discovery and Wire 
protocols, node IDs and node discovery time. In addition, 
verification nodes were deployed, the purpose of which was to 
check the effectiveness of the developed detection technique. 
All 6 test nodes were detected in less than 10 minutes. Data 
on the time of placement and detection of these test nodes are 
given in Table 1. The experiment also checked to what extent 
the selection of the public key of the node (for searching a 
shorter distance) optimizes the time of searching for nodes. 
Fig. 5 shows a graph of node detection time, which allows 
one to make sure that this optimization speeds up the search. 
With optimization, most nodes were detected within 15 min-
utes, while without optimization it took just over 45 minutes. 
Finally, the physical location of all detected nodes is shown in 
Fig. 6, which allows us to draw conclusions about the location 
of nodes. For example, the most nodes are located in South 
America, the United States, and Central Europe.

It is safe to say that the developed method turned out to 
be a highly effective tool for finding and identifying nodes 
in the Rootstock blockchain network. A special feature of 
this method is its ability to quickly detect a large number 
of nodes in the network, where it can find most of the active 
nodes in a matter of minutes. The developed node search 
method and the corresponding experiment made it possible 
to obtain information about the topology of the Rootstock 
network, which was not reported before.

The main limitation of the developed node detection 
method is its inability to identify real IP addresses of nodes 
when they use anonymizing services such as virtual private 
network (VPN) or The Onion Router (TOR). These services 
are designed to ensure the privacy and anonymity of users by 
hiding real IP addresses using various network routes and 
gateways. As a result, when a node uses VPN or TOR, the 
method can only identify the IP address of the source node of 
these services, not the actual IP address of the node. This sig-
nificantly limits the capabilities of the method in the context 
of accurate tracking and analysis of network activity.

The development of this research may focus on the 
practical application of our method for specific tasks, for 

example, for the analysis of blockchain transactions or the 
network in general. Another direction of development may 
be the adaptation of the devised method to other P2P net-
works, especially those whose protocols function on the basis 
of mechanisms similar to those already studied. Another 
area of further research is the analysis of nodes that are in 
the VPN or TOR network in order to obtain any information 
about the real IP addresses of the nodes.

7. Conclusions 

1. The Peer Discovery blockchain protocol of the Root-
stock network was analyzed. A comprehensive approach 
was applied, which includes the analysis of the source code 
of the RSKj node software and an analytical review of the 
documentation of a conceptually similar protocol – the node 
detection protocol in the Ethereum network. This made it 
possible to understand how the Kademlia distributed node 
table is implemented and works, to obtain message types and 
formats, and to determine message sequences to obtain a list 
of neighboring nodes. In other words, the complete logic of 
the node search protocol has been restored. This information 
is sufficient for independent implementation of the protocol 
and communication in the Rootstock network blockchain 
with other nodes.

2. The main stages of the method of detecting nodes of 
the Rootstock network blockchain based on breadth-first 
search were defined. Nodes are interrogated by the Peer 
Discovery protocol to obtain neighboring nodes. Neighbor 
nodes are then polled to obtain their neighbor nodes. This 
procedure continues until new nodes are detected. Also, the 
search can be performed under continuous mode (nodes are 
polled repeatedly) to obtain information about the state of 
the network in real time. In addition to the basic algorithm, 
the optimization of the entry of a node into the slot of the 
shortest distance of the distributed table by selecting the 
public key (identifier) of the node has been developed. This 
allows one to speed up the search for nodes by increasing the 
chances that the specified slot in the table will be empty and 
the connection will be made on the first try.

3. The designed prototype of the Rootstock network 
node detection software implements the node search algo-
rithm using multi-threaded mechanisms. This allows one to 
perform an accelerated search for nodes. When collecting 
nodes, the IP address of the node, its identifier (public key), 
the ports of Peer Discovery and Wire protocols, and the time 
of node discovery are obtained.

4. Effectiveness of the proposed method was verified 
using the developed software prototype and the following 
experiment in the main network. 6 verification nodes were 
deployed in different physical locations and at different 
times. The deployment period lasted up to 3 hours, after 
which a 1-hour node search was initiated. All 6 test nodes 
were detected in less than 10 minutes. During the entire 
search time, the developed method revealed 220 (without 
optimization) and 222 (with optimization) unique nodes. 
Optimizing the selection of the public key made it possible 
to reduce the time of searching for nodes by almost 3 times 
due to the absence of waiting for an available space in the 
table slot of neighboring nodes. In addition, with the help of 
existing services, the physical location of all 209 unique IP 
addresses of the nodes was determined and a corresponding 
map was built.
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