
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (127) 2024

6

the exchange of blockchain information between nodes.
The third protocol – JSON-RPC is built on the Hypertext
Transfer Protocol (HTTP) protocol for the interaction of
external applications with the blockchain node.

Peer Discovery and other network protocols do not involve
storing, connecting, or providing all network nodes, as the sys-
tem works in a decentralized manner. Each node that connects
to the network actually connects to a subset of nodes, so it is
impossible to get a list of all nodes from a single node.

Collecting all network nodes is an important task of
blockchain network analysis for both its developers and ex-
ternal analysts. It allows developers to understand the scale
of the network and track its dynamics. Analysts need to find
specific nodes, or nodes that meet certain criteria (for exam-
ple, located in a certain region) for further analysis.

Therefore, scientific studies on this topic are important
because they show how to analyze node detection protocols
for a selected network, determine its limitations, and how
to bypass these limitations for further analysis. Our study
describes in detail the principles of the protocol for finding
nodes in the Rootstock network, the formats and sequence
of messages used.

The results of such studies are needed in practice be-
cause they provide approaches and means for obtaining all
available nodes of a decentralized peer-to-peer (P2P) system

DEVELOPING A METHOD
FOR THE DETECTION

AND IDENTIFICATION
OF ROOTSTOCK

BLOCKCHAIN
NETWORK NODES

Y a r o s l a w D o r o g y y
Doctor	of	Technical	Sciences,	Associate	Professor

Department	of	Information	Systems	and	Technologies*
V a d y m K o l i s n i c h e n k o

Corresponding author
Postgraduate	Student

Department	of	Computer	Science	and	Software	
Engineering*

E-mail:	vadym.kolisnichenko@gmail.com
*National	Technical	University	of	Ukraine	“Igor	Sikorsky	

Kyiv	Polytechnic	Institute”
Beresteiskyi	(Peremohy)	ave.,	37,	Kyiv,	Ukraine,	03056

The object of this study is the protocol for detecting nodes
in the Rootstock blockchain network and crawling tools. Node
discovery protocols are the foundation of any decentralized
peer-to-peer network. In blockchain systems, full nodes store
and maintain a complete copy of all transactions performed
in the network. However, they do not store information about
all other nodes, such as their IDs or IP addresses. Each
node usually maintains an incomplete list of nodes to which
it connects to exchange blockchain data. In decentralized
networks, nodes join and leave the network and their IP
addresses can change, making it impractical to maintain a
complete, up-to-date list of all nodes. Therefore, the only way
to get a list of all nodes in the network is to poll each node
sequentially.

The developed method involves sending specially formed
messages to nodes to obtain their neighbors. The graph search
algorithm is used to traverse all received neighboring nodes.
This allows one to consistently detect all network nodes.
Identifying the desired sequence of messages requires a
preliminary analysis of the node software RSKj in the part of
node discovery protocol.

Effectiveness of the proposed method was verified using the
developed software and an experiment in the main network. 6
verification nodes were deployed in different physical locations
and at different times. All test nodes were detected in less than
10 minutes. The developed method found 222 nodes that have
209 unique IP addresses.

Results of this study show how to perform analysis of
node discovery protocol. They provide the means to obtain
information about the available nodes of the Rootstock
blockchain system, enabling the analysis of both the blockchain
network in general and individual node

Keywords: peer discovery, network crawling, peer-to-peer
networks, Rootstock blockchain, Kademlia, decentralization

UDC 004.4+004.9

DOI: 10.15587/1729-4061.2024.297903

How to Cite: Dorogyy, Y., Kolisnichenko, V. (2024). Developing a method for the detection and identification of

Rootstock blockchain network nodes. Eastern-European Journal of Enterprise Technologies, 1 (2 (127)), 6–15.

doi: https://doi.org/10.15587/1729-4061.2024.297903

Received date 17.11.2023

Accepted date 29.01.2024

Published date 28.02.2024

Copyright © 2024, Authors. This is an open access article under the Creative Commons CC BY license

1. Introduction

Blockchain nodes are one of the key elements of the net-
work. They receive, verify, and broadcast transactions and
blocks. Although nodes in blockchain networks are equal,
some of them can perform special functions [1]. One such type
of node is the boot node, which is the first node to which a new
node connects. They usually do not implement the underlying
blockchain logic but only serve to provide information about
network nodes for further connection. Another special type
of nodes is mining nodes. These nodes implement all the same
logic as normal nodes but in addition, with the help of the
mining process, they generate new blocks from the received
transactions (in some blockchain networks, the mining pro-
cess is replaced by the staking process [2]). In addition, some
blockchain networks, such as Rootstock (RSK) [3], may have
additional types of nodes that enable their specific protocol to
operate. Thus, RSK has PowPeg nodes that provide two-way
communication with the Bitcoin network [4].

Usually, the network interaction of blockchain nodes is
implemented by three protocols. The first protocol is Peer
Discovery, it is responsible for discovering nodes in the
blockchain network and uses the User Datagram Proto-
col (UDP). The second protocol is Wire, it uses the Trans-
mission Control Protocol (TCP) protocol and implements

INFORMATION TECHNOLOGY

Information technology

7

also important to consider the different scales and complex-
ities of networks.

In study [10], authors conducted a detailed data col-
lection of Bitcoin nodes during the year, from July 2021
to June 2022, covering 127,613 nodes. They found that the
number of Bitcoin nodes fluctuates in response to fluc-
tuations in the Onion network. The authors also selected
2,694 Bitcoin key nodes and analyzed their important char-
acteristics. As a result, they used machine learning to group
these nodes by various attributes and infer centralization
in the Bitcoin network. Bitcoin node research has unsolved
issues, such as the analysis of inaccessible nodes and the
need to improve clustering algorithms and datasets. These
challenges highlight the need for continuous improvement
in node discovery methods for blockchain networks to better
understand their structure and vulnerabilities. In addition,
each blockchain network has its own specific characteristics,
so analysis and detection methods may require adaptation.

Article [11] describes a new TopoShot method for detect-
ing the topology of a blockchain network. TopoShot can be
used with major Ethereum clients such as Geth and Parity.
One of the challenges of this research is to extend the meth-
odology for continuous monitoring and analysis of the dy-
namic topology of the main Ethereum network in real time
since the structure of the network and its connections can
change rapidly. Additionally, applying this method to other
blockchain networks may require significant adaptation due
to differences in network protocols and client software.

Work [12] investigates the topology of the Bitcoin net-
work, which is important for the distribution of transactions
and blocks. The authors developed AddressProbe, a method
that detects connections in the Bitcoin P2P network. The
research examines protocol messages for obtaining neighbor
nodes. Topology analysis allows one to identify nodes with
a high degree of connection, as well as identify influential
nodes that are connected to mining pools. Among the un-
solved problems of the developed method is the problem of
reliability. The method relies on unofficial specifications of
the Bitcoin client, which may change in the future. Applying
the AddressProbe method to other blockchain networks can
be difficult due to the differences in their operation, indi-
cating the need for more flexible methods to understand the
structure of different blockchain networks.

Paper [13] describes Kadcast, a new method of distrib-
uting blocks in blockchain networks. Kadcast leverages an
existing network architecture, Kademlia, for cost-efficient
data delivery. The protocol is based on UDP and includes
error correction technology for greater reliability while re-
maining easy to use. Applying the results of this research to
node discovery and data collection in blockchain networks
may require adaptation to handle different network condi-
tions and different architectures.

Study [14] reports characteristics of the Bitcoin P2P net-
work based on measurements carried out from 2015 to 2018.
Network characterization provides information about the
behavior of nodes and their operators, for example, providing
evidence that the Bitcoin P2P network has experienced Syb-
il attacks in the past. One of the challenges of research is the
uncertainty about the causes of some effects in the network
due to the lack of data from remote nodes. Regarding the
application of the developed node detection methods to other
blockchain networks, adaptations are needed to take into
account different network structures and protocols.

through proper communication with nodes using the Peer
Discovery protocol. This, in turn, allows researchers and
developers to analyze the blockchain network as a whole, as
well as individual nodes.

2. Literature review and problem statement

Paper [5] presents NodeMaps, a framework for collecting,
analyzing, and visualizing data from various popular block-
chain platforms such as Cosmos, Stellar, Bitcoin, and Light-
ning Network. The authors compare how these platforms are
distributed around the world, what hosts they use, and what
software clients they have. They found that Bitcoin and the
Lightning Network have a large geographic coverage and
many nodes operate through the TOR network, which en-
sures privacy. Instead, Cosmos and Stellar blockchain nodes
are more likely to operate on large cloud platforms or data
centers. But this method cannot be applied to the Rootstock
network since the node search protocol is different.

In paper [6], the authors explain what they mean by
inaccessible network nodes, and then present the Passive
Announcement Listening method. This method allows one
to estimate the number of unreachable nodes by analyzing
messages on the network that report active IP addresses.
Using the PAL method, the authors examine data from
the Bitcoin network over a period of more than five years
(from 2015 to 2020). Unsolved problems of the PAL method
include its accuracy in identifying unreachable network
members and adaptation to dynamic network conditions.
Its application to other blockchain networks is difficult due
to the variety of P2P structures and protocols, requiring
specific modifications adapted to the unique protocols and
characteristics of each network.

Study [7] analyzes the P2P reliability of the Ethereum
network with the help of a developed tool for gathering
data about nodes. The study found a strong concentration
of nodes in several autonomous systems and suspicious pat-
terns that could indicate a Sybil attack. Applying this detec-
tion method to other blockchain networks such as Rootstock
is difficult. The reason for this is that the crawler requires
adaptation to match the unique mechanisms and structural
features of each network.

Paper [8] demonstrates that Go Ethereum (Geth), an
implementation of Ethereum, is vulnerable to Eclipse-type
attacks. The attack uses the Kademlia peering logic used by
Geth, allowing for easy isolation of long-lived remote victim
nodes with little resources. The authors discuss the funda-
mental properties of Geth’s node discovery logic that allow
for a suitable attack. They analyze the node discovery proto-
col in the Ethereum network, but the results of this analysis
cannot be directly used for other blockchain networks.

Paper [9] studies the topology of the Bitcoin network,
in which nodes are scattered around the world. The work
presents BTCmap – a framework for detecting and building
a map of the Bitcoin network. This framework includes two
modules: for collecting address databases from each node
and a Bitcoin node emulator for neighbor selection and
topology generation. Applying the BTCmap framework to
other blockchain networks has potential but also faces some
challenges. Each blockchain network has its own unique
characteristics and architecture, which may require adapta-
tion and modification of the framework for effective use. It is

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (127) 2024

8

Work [15] considers the Ethereum P2P network. The
authors analyze the P2P network structure of the Ethereum
system for two months in the mainnet, collecting data from
more than 217,514 different nodes. The collected data made
it possible to analyze the status of nodes, the type of node
services, the geographic distribution of nodes and Internet
service providers. The study also highlights several out-
standing issues, including the need for more detailed anal-
ysis of information dissemination, which could be improved
by collecting more data and increasing the number of net-
work connections. In addition, there is potential to develop
criteria for inclusion of transactions by miners. Applying
these detection methods to other blockchain networks will
require adaptation to the unique characteristics of each
network, which highlights the need to use individualized
approaches in analyzing blockchain networks.

In [16], authors propose the Ethna method, which mea-
sures the degrees of Ethereum nodes and determines the
delay in message propagation in the P2P Ethereum network.
Experiments were also carried out in the work to analyze
the topological features of the corresponding P2P network.
However, issues such as the need for continuous analysis
to track network evolution remain overlooked. In addition,
node detection methods developed for the Ethereum net-
work cannot be directly applied to other P2P systems.

Work [17] considers how crawling BitTorrent network
nodes can be used to rebuild pirated search engines and to
monitor user actions. The authors of the paper developed the
Vuze DHT scanner, which was used to demonstrate the lim-
itations of the node discovery protocol, including the ineffi-
cient provision of user anonymity. Research on node crawl-
ing in the BitTorrent network highlights unsolved problems,
such as the difficulty in permanently shutting down illegal
torrent nodes due to their easy recovery. In addition, it raises
questions about user privacy and the effectiveness of legal
action against individual users. Applying this BitTorrent
network crawling method to other P2P networks can be
useful for understanding their activity. However, different
architectures and protocols, such as in blockchain systems
or decentralized storage systems, may require individual
adaptation of these methods.

The general review of the literature [5–17] allows us to
state that the issue of analyzing the node search protocol and
developing tools for crawling is important for network devel-
opers, its participants, and analysts. However, no studies were
found that focused on the Rootstock blockchain network. In
addition, no information about the state of the network in
terms of the number of deployed nodes and their location is
revealed. Node discovery protocols are decentralized, so a sin-
gle node cannot provide information about the entire network.
To get a list of all network nodes, you need to poll each node.
Although many of the protocols are well known and have a
sufficient theoretical basis, their implementation in different
systems differs. Available sources do not provide information
about the Rootstock network node search protocol.

3. The aim and objectives of the study

The purpose of our study is to develop a method for de-
tecting and identifying nodes in the Rootstock blockchain
network. This will make it possible to effectively identify
all nodes operating in a given blockchain network, their IP
addresses, and public keys. This information can be used for

further analysis of both the nodes themselves and for correla-
tion with on-chain data. In addition, it will make it possible
to create a “map” of the blockchain network and draw con-
clusions about its dynamics and state.

To achieve the goal, the following tasks were set:
– to analyze the Peer Discovery protocol of the Root-

stock network blockchain;
– to determine the main stages of the node detection

method;
– to develop a prototype of node detection software;
– to evaluate the effectiveness of the proposed method.

4. The study materials and methods

The object of our study is the Peer Discovery protocol
of the Rootstock blockchain network. The main hypothesis
assumes the application of the graph traversal algorithm and
the use of the defined specifics of the protocol implementa-
tion in the RSKj software [18] for effective search of network
nodes.

Rootstock is a sidechain of the Bitcoin network imple-
mented using the process of merged mining. RSK imple-
ments the Rootstock Virtual Machine (RVM), which is sim-
ilar to the Ethereum virtual network, allowing the creation
of smart contracts. Other improvements that RSK brings to
the Bitcoin ecosystem include faster block generation and
lower transaction costs. Today, there is only one software
implementation of a network node – RSKj.

This work uses the current version of RSKj at the time
of the research – Fingerroot 5.3.0. Analysis of the protocol
was performed through the RSKj source code review and
through the analysis of the documentation of a similar pro-
tocol in the Ethereum blockchain network [19].

The theory of algorithms is used to build the node search
method, namely, graph search [20].

The experimental part involves the deployment of a cer-
tain number of nodes in the main network (mainnet), which
will be used as a check that the software-implemented meth-
od managed to find the relevant nodes when searching for all
of them. Verification nodes are deployed at a given frequency
on the Vultr cloud platform [21]. Machines are deployed
automatically using a developed Python script that uses the
Vultr API [22]. The machines have the following character-
istics that correspond to the recommendations [23]:

– processor: 1 virtual processor;
– RAM: 8 GB;
– drive: 50 TB;
– operating system: Ubuntu 22.04 LTS.

5. Results of investigating the method of detection and
identification of Rootstock network blockchain nodes

5. 1. Peer Discovery protocol analysis
Peer Discovery is the general name of protocols for find-

ing nodes in P2P networks, which are often implemented
using the distributed hash table Kademlia [24] on the UDP
protocol. Rootstock network is no exception. The main
logic of the protocol is implemented in the PeerExplorer
class [25]. An example of the analysis is shown in Fig. 1.

The PeerExplorer class handles message processing and
works with other parts of the protocol, such as a distributed
table of nodes.

Information technology

9

5. 1. 1. Distributed hash table
Kademlia DHT is implemented in the NodeDistance-

Table class [26] and mixes slots with nodes according to their
distance to the current node. Table parameters include [27]:

– 256 slots (buckets);
– 16 nodes in a slot.
An important element of the algorithm is the node

identifier (NodeId). The node’s RSK identifier is the node’s
public key without the first byte of the format [28]. The
distance between the nodes is calculated based on this ID,
or more precisely, based on the hash of the ID keccak256(ke-
ccak256(NodeId)). The distance is the position of the most
significant bit of the value of XOR operation over the hashed
values of the identifiers of two nodes (Fig. 2) [29].

For a slot with a distance of 1, the hash of the node IDs is
almost identical and differs only by one least significant (zero)
bit. In practice, this means that more nodes will fall into slots
with a longer distance than slots with a shorter distance.

5. 1. 2. Message format
The protocol is implemented using four types of RLP

messages [30]: two types of requests and two types of re-
sponses. RLP messages are wrapped with additional infor-
mation and sent. In general, the packet sent via the UDP
protocol has the structure shown in Fig. 3.

Fig.	3.	Peer	Discovery	message	structure

The fields have the following values:
– Data – RLP message;
– Type – type of RLP message (PING, PONG, FIND_

NODE or NEIGHBORS);
– Signature – ECDSA data signature (Type and Data

fields), specified by parameters v (32 bytes), r (32 bytes),
and s (1 byte). The signature uses the node’s private key;

– MDC is a checksum that is formed on the basis of the
rest of the data, namely, keccak256(Signature+Type+Data).

All RLP messages have 2 man-
datory fields rlpCheck and rlp-
NetworkId. rlpCheck is a unique
identifier (Universally Unique
Identifier – UUID), used to
check that the response came
to the specified request, that
is, the response must contain
the same rlpCheck value as the
request. rlpNetworkId is the
network identifier; in the RSK
network, possible values are 775
and 8100, for mainnet and test-
net, respectively. The format of
the 4 types of messages is given
below:

– PING. Request response,
used to check the availability of

the node and to initialize the connection. Upon receiving
this message, the receiving node sends a PONG response
and also sends a PING if the connection between the nodes
is not initialized.

Although a message of this type in other blockchain
networks [19] involves specifying UDP (for this protocol)
and TCP (for Wire protocol) ports separately, in RSKj the
same port is used:

[[rlpIp, rlpPort, rlpPort], [rlpIpTo, rlpPortTo, rlpPortTo],
rlpCheck, rlpNetworkID].

Fig.	1.	PeerExplorer	class	analysis	process

Fig.	2.	Visualization	of	the	calculation	of	distance	between	nodes

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (127) 2024

10

In addition, the message format is supposed to indicate
the connection parameters of the sending node and the re-
ceiving node, RSKj specifies the parameters of the sending
node instead of the receiving node, so the final message for-
mat takes the following form:

[[rlpIp, rlpPort, rlpPort], [rlpIp, rlpPort, rlpPort], rlp-
Check, rlpNetworkID],

where rlpIp is the IP address of the sender of this message,
rlpPort is the connection port;

– PONG. Reply to PING message. When receiving a
PONG response, the receiving node tries to add the send-
ing node to the Kademlia table. Adding to the table means
that the connection between the nodes is established. If the
bucket for the current distance is full, no addition to the ta-
ble occurs and the connection is not considered established.

As in the PING message, the message duplicates the con-
nection parameters of the message sender and uses one port
for UDP and TCP protocols:

[[rlpIp, rlpPort, rlpPort], [rlpIp, rlpPort, rlpPort], rlp-
Check, rlpNetworkID],

where rlpIp is the IP address of the sender of this message,
rlpPort is the connection port;

– FIND_NODE. Query of neighboring nodes. The mes-
sage has the following format: [rlpNodeId, rlpCheck, rlpNet-
workId], where rlpNodeId is the ID of the node (based on the
public key of the node) for which neighboring nodes will be
provided;

– NEIGHBORS. Reply to FIND_NODE message. One
message provides up to 20 neighboring nodes (MAX_
NODES_PER_MSG) of Kademlia tables per message.
Among them are 15 nearest neighbors [31] and 5 random
ones [32]. Nearest neighbors are neighbors with the smallest
logical distance between them and between rlpNodeId (spec-
ified by the request). The response is provided only if the
node is considered connected, i.e., it is itself in the Kademlia
distributed table.

The response has the following format: [[node1, node2,
node2, …., node20], rlpCheck, rlpNetworkId], where node
is a neighboring node given by the following list [rlpHost,
rlpUDPPort, rlpTCPPort, rlpId]. rlpHost – IP address or
host name of the node, rlpUDPPort – UDP connection port,
rlpTCPPort – TCP connection port, rlpId – node ID based
on the node’s public key.

5. 1. 3. Sequence of messages
A typical sequence for obtaining neighbors when node A

queries node B for neighbors is as follows:
Step 1. Node A sends a PING request to Node B.
Step 2. Node B sends a PONG response to node A. Node

A adds node B to its distributed table.
Step 3. Node B sends a PING request to node A.
Step 4. Node A sends a PONG response to Node B. Node

B adds Node A to its distributed table. If the slot in the table
for the distance between these nodes is full, no addition is
made. Instead, the connection to the most recently pinged
node is checked to remove it from the table if it is no longer
active. At this stage, node A does not know whether node B
has added it to the corresponding slot.

Step 5. Node A sends a FIND_NODE request to Node B.

Step 6. If node B contains node A in its connection table,
then neighboring nodes are selected and sent in the NEIGH-
BORS message. If it does not contain it, then the response
is not sent.

5. 2. The main stages of the node detection method
The main stages for searching for network nodes based

on the breadth-first search algorithm are formed:
Step 1. Create a queue that will contain nodes from

which you need to query neighboring nodes. Create a list of
all received nodes.

Step 2. Specify the nodes from which to start the search.
Add initial nodes to the queue and list of received nodes. The
initial nodes are the same as those specified as boot nodes in
the RSKj configuration file [33].

Step 3. Get a node from the queue from which to request
nodes in the next steps.

Step 4. Connect to the node. To establish a connection,
you need to send PING, receive PONG, receive PING, send
PONG.

If the node to which the connection is made has all the
slots in the distributed hash table for a given distance filled,
then when processing the PONG response, it will not add
a new node to the list of connections. Therefore, it will not
respond to the new node’s requests to provide neighbors.

This stage can be optimized: generate the private key of
the node until the public key is obtained, which will make it
possible to obtain a smaller distance K to the node to which
the connection is made. Thanks to this, the node will add us
to a closer slot, that is, a less crowded slot. This will increase
the chances of establishing a connection on the first try;

Step 5. Ask neighboring nodes from the connected node.
Send a FIND_NODE request and get a NEIGHBORS re-
sponse. Add new neighbor nodes (that are not in the list of all
received nodes) to the queue and to the list of received nodes.

Since the list of nodes transmitted in the response is
non-deterministic (15 nearest neighbors and 5 random
ones), it is impossible to statically determine the number
of requests that need to be sent to get all the neighbors of
the current node. Therefore, a heuristic approach is used to
determine the number of messages: send messages until a
new node is received for the last L messages, but at least M
requests.

If the node does not respond to the node request, it may
mean that the connection in Step 4 has not been established.
In this case, return to the previous step (but a limited num-
ber of times);

Step 6. If the queue is not empty, return to Step 3. It
is also possible to improve this step. Since the blockchain
network is dynamic, nodes are constantly connected and
disconnected from it. Therefore, it is possible to poll al-
ready processed nodes to re-obtain nodes with a certain
periodicity.

5. 3. Development of a prototype of node detection
software

The prototype of the node detection software is imple-
mented in Python. To speed up the search, the algorithm
is implemented multi-threaded using ThreadPoolExecutor
and queue (synchronized queue). The coincurve library
is used for asymmetric cryptography, namely, private key
generation, message signature, and other operations. The
pycryptodome library is used for hashing.

Information technology

11

The software connects to multiple nodes simultaneously
in 15 different threads and polls neighboring nodes. For bet-
ter isolation, separate ports (from 1000 to 9999) are used for
different nodes. Fig. 4 shows a schematic diagram where the
software connects to multiple nodes simultaneously and uses
different ports to receive messages.

The method software involves sending PING, FIND_
NODE requests, and also sending a PONG response. The
NEIGHBORS response is not sent, only received, and pro-
cessed. In messages, the rlpCheck field is
generated as a random UUID. Since the
experiment is carried out in the main
network (mainnet), the network identifier
rlpNetworkId is set to 775.

When collecting nodes, the following
information is registered:

– IP address of the node;
– UDP and TCP ports for Peer Dis-

covery and Wire protocols;
– node identifier;
– node detection time.
The Geolocation DB web service API

[34] is used to obtain IP address geolo-
cation.

5. 4. Evaluating effectiveness of the
proposed method

To check the effectiveness of the pro-
posed method, the following experiment
is conducted. The software of the devel-
oped method collects a list of all available
blockchain nodes of the RSK network. To
verify that it detects all nodes, test nodes
are used, which are additionally deployed
for the duration of the experiment with a certain period and
in different physical locations. Discovery means receiving a
node in the NEIGHBORS message.

Two variations of the developed method are used to
search for nodes: a normal and an optimized version. The
optimization consists in the fact that the public key that
identifies us as a node is chosen in a special way. The private
key is iterated randomly until a public key is generated that
gives a distance to the node (whose neighbors are queried)
that is less than or equal to 250 with a maximum of 256. This
increases the chances of getting into an unfilled Kademlia
table slot on the first try, since what the smaller the distance,
the less filled the slot. For both variants of the method,
FIND_NODE requests are sent to the same node until a new
node is received in the last 100 messages, but not less than
1000 requests.

The results of the experiment are given in Table 1. The
experiment uses 6 test nodes. Nodes are deployed within
3 hours. The node discovery software starts after all test
nodes are deployed. During the experiment, the deployment
time of the node and the time of its detection by the devel-
oped method are recorded.

Fig. 5 shows a plot of the detection of
all unique network nodes over time. Opti-
mizing the selection of the public key made
it possible to significantly reduce the time
of searching for nodes due to the absence of
waiting for an available space in the table
slot of neighboring nodes.

In general, the developed method re-
vealed 220 (without optimization) and
222 (with optimization) unique nodes.
Unique nodes are nodes that have a
unique pair of IP address and node ID.
That is, it is possible to have several
nodes with different identifiers but one

IP address. The detected nodes have 209 unique IP ad-
dresses. Fig. 6 shows their physical location using the
geojson.io service [35].

The collection of nodes took approximately 1 hour
and the entire experiment with deployment of nodes took
4 hours.

Fig.	4.	Multi-threaded	connection	to	nodes

Table	1

Detection	of	test	nodes

Node
number

Physical
location of the

node (city)

Node
deployment

time

Software
detection

time

Detection time
by optimized

software

1 Sydney 10:09 13:03 13:02

2 Tokyo 10:48 13:01 13:01

3 Manchester 11:08 13:06 13:02

4 Seoul 12:00 13:03 13:02

5 Seattle 12:12 13:22 13:01

6 Warsaw 12:57 13:01 13:01

 Fig.	5.	Number	of	new	nodes	discovered	over	time

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (127) 2024

12

 6. Discussion of results of investigating the method of
detection and identification of nodes of the Rootstock

blockchain network

Node discovery protocols are the foundation of any de-
centralized P2P network. They determine how nodes find
other network nodes, ensure its distribution, and form a cer-
tain network topology. In such systems, nodes can connect
to every node in the network or only to a subset of nodes. In
blockchain systems, nodes usually do not store information
about each node in the network and only connect to a small
subset of nodes to optimize resources and communication
efficiency.

P2P systems include file exchanges, communication
systems, blockchain networks, and others. Depending on the
functions of the system, a different network topology and the
use of different node detection protocols are possible.

The protocol for detecting nodes in the Rootstock block-
chain network is built on the basis of a table of neighboring
nodes – Kademlia, which takes into account the logical
distance between nodes. This distance is determined based
on the hash values of the nodes’ public keys. Visualization
of the calculation of the distance between nodes is shown
in Fig. 2. Kademlia is used in file sharing networks and
various blockchain networks. It is suitable for decentralized
systems that require a decentralized network topology. The
advantages of Kademlia include the efficiency and speed of
data retrieval, scalability, and low resource costs. Kademlia’s
disadvantages include security issues (such as vulnerability
to Sybil attacks) and the difficulty of maintaining a dynamic
network with constantly changing nodes.

However, there is no documentation of the Rootstock
network node discovery protocol. Although the blockchain
protocol of the Ethereum network is also used by Kademlia,
it is not exactly identical to the node detection protocol of
the Rootstock network. Therefore, the Ethereum protocol
specification [20] or available studies [15, 16] cannot be
directly used to build a crawler in the Rootstock network.

That is why the analysis of the source code of the software
of the RSKj node was carried out, which made it possible to
gain an understanding of the structure and mechanisms of
the protocol.

In the Rootstock network, the node discovery protocol is
implemented using only 4 types of messages (2 for a request
and 2 for a response). In addition, a specific sequence of
messages was defined, which ensures detection and connec-
tion with neighboring nodes in the network. In general, the
simplicity of the protocol and implementation is a strength
of the network, as it reduces the probability of errors and
simplifies the analysis process.

Since the nodes in the blockchain network are equal, and
by default the parameters of the Peer Discovery protocol in
RSKj are the same, it is impossible to determine the criteria by
which a node can be considered a higher priority for providing
neighboring nodes. Under this condition, if the network is rep-
resented as a graph, it will be considered unweighted.

To search for nodes, namely, traversal of an unweight-
ed graph, it is possible to use both depth-first search
and breadth-first search. Among the advantages of using
breadth-first search is the ease of parallelization, where each
thread simply fetches the next node from the queue. There-
fore, a breadth-first search algorithm was chosen to search
for blockchain network nodes.

An important element is that the size of the slots in the
Kademlia table is quite small. Therefore, quite often situa-
tions may arise when a node cannot establish a connection
with another node because the slot of the corresponding
distance is full. In order for a node to have more chances
to establish a connection with the selected node, the logi-
cal distance between them should be as small as possible.
And since the distance is determined on the basis of node
identifiers (public keys), the process of getting a node into
a free slot was optimized by sorting keys to obtain a smaller
distance. This optimization is absent in similar studies of the
Ethereum network [7, 8, 11, 16, 17] and was implemented in
this work as an additional element.

Fig.	6.	Physical	location	of	node	IP	addresses

Information technology

13

The next important aspect is the number of neighbor
grant requests that need to be sent to a single node to ob-
tain its neighbors. 15 nearest neighbors and 5 random ones
are provided per message. Therefore, when sending any
number of messages, it is impossible to be sure whether all
neighboring nodes have received them or only some part. A
heuristic approach is used for this: messages are sent until a
new node (which has not yet been discovered by the given
node) is received in the last 100 messages, but in any case, at
least 1000 requests are sent. Since the blockchain network is
dynamic, nodes are constantly connected and disconnected
from it. Therefore, previously polled nodes are also polled to
re-obtain nodes with a certain frequency.

When implementing the method, the multi-threaded
ThreadPoolExecutor and queue mechanisms of the Python
language were used to speed up the search. The software
connects to multiple nodes simultaneously in 15 different
streams, although the number of streams can be higher. It
is even possible to allocate a separate flow for each node.
However, in order to avoid potential blocking of requests
by Intrusion Prevention Systems, it was decided to choose
a limited number of threads – 15, which satisfy sufficiently
fast collection of all nodes.

As a result of the experiment, information was collected
about 222 nodes of the network, which includes IP addresses
of nodes, UDP and TCP ports for Peer Discovery and Wire
protocols, node IDs and node discovery time. In addition,
verification nodes were deployed, the purpose of which was to
check the effectiveness of the developed detection technique.
All 6 test nodes were detected in less than 10 minutes. Data
on the time of placement and detection of these test nodes are
given in Table 1. The experiment also checked to what extent
the selection of the public key of the node (for searching a
shorter distance) optimizes the time of searching for nodes.
Fig. 5 shows a graph of node detection time, which allows
one to make sure that this optimization speeds up the search.
With optimization, most nodes were detected within 15 min-
utes, while without optimization it took just over 45 minutes.
Finally, the physical location of all detected nodes is shown in
Fig. 6, which allows us to draw conclusions about the location
of nodes. For example, the most nodes are located in South
America, the United States, and Central Europe.

It is safe to say that the developed method turned out to
be a highly effective tool for finding and identifying nodes
in the Rootstock blockchain network. A special feature of
this method is its ability to quickly detect a large number
of nodes in the network, where it can find most of the active
nodes in a matter of minutes. The developed node search
method and the corresponding experiment made it possible
to obtain information about the topology of the Rootstock
network, which was not reported before.

The main limitation of the developed node detection
method is its inability to identify real IP addresses of nodes
when they use anonymizing services such as virtual private
network (VPN) or The Onion Router (TOR). These services
are designed to ensure the privacy and anonymity of users by
hiding real IP addresses using various network routes and
gateways. As a result, when a node uses VPN or TOR, the
method can only identify the IP address of the source node of
these services, not the actual IP address of the node. This sig-
nificantly limits the capabilities of the method in the context
of accurate tracking and analysis of network activity.

The development of this research may focus on the
practical application of our method for specific tasks, for

example, for the analysis of blockchain transactions or the
network in general. Another direction of development may
be the adaptation of the devised method to other P2P net-
works, especially those whose protocols function on the basis
of mechanisms similar to those already studied. Another
area of further research is the analysis of nodes that are in
the VPN or TOR network in order to obtain any information
about the real IP addresses of the nodes.

7. Conclusions

1. The Peer Discovery blockchain protocol of the Root-
stock network was analyzed. A comprehensive approach
was applied, which includes the analysis of the source code
of the RSKj node software and an analytical review of the
documentation of a conceptually similar protocol – the node
detection protocol in the Ethereum network. This made it
possible to understand how the Kademlia distributed node
table is implemented and works, to obtain message types and
formats, and to determine message sequences to obtain a list
of neighboring nodes. In other words, the complete logic of
the node search protocol has been restored. This information
is sufficient for independent implementation of the protocol
and communication in the Rootstock network blockchain
with other nodes.

2. The main stages of the method of detecting nodes of
the Rootstock network blockchain based on breadth-first
search were defined. Nodes are interrogated by the Peer
Discovery protocol to obtain neighboring nodes. Neighbor
nodes are then polled to obtain their neighbor nodes. This
procedure continues until new nodes are detected. Also, the
search can be performed under continuous mode (nodes are
polled repeatedly) to obtain information about the state of
the network in real time. In addition to the basic algorithm,
the optimization of the entry of a node into the slot of the
shortest distance of the distributed table by selecting the
public key (identifier) of the node has been developed. This
allows one to speed up the search for nodes by increasing the
chances that the specified slot in the table will be empty and
the connection will be made on the first try.

3. The designed prototype of the Rootstock network
node detection software implements the node search algo-
rithm using multi-threaded mechanisms. This allows one to
perform an accelerated search for nodes. When collecting
nodes, the IP address of the node, its identifier (public key),
the ports of Peer Discovery and Wire protocols, and the time
of node discovery are obtained.

4. Effectiveness of the proposed method was verified
using the developed software prototype and the following
experiment in the main network. 6 verification nodes were
deployed in different physical locations and at different
times. The deployment period lasted up to 3 hours, after
which a 1-hour node search was initiated. All 6 test nodes
were detected in less than 10 minutes. During the entire
search time, the developed method revealed 220 (without
optimization) and 222 (with optimization) unique nodes.
Optimizing the selection of the public key made it possible
to reduce the time of searching for nodes by almost 3 times
due to the absence of waiting for an available space in the
table slot of neighboring nodes. In addition, with the help of
existing services, the physical location of all 209 unique IP
addresses of the nodes was determined and a corresponding
map was built.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (127) 2024

14

Conflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial,
personal, authorship, or any other, that could affect the study
and the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

The manuscript has associated data in the data ware-
house.

Use of artificial intelligence

The authors confirm that they did not use artifi-
cial intelligence technologies when creating the current
work.

References

1. Dorogiy, Y., Kolisnichenko, V. (2023). Application of logging in various participants of blockchain networks for de-anonymization of

the end user. Herald of Khmelnytskyi national university, 1 (5), 60–66. Available at: http://journals.khnu.km.ua/vestnik/?p=20028

2. Ethereum staking. Available at: https://ethereum.org/staking

3. Smart contracts secured by Bitcoin. Available at: https://rootstock.io/

4. Lerner, S. D. (2020). Building the Most Secure, Permissionless and Uncensorable Bitcoin Peg. Available at: https://medium.com/

iovlabs-innovation-stories/building-the-most-secure-permissionless-and-uncensorable-bitcoin-peg-b5dc7020e5ec

5. Howell, A., Saber, T., Bendechache, M. (2023). Measuring node decentralisation in blockchain peer to peer networks. Blockchain:

Research and Applications, 4 (1), 100109. https://doi.org/10.1016/j.bcra.2022.100109

6. Grundmann, M., Amberg, H., Hartenstein, H. (2021). On the Estimation of the Number of Unreachable Peers in the Bitcoin P2P

Network by Observation of Peer Announcements. arXiv. Available at: https://doi.org/10.48550/ARXIV.2102.12774

7. Eisenbarth, J.-P., Cholez, T., Perrin, O. (2022). Ethereum’s Peer-to-Peer Network Monitoring and Sybil Attack Prevention. Journal

of Network and Systems Management, 30 (4). https://doi.org/10.1007/s10922-022-09676-2

8. Henningsen, S., Teunis, D., Florian, M., Scheuermann, B. (2019). Eclipsing Ethereum Peers with False Friends. arXiv. Available at:

https://doi.org/10.48550/ARXIV.1908.10141

9. Deshpande, V., Badis, H., George, L. (2018). BTCmap: Mapping Bitcoin Peer-to-Peer Network Topology. 2018 IFIP/IEEE

International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN). https://

doi.org/10.23919/pemwn.2018.8548904

10. Xu, D., Gao, J., Zhu, L., Gao, F., Zhao, J. (2023). Statistical and clustering analysis of attributes of Bitcoin backbone nodes. PLOS

ONE, 18 (11), e0292841. https://doi.org/10.1371/journal.pone.0292841

11. Li, K., Tang, Y., Chen, J., Wang, Y., Liu, X. (2021). TopoShot: Uncovering Ethereum’s Network Topology Leveraging Replacement

Transactions. arXiv. Available at: https://doi.org/10.48550/ARXIV.2109.14794

12. Miller, A. K., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N., Bhattacharjee, B. (2015). Discovering Bitcoin’s Public

Topology and Influential Nodes. Available at: https://www.cs.umd.edu/projects/coinscope/coinscope.pdf

13. Rohrer, E., Tschorsch, F. (2019). Kadcast. Proceedings of the 1st ACM Conference on Advances in Financial Technologies. https://

doi.org/10.1145/3318041.3355469

14. Neudecker, T. (2019). Characterization of the Bitcoin Peer-to-Peer Network (2015-2018). Karlsruhe. Available at: https://

doi.org/10.5445/IR/1000091933

15. Eyong, M. (2019). Analyzing the Peer-to-Peer Network of Ethereum. Available at: https://www.researchgate.net/

publication/354149867_Analyzing_the_Peer-to-Peer_Network_of_Ethereum

16. Wang, T., Zhao, C., Yang, Q., Zhang, S., Liew, S. C. (2021). Ethna: Analyzing the Underlying Peer-to-Peer Network of Ethereum

Blockchain. IEEE Transactions on Network Science and Engineering, 8 (3), 2131–2146. https://doi.org/10.1109/tnse.2021.3078181

17. Wolchok, S., Halderman, J. (2010). Crawling BitTorrent DHTs for fun and profit. 4th USENIX Workshop on Offensive Technologies

(WOOT ’10), Washington, D.C. Available at: https://jhalderm.com/pub/papers/dht-woot10.pdf

18. rskj: RSKj is a Java implementation of the RSK protocol. Available at: https://github.com/rsksmart/rskj

19. Node Discovery Protocol. Available at: https://github.com/ethereum/devp2p/blob/master/discv4.md

20. Sedgewick, R., Wayne, K. (2011). Algorithms. Addison-Wesley Professional.

21. SSD VPS Servers, Cloud Servers and Cloud Hosting. Available at: https://www.vultr.com/

22. Vultr API. Available at: https://www.vultr.com/api/

23. Hardware requirements. Available at: https://dev.rootstock.io/rsk/node/install/requirements/

24. Maymounkov, P., Mazières, D. (2002). Kademlia: A Peer-to-Peer Information System Based on the XOR Metric. Lecture Notes in

Computer Science, 53–65. https://doi.org/10.1007/3-540-45748-8_5

25. PeerExplorer.java. Available at: https://github.com/rsksmart/rskj/blob/master/rskj-core/src/main/java/co/rsk/net/discovery/

PeerExplorer.java

26. NodeDistanceTable.java. Available at: https://github.com/rsksmart/rskj/blob/master/rskj-core/src/main/java/co/rsk/net/

discovery/table/NodeDistanceTable.java

Information technology

15

27. KademliaOptions.java. Available at: https://github.com/rsksmart/rskj/blob/master/rskj-core/src/main/java/co/rsk/net/

discovery/table/KademliaOptions.java

28. ECKey.java. Available at: https://github.com/rsksmart/rskj/blob/6dde0cdeeb2138e61dc845810eaa8ce55a8d2b7f/rskj-core/src/

main/java/org/ethereum/crypto/ECKey.java#L287

29. DistanceCalculator.java. Available at: https://github.com/rsksmart/rskj/blob/master/rskj-core/src/main/java/co/rsk/net/

discovery/table/DistanceCalculator.java

30. PeerDiscoveryMessageFactory.java. Available at: https://github.com/rsksmart/rskj/blob/master/rskj-core/src/main/java/co/

rsk/net/discovery/message/PeerDiscoveryMessageFactory.java

31. PeerExplorer.java. L221. Available at: https://github.com/rsksmart/rskj/blob/e06686fe83554c6381db207857e13b6e76e79ace/

rskj-core/src/main/java/co/rsk/net/discovery/PeerExplorer.java#L221

32. PeerExplorer.java. L319. Available at: https://github.com/rsksmart/rskj/blob/e06686fe83554c6381db207857e13b6e76e79ace/

rskj-core/src/main/java/co/rsk/net/discovery/PeerExplorer.java#L319

33. main.conf. Available at: https://github.com/rsksmart/rskj/blob/master/rskj-core/src/main/resources/config/main.conf#L32

34. Geolocation DB. Available at: https://geolocation-db.com/json/

35. geojson.io. Available at: https://geojson.io/

