
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (127) 2024

26

and available for its organization into corpora has increased
rapidly. Given this, another way to build corpora of textual
data has emerged and developed, which is the generation of
corpora based on natural unstructured texts or completely
artificial generation. Owing to automatic generation, the
process of building corpora is greatly simplified, and the
time required for this is reduced but there is a need for meth-
ods and algorithms of generation. Such methods and algo-
rithms can be both general-purpose and specialized – those
that generate corpora for a specific purpose. Considering
the wide variety of natural language processing tasks and
the possible applications of corpora with them, the need for
corpora generation methods does not diminish.

Therefore, research into devising new methods for gen-
erating (general and specialized purpose) text data corpora
is relevant.

2. Literature review and problem statement

Many studies have been conducted on generating corpo-
ra using natural texts for various natural language process-
ing tasks, such as [2–7].

In work [2], the authors describe the method of gener-
ating a corpus of texts in the Tunisian dialect of modern
standard Arabic. In order to achieve this, it uses an existing
corpus of Modern Standard Arabic and the mapping rules

ACCELERATING THE
PROCESS OF TEXT

DATA CORPORA
GENERATION BY

THE DETERMINISTIC
METHOD

Y a k i v Y u s y n
Corresponding author

PhD*
E-mail:	yusyn@pzks.fpm.kpi.ua

T e t i a n a Z a b o l o t n i a
PhD*

*Department	of	Computer	Systems	Software
National	Technical	University	of	Ukraine	“Igor	Sikorsky	

Kyiv	Polytechnic	Institute”
Beresteiskyi	ave.,	37,	Kyiv,	Ukraine,	03056

The object of research is the process of generating text
data corpora using the CorDeGen method. The problem
solved in this study is the insufficient efficiency of generating
corpora of text data by the CorDeGen method according to
the speed criterion.

Based on the analysis of the abstract CorDeGen
method – the steps it consists of, the algorithm that
implements it – the possibilities of its parallelization have
been determined. As a result, two new modified methods
of the base CorDeGen method were developed: “naive”
parallel and parallel. These methods differ from each other
in whether they preserve the order of terms in the generated
texts compared to the texts generated by the base method
(“naive” parallel does not preserve, parallel does). Using
the .NET platform and the C# programming language,
the software implementation of both proposed methods
was performed in this work; a property-based testing
methodology was used to validate both implementations.

The results of efficiency testing showed that for corpora
of sufficiently large sizes, the use of parallel CorDeGen
methods speeds up the generation time by 2 times, compared
to the base method. The acceleration effect is explained
precisely by the parallelization of the process of generating
the next term – its creation, calculation of the number of
occurrences of texts, and recording – which takes most of
the time in the base method. This means that if it is necessary
to generate sufficiently large corpora in a limited time,
in practice it is reasonable to use the developed parallel
methods of CorDeGen instead of the base one. The choice of
a particular parallel method (naive or conventional) for a
practical application depends on whether or not the ability to
predict the order of terms in the generated texts is important

Keywords: natural language processing, CorDeGen
method, text data corpora, corpora generation

UDC 004.021:004.91

DOI: 10.15587/1729-4061.2024.298670

How to Cite: Yusyn, Y., Zabolotnia, T. (2024). Accelerating the process of text data corpora generation

by the deterministic method. Eastern-European Journal of Enterprise Technologies, 1 (2 (127)), 26–34.

doi: https://doi.org/10.15587/1729-4061.2024.298670

Received date 27.11.2023

Accepted date 14.02.2024

Published date 28.02.2024

Copyright © 2024, Authors. This is an open access article under the Creative Commons CC BY license

1. Introduction

Most problems in the field of natural language process-
ing are related to the analysis and transformation of text
data collected into corpora, for example: clustering, classi-
fication, training of language models, etc. In this case, the
corpus is a set of selected, processed, and annotated texts in
a certain way (according to the task) [1].

At the same time, the results of corpora processing can be
both valuable in themselves and used only as an intermediate
stage. For example, the results obtained on certain reference
corpora can be used to compare and evaluate the effective-
ness of natural language processing methods. Also, corpora
are necessary when solving (for software implementations
of natural language processing methods) pure software
engineering problems: benchmarking implementations of
different methods/implementations of one method, ensuring
the quality of developed implementations, etc.

Historically, the first way to build corpora of textual
data is manual. In this case, all texts for the corpus are se-
lected, processed, and annotated by a person. However, with
the growing need for corpora of different sizes, different
thematic focus, intended for different tasks, this approach
loses its relevance because the manual approach requires a
lot of time and human effort. In addition, with the spread
of the Internet and social networks, the amount of unstruc-
tured textual information that is generated by humankind

Information technology

27

sion history of Wikipedia pages could be used not only for
generating corpora to solve the problem of correcting gram-
matical errors but also for other tasks of natural language
processing. For example, it can involve simplifying the text
or paraphrasing the sentence. In the cited work, the authors
make some efforts to speed up the proposed approaches, for
example, reduce the amount of input data by using only a
part of the entire editing history. However, the authors do
not provide clear data about speed and other acceleration
possibilities.

In paper [6], the authors consider their own experience in
the automatic generation of a corpus in the Arabic language,
intended for the detection of academic plagiarism. As input
natural data, the authors used 2,312 dissertations obtained
from the depository at the University of Jordan. The method
of automatic processing of text data proposed by the authors
consists of the following stages: removal of diacritics, punc-
tuation, and special characters; unification of letter forms;
tokenization and stemming; division into n-grams; tagging
parts of speech. Despite the fact that the authors declare
research on three components of work with the corpus (de-
sign, generation, and experimentation), most of the work
considers the third component – conducting experiments
with the finished corpus. This subjective reason (focusing
on work with an already generated corpus) can explain the
lack of consideration in the cited paper of the issue of the
speed of the proposed corpus generation method. It is only
indirectly possible to draw a conclusion about the rather
moderate effectiveness of the proposed method, caused by
the specificity of the input data format and the large number
of processing stages.

In work [7], the authors propose a method for generating
a thematic corpus of historical texts from newspapers, which
are represented in the form of scanned copies. The proposed
method is based on a pipeline of the following stages: image
processing, optical character recognition (including error
correction), and filtering. For the character recognition
error correction stage, the authors also propose their own
model, formed on the basis of a manually collected data set.
The speed of the proposed pipeline may depend on many
factors, and primarily on the quality and resolution of the
scanned copies used. Such a strong dependence of the speed
of work on not only the amount but also other parameters
of the input data can be explained by the lack of attempts
by the authors to evaluate or measure it. However, it can be
argued that the methods that work with textual data (re-
ported in [2–6]) are more effective in terms of speed than
the one proposed by the authors, as they do not require work
with images.

There are also studies that consider the generation of fully
synthetic corpora for their use in solving software engineer-
ing tasks (for example, benchmarking or quality assurance).
When solving such problems, it may be necessary to generate
hundreds or even thousands of different corpora, and the
time required for this may be an important parameter. In
works [8, 9], the authors proposed and later expanded the de-
terministic method of corpus generation – CorDeGen. This
method has such properties as the determinism of the result
and the minimum amount of input data, which simplifies the
use of this method in solving software engineering tasks. In [8],
the authors show an example of the use of corpora generated
by the CorDeGen method when searching for defects in the
software implementation of the k-means clustering method.
In [9], the CorDeGen method is used to test the effectiveness

that apply to that corpus. As a result, the authors designed
a tool called Tunisian Dialect Translator. The generated
corpus of the Tunisian dialect is expected to be used to solve
other tasks of processing texts (and not only) written in this
dialect, including training of machine learning models. In
general, the described approach can be used to generate a
corpus of texts of any dialect of any language. To this end,
it is only necessary to have a corpus of texts in the original
language and a set of rules for conversion. The authors do
not provide any data on the performance of the developed
method and the TDT software tool. This can be explained
by the fact that during the experimental verification of the
effectiveness of the developed method, the authors used a
small amount of data (150 verbs and 89 sentences), which
the ineffective method would also process quickly enough.

In work [3], the authors consider the problem of automat-
ic generation of corpora for multidimensional intellectual
analysis (mining) and analytics of social media. The tweet
processing algorithm developed by the authors solves such
problems as processing slang and non-standard abbrevia-
tions, connected words and regional terms. The described
problems are typical for the content of social networks. The
developed implementation automates the entire process of
collecting and cleaning the content of social networks (in
particular, tweets). Using the algorithm developed by the
authors and its implementation, it is possible to automatical-
ly build thematic corpora of content generated by users of
social networks. The authors do not provide data on the com-
putational complexity of the proposed algorithm or measure-
ments of the speed of its implementation, which is related to
the peculiarities of the latter. The developed implementation
uses a mechanism for streaming tweets on the desired topic
immediately upon their appearance (the so-called Twitter
Streaming API). Provided that the processing time of one
tweet is less than the interval between the appearance of
tweets (which is performed for unpopular topics), the specif-
ic time indicator and its possible reduction is unimportant.
However, if it is necessary to process an existing archive of
tweets or if they appear quickly in the stream, the algorithm
proposed by the authors may show slow results.

In work [4], the authors consider the task of generating
a synthetic “question-answer” corpus. To this end, the au-
thors trained three models, each of which is responsible for a
certain stage. The first stage involves extracting the answer
from the given passage (natural data). The second step is
to generate a question using the passage and the extracted
answer. The final, third stage involves predicting the answer
using the passage and the generated question. If the predict-
ed and extracted answers match, then this “passage-ques-
tion-answer” triple is added to the generated corpus. The
main time expenditure in this case falls on the stage of model
training, which is performed only once. Having trained
ready-made models, the proposed corpus generation method
could be effectively used for various practical tasks, includ-
ing those where generation speed is important. However,
this method is highly specialized, limited to the generation
of corpora of only one type – “question-answer”.

In [5], the authors describe two approaches to the gen-
eration of large parallel corpora for their use in solving the
task of correcting grammatical errors. Both approaches use
Wikipedia as a source of natural texts (not necessarily in
English): the first approach uses page editing history, and
the second approach uses two-way machine translation.
The idea of the approach of collecting data from the revi-

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (127) 2024

28

of the developed methods of metamorphic testing of software
clustering systems. In both works [8, 9], the authors report the
results of speed measurements of the developed implementation
of the method (on different platforms) but without analyzing
the possibilities for its acceleration. Although any possible
acceleration is relevant for the results, especially in work [9], in
which generation is performed several times for each test in the
cloud, with payment for consumed resources.

Based on our review of the literature [2–9], it is possi-
ble to conclude that the available works focus only on the
generation of corpora itself (development of approaches,
methods, algorithms). Available studies leave the question
of the speed of the developed methods and algorithms (and
their possible acceleration) outside the scope of the research,
although it is also important. This can be explained by a
combination of both objective and subjective
reasons. Among the subjective reasons, it is
possible to include the fact that in many works
the generated corpus itself is considered as the
main scientific achievement, and not the meth-
od of its generation, therefore the method is
not analyzed much. Objective reasons include
conducting experiments on small amounts of
data or on such tasks that do not require high
speed, which is why its issue is not considered.
Separately, it is possible to single out the case
of using the corpus generation process when
solving software engineering problems. In this case, avail-
able works provide speed data but consider it as sufficient,
despite the significant potential for acceleration and the
possible effect of it.

All this suggests that it is advisable to conduct research
into the development of ways to accelerate the existing
methods for generating text data corpora (especially the
development of parallelized methods).

3. The aim and objectives of the study

The purpose of our study is to identify the possibility of
speeding up the process of generating corpora of text data
using the CorDeGen method by developing modification(s)
of this method that would support parallel execution. This
will make it possible to improve the processes of solving
software engineering tasks in the field of natural language
processing that use the generation of text data corpora, re-
ducing their execution time.

To achieve the goal, the following tasks were set:
– to devise parallel method(s) for deterministic generation

of text data corpora based on the basic CorDeGen method;
– to develop a software implementation of the devised

parallel method(s) and validate it;
– to analyze the effectiveness of the devised parallel

method(s) according to the corpus generation speed criteri-
on, using the developed software implementation.

4. The study materials and methods

4. 1. The object and hypothesis of the study
The object of our study is the process of generating cor-

pora of text data using the CorDeGen method.
The main hypothesis of the research assumes that the

corpus generation process using the CorDeGen method

could be parallelized and, starting with a sufficiently large
corpus size, the speedup effect should exceed the additional
cost of parallelization.

The main simplifications adopted in the research pro-
cess are:

– consideration of only one method for generating corpora
of text data, CorDeGen, since the rate of corpus generation,
among the considered methods, is the most important for it;

– consideration of only one technique for speeding up the
process of generating corpora of text data – parallelization.

4. 2. CorDeGen: deterministic method for generating
corpora of texts

The abstract CorDeGen method consists of the steps
shown in Fig. 1 [8].

Fig. 1 demonstrates that the abstract method does not
define specific functions f(x), g(x), and the technique of ob-
taining a linear representation of the term by its index i, but
sets certain requirements for them [9]:

– the function f(x) should slow down its growth as x
increases;

– the function g(x) must allocate different terms to dif-
ferent documents in different amounts;

– the technique of obtaining a string representation of
a term by its index should not require any additional data.

The basic CorDeGen method [8] defines the function f(x)
as 4 x

 and uses the hexadecimal representation of the index
i as a way to obtain the string representation of the term. The
representation of the function g(x) for calculating the j-th ele-
ment of the vector tf for term i is given in formula (1) [8]:

()

()

0, ,

1
, , ,

2 2
2

, .
2 2

i i

i i i i i

i i

j c r c r

tf N j c r c r j c
r

N j c
r

∉ − +

= ∈ − + ≠ +

= +

In formula (1), ci is the index of the “central” document for
term i; r is the half-length of the range of documents to which
the term i is recorded in non-zero quantities. By “central”
document, we mean the document in the center of the range to
which the term i will be written in twice as much as compared
to the others. At the same time, the range (ci–r…ci+r) is closed
in a ring with respect to the collection of documents.

Thus, the algorithm implementing the basic CorDeGen
method is as follows [8]:

1. Calculate the parameters Ndocs and r from formulas (2)
and (3):

4 ,docs termsN N =

Method 1. Abstract CorDeGen method
1: Input parameter termsN (number of unique terms)
2: Calculation of the number of documents docsN using the function ()f x
3: Calculation of the vector tf for each term i , containing the number of

occurrences of the term in documents, using the calculation of the function
()g x

4: Entry to each document of term i , based on the calculation of the number of
occurrences

Fig.	1.	Abstract	CorDeGen	method

Information technology

29

1.
5
docsN

r
 = +

2. For i from 0 to Nterms (not inclusive):
a) calculate the linear value of the term that will be re-

corded in the documents, using the conversion of the number
i into the hexadecimal number system;

b) calculate the total number of occurrences of term i in
the corpus according to formula (4):

()mod 1 ;i docs docsN N i N= +

c) calculate the indexes of documents that will include
term i using formulas (5) and (6):

mod ,i docsc i N=

();range i ii c r c r= − +

d) write the i-th term
2

2 2 iN
r +

 times to the document

with index ci. To all other documents whose indices belong

to the irange range, write by 1
2 2 iN

r +
occurrence.

The asymptotic computational complexity of this algo-
rithm is O(N1,5) [9].

4. 3. Applied hardware and software
To perform all experiments with developed soft-

ware implementations, a physical machine with the fol-
lowing hardware was used: Intel Core i7-9750H CPU
2.60GHz, 1 CPU (6/12 cores); 16 Gb of RAM (2667 MHz).
The described physical machine is running Win-
dows 10 (10.0.19045.3448/22H2/2022Update).

The .NET 8 platform (runtime environment 8.0.0) was
used as the main platform for building the software imple-
mentation of the CorDeGen method and the devised parallel
methods. The .NET platform provides parallel programming
capabilities known within the platform as the Task Parallel
Library (shown in Fig. 2).

Fig. 2 demonstrates that the TPL provides data paral-
lelism capabilities and an implementation of the task-based
asynchronous pattern, which can also be used to parallelize
computations, as tasks are executed in different threads from
the pool in parallel.

4. 4. Validation of the developed software imple-
mentation

The primary user need expected to be satisfied by the
software implementation of CorDeGen’s parallel method(s)
is the equivalence of the results to the results generated by
the underlying method.

Given that the CorDeGen method is defined for any
positive Nterms, and that the execution process of the parallel
method(s) may be non-deterministic, traditional oracle-based
tests for validating the developed software are inefficient.

The property-based testing (PBT) methodology was used
to validate the developed software implementation. PBT is a
testing methodology that, instead of testing the exact value at
the output of the system under test for a given input, tests wheth-
er the resulting value satisfies specified specific properties [11].
In this case, the system under test is a software implementation
of the basic and parallel method, and the output is two gen-
erated corpora (generated by the basic and parallel method).

Two properties can be defined for such a system under test:
– “weak”: for any Nterms, for each document Di∈{1,Ndocs}

generated by the basic and parallel method of generating
text data corpora, the set of terms, and the number of their
occurrences must match;

– “strong”: for any Nterms, for each document Di∈{1,Ndocs}
generated by the basic and parallelized method of generating
text data corpus, the set of terms, the number of their occur-
rences and their order must match.

The description of the properties demonstrates that
when a strong property is satisfied, the weak one will also
be satisfied automatically, so a certain parallel version of the
CorDeGen method can satisfy one or both properties.

The FsCheck library was used for the software implemen-
tation of PBT based on the defined properties [12]. An example
of property implementation using this library is shown in Fig. 3.

Fig.	2.	Parallel	programming	in	.NET	[10]

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (127) 2024

30

Fig. 3 demonstrates that this library provides the ability
to generate random input data (in this case, the size of the
corpus, which is a positive integer), with support for their
compression in the case of failing the test.

4. 5. Designing tests for the developed implementa-
tion performance

The purpose of performance tests of the developed imple-
mentation is not only to measure the speed of generating cor-
pora of different sizes but also to compare this speed with the
speed of generating corpora of the same size using the basic
CorDeGen method. Essentially, this means benchmarking
should be performed, using the basic method as a baseline.

The BenchmarkDotNet library [13] is the de facto
standard of the .NET framework for writing benchmarks,
as it is used by the platform developers themselves. This li-
brary automates most benchmarking processes (for example,
choosing the number of method calls, the number of warm-
up and actual iterations), thus providing reliable results and
immediately providing their statistical
treatment [14].

6 terms of a geometric progression se-
ries with a step of 5 and an initial value of
100 are chosen as the corpus size parameter
during performance tests. Such parameter
values make it possible to evaluate the
effectiveness of the developed implementa-
tion over the entire range from microcorpo-
ra to super-large corpora (312,500 unique
terms is comparable to the number of words
in the English language [15]).

5. Results of research into the
parallelization of the corpus generation

process using the CorDeGen method

5. 1. Devising parallelized method(s)
for deterministic generation of text data
corpora

In the basic CorDeGen generation
method, each iteration performed for each
term is independent and can be run in par-
allel. The only issue that arises relates to
synchronizing the recording of generated
terms to documents.

One of the options for solving this
task is to refuse synchronization. In this

case, each iteration of the work-
ing cycle of the method is per-
formed completely in parallel and
immediately writes the term to
documents. This version of the
CorDeGen parallel method was
named “naive” parallel.

Thus, the “naive” parallel Cor-
DeGen method is shown in Fig. 4.

Due to the refusal to syn-
chronize the order of writing
terms to generated texts – terms
are written immediately after
generation – only the “weak”
property can be fulfilled for this
method. However, this method
is easy to implement program-

matically, and among all possible ways to parallelize the
basic method, this method will show the best results in
terms of speed (for large Nterms).

Another approach to constructing a parallel CorDeGen
method is to split the entire range 0…Nterms into p separate
parts. For each received part of the range, it is possible
to generate separate, independent documents that will
contain only terms from this part of the range (we shall
call these documents sub-documents). After completing
the generation process for all parts, the resulting corpus
documents can be obtained by combining the received
sub-documents of each part in the appropriate order. The
method built on the basis of this approach was called simply
a parallel method.

Thus, the parallel CorDeGen method is shown in Fig. 5.
This parallel method satisfies the defined “strong” prop-

erty: terms are written sequentially for each part, and all
parts are also combined sequentially.

Fig.	3.	An	example	of	implementing	a	“strong”	property	using	the	FsCheck	library

Method 2. “Naive” parallel CorDeGen method
1: Input parameter termsN (number of unique terms)
2: Calculation of the number of documents docsN using the function ()f x
3: In parallel, with a certain degree of parallelism p , for each term i
4: Calculation of the vector tf , containing the number of occurrences of the

term in documents, using the calculation of the function ()g x
5: Entry to each document of term i , based on the calculation of the number of

occurrences

Fig.	4.	The	“naive”	parallel	CorDeGen	method

Method 3. Parallel CorDeGen method
1: Input parameter termsN (number of unique terms)
2: Calculation of the number of documents docsN using the function ()f x
3: Division of the range 0 termsN into p consecutive parts
4: In parallel, with a certain degree of parallelism p , for each part jp
5: for each term i from this part of the range
6: Calculation of the vector tf , containing the number of occurrences of

the term in subdocuments, using the calculation of the function ()g x
7: Entry to each document of term i , based on the calculation of the

number of occurrences
8: In parallel, with a certain degree of parallelism p , for each document d
9: Get a document by combining the corresponding subdocuments of all parts

of the range 0 termsN in the order of division

Fig.	5.	Parallel	CorDeGen	method

Information technology

31

5. 2. Development of the software implementation of
the devised parallel methods and its validation

The general architecture of the developed software im-
plementation of parallel methods for generating text data
corpora is shown in Fig. 6.

In general, the developed software implementation con-
sists of four modules:

– a module containing software implementations of Cor-
DeGen methods;

– a module containing tests based on the properties of
software implementations of parallel methods;

– a module containing performance tests (benchmarks);
– an application module with a command line interface

for generating corpora of text data.
The software implementations module of CorDeGen

methods contains software implementations of three meth-
ods: basic, “naive” parallel, and parallel. These software
implementations use the abstraction of obtaining a string
representation of a term by its index (“Strategy” design
template). Such an architectural solution allows us to
expand the software implementation in various ways of
obtaining a string representation of a term by its index (for
researching modifications of the CorDeGen method in this
part), without changing the implementation of the methods
themselves.

The command-line interface program enables the end
user to generate text data corpora and save them to text
files using the developed software implementations of the
CorDeGen methods.

The test module implements the properties described
above in the form of property-based tests to validate the
developed software implementations of parallel methods.
The “weak” property is used to check the implementation of
the “naive” parallel method, the “strong” property is used to
check the implementation of the parallel method. The valida-
tion results are shown in Fig. 7.

The Performance Tests module contains benchmark im-
plementations of implemented text corpus generation methods,
with the base method as a baseline. The results obtained using
these benchmarks are represented in the next subchapter.

Fig.	6.	General	software	architecture

 Fig.	7.	Results	of	validation	of	the	developed	software	

implementations	of	parallel	generation	methods

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (127) 2024

32

5. 3. Analyzing performance of the devised
parallel methods according to the criterion of the
speed of generating corpora

When testing the effectiveness of the devised
parallel methods, the choice of the optimal val-
ue (the value that will provide the best results
in terms of speed) of the degree of parallelism is
important for the obtained results. In the general
case, the optimal value of the degree of parallelism
can depend on many factors but the main ones are
two factors: the hardware on which the generation
is performed and the size of the corpus that needs
to be generated.

This study uses a physical machine with 6 phys-
ical/12 logical cores. The selection of the optimal
value of the degree of parallelism for this machine was
carried out experimentally: by measuring the speed of
generating the corpus of the same size by the parallel
method but with different values of the degree of paral-
lelism. As the corpus size for this experiment, the size of
312500 terms was chosen (the largest corpus that will
be used subsequently when testing the effectiveness of
the devised parallel methods).

The average corpus generation time for differ-
ent values of the degree of parallelism is shown
in Fig. 8.

Fig. 8 demonstrates that the average time of gen-
erating the corpus from the beginning drops rapidly,
then remaining at approximately the same level.
The minimum value is reached when the degree of
parallelism is equal to the number of logical cores
of the physical machine used. Therefore, in further
comparative testing of the effectiveness of the devised par-
allel methods, the value of the degree of parallelism for both
methods will be fixed and equal to 12.

The results of testing performance of the devised parallel
methods are given in Table 1.

Our results have high accuracy with low variance – the
standard error is in the range from 0.06 % to 0.57 % of the
average value. Parallel implementations have a higher value
of this ratio than the base method implementation because
they are more sensitive to random changes in Windows op-
erating system load, while the base method implementation
only occupies and runs on one core.

6. Discussion of results of investigating the parallelization of
the corpus generation process using the CorDeGen method

The devised parallel methods of CorDeGen generation
inherit from the basic method the main features that con-
stitute their advantages over the methods reported in [2–7].
Unlike the methods proposed in [2–7], the methods devised
do not use natural text data as input. This makes it possible
to significantly simplify the process of generating text data
corpus when solving software engineering tasks, due to the
absence of the need to store input text data.

Both devised parallel CorDeGen meth-
ods have advantages and disadvantages rel-
ative to each other and relative to the basic
CorDeGen method reported in [8, 9]. These
advantages and disadvantages also affect
their applicability in specific practical cases.

The main advantage of the “naive” par-
allel method (Fig. 4) is the simplicity of its
algorithmic and software implementation (at
the level of the basic CorDeGen method)
since most programming languages provide
the possibility of parallel execution of cycle
iterations. Also, for large corpus sizes, this
method could show the best results in terms
of speed, as it has no additional overhead.

The disadvantage of this “naive” parallel
method, compared to parallel and basic, is
that terms are written to documents in a ran-
dom order – depending on how the iterations
of the work cycle were parallelized. In other

0
100
200
300
400
500
600
700
800
900

1000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G
en

er
at

io
n

av
er

ag
e

va
lu

e,
 m

s

Degree of parallelism

Fig.	8.	Average	corpus	generation	time	(size:	312500	terms)	for	different	values	
of	the	degree	of	parallelism

Table	1

Results	of	testing	performance	of	the	devised	parallel	methods

Method Minimum Q1 Median Q3 Maximum

Corpus size: 100 unique terms (µs)

CorDeGen 13.46 14.012 14.197 14.242 14.424

«Naïve» parallel 39.446 39.509 39.591 39.676 39.912

Parallel 15.717 15.801 15.852 15.878 15.925

Corpus size: 500 unique terms (µs)

CorDeGen 103.935 110.170 110.871 111.428 112.500

«Naïve» parallel 173.927 174.279 174.329 174.723 175.215

Parallel 128.877 131.012 131.999 133.624 135.282

Corpus size: 2500 unique terms (µs)

CorDeGen 1.331 1.412 1.422 1.426 1.442

«Naïve» parallel 1.022 1.028 1.029 1.030 1.038

Parallel 0.634 0.644 0.651 0.657 0.662

Corpus size: 12500 unique terms (µs)

CorDeGen 14.117 14.285 14.349 14.554 14.731

«Naïve» parallel 8.730 8.920 8.983 9.067 9.165

Parallel 14.550 15.264 15.440 15.835 16.474

Corpus size: 62500 unique terms (µs)

CorDeGen 117.891 119.496 120.616 121.522 123.189

«Naïve» parallel 61.172 62.383 63.827 64.825 67.181

Parallel 64.670 67.344 68.574 71.205 74.863

Corpus size: 312500 unique terms (s)

CorDeGen 1.254 1.259 1.265 1.270 1.277

«Naïve» parallel 0.587 0.609 0.629 0.636 0.645

Parallel 0.667 0.679 0.694 0.712 0.739

Information technology

33

words, documents generated by the “naive” parallel method dif-
fer from documents generated by the basic CorDeGen method
by the order of the terms in the documents.

If the corpus generated by the “naive” parallel method is
further processed by methods that ignore the order (for exam-
ple, clustering methods based on the “bag of words” model),
then the above drawback can be neglected. This is explained by
the fact that in this case the processing result would completely
coincide with the processing result of the corpus of the same
size generated by the basic method.

If the corpus is supposed to be treated by methods that do
not neglect the order of terms in documents (for example, based
on n-gram language models), then the use of a “naive” parallel
method may be complicated from the point of view of predict-
ing the processing result.

The main advantage of the parallel method (Fig. 5) over the
“naive” parallel one is that the received corpora completely coin-
cide with the corpora obtained by the basic CorDeGen method.
Therefore, regardless of how the corpus is treated further, the
results for corpora generated by both methods will be the same.

The disadvantage of the parallel method is the need for an
additional stage of combining the generated sub-documents
into the final corpus. In addition to complicating the algorithm
that implements this method, it could also lead to additional
overhead when the software implementation of the method is
running, compared to the base method.

Validation of the developed implementations of parallel
methods (Fig. 7) confirms their validity as for each of the de-
vised methods the corresponding defined property between
its output data and the output data of the basic method is
performed. In this case, the “weak” property corresponds to
the “naive” parallel method and the “strong” property to the
parallel method.

Our results (Table 1) of testing performance of implementa-
tions of the proposed parallel CorDeGen methods confirm the
main hypothesis of the current study. Starting with a sufficient-
ly large size of the corpus (2500 unique terms) to be generated,
both parallel methods begin to outperform the basic method
reported in [8, 9]. The resulting situation where the parallel
method is faster than the base method for a size of 2500 terms,
slower for a size of 12500, and faster again for a size of 62500
may be considered an outlier. Such an outlier can be the result of
testing on a normal operating system (with crowding out mul-
titasking), as well as possible garbage collector intervention. At
the same time, as we can see, the parallel method is faster than
the “naive” parallel method on small corpus sizes, and only
with the increase of Nterms, the “naive” parallel method is faster.

The practical effect of using the proposed parallel meth-
ods in comparison with the use of the basic method reported
in [8, 9] can be demonstrated using the following example. Let
100 integration tests based on properties, which accept a body
of text data as input, be used to validate a conditional informa-
tion system. Considering that the FsCheck library calls each
such test by default 100 times with different inputs, this means
in total the need to generate 10,000 corpora when running all
the tests once. If the average size of the corpus during such
testing is equal to 62,500 terms, then the total effect of acceler-
ation from the use of the devised parallel methods will be about
9 minutes. This is a significant result, considering that with the
active development of information systems, integration tests
can be run multiple times during one working day.

It should be noted that implementations of parallel methods
were tested with only one fixed value of the degree of paral-
lelism, selected by testing on the largest size of experimental

data (Fig. 8). For small corpus sizes, reducing the degree of
parallelism could significantly speed up the generation process
by parallel methods and at least reduce the gap between them
and the base method. Analysis of such a two-factor dependence
“hardware-corpus size-degree of parallelism” may be of scientif-
ic interest for further work on the topic of this study. However,
this direction of development may contain difficulties related
to the possible variety of hardware that must be taken into
account. Another possible continuation of the work on the topic
of this research may be the use of other acceleration techniques,
for example, memoization or distributed computing.

7. Conclusions

1. Based on the analysis of stages of the basic CorDeGen
generation method, approaches to its parallelization have been
determined. As a result, two parallel CorDeGen methods have
been devised and described – “naive” parallel and parallel,
which differ in their approach to solving the task of preserving
the order of writing terms in the formed corpus. The “naive”
parallel method does not enable preservation of the order of
terms in the generated texts relative to the basic method, which
limits its applicability. The parallel method preserves the order,
so it can be used everywhere instead of the base method.

2. The software implementation of the basic and devised
parallel CorDeGen methods is based on a modular architec-
ture. To validate the developed software implementation of
parallel methods, a property-based test methodology was used,
for which two properties (“weak” and “strong”) are defined,
which connect the result of generation by basic and abstract
parallel methods.

3. The effectiveness of the devised parallel methods was
verified using the developed software implementation. To this
end, data on the speed of generating corpora of six different
sizes (from 100 to 312,500 terms) by basic, “naive” parallel, and
parallel methods were collected. The results showed that for
large enough corpora, the use of parallel CorDeGen methods
accelerates the generation time by 2 times, compared to the
basic method.

Conflicts of interest

The authors declare that they have no conflicts of interest
in relation to the current study, including financial, personal,
authorship, or any other, that could affect the study and the
results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

All data are available in the main text of the manuscript.

Use of artificial intelligence

The authors confirm that they did not use artificial intelli-
gence technologies when creating the current work.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 1/2 (127) 2024

34

References

1. Dash, N. S., Arulmozi, S. (2018). Definition of ‘Corpus.’ History, Features, and Typology of Language Corpora, 1–15. https://

doi.org/10.1007/978-981-10-7458-5_1

2. Boujelbane, R., Ellouze Khemekhem, M., Belguith, L. (2013). Mapping Rules for Building a Tunisian Dialect Lexicon and

Generating Corpora. Proceedings of the Sixth International Joint Conference on Natural Language Processing. Nagoya, 419–428.

Available at: https://aclanthology.org/I13-1048

3. Javed, N., Muralidhara, B. L.(2015). Automating Corpora Generation with Semantic Cleaning and Tagging of Tweets for Multi-

dimensional Social Media Analytics. International Journal of Computer Applications, 127 (12), 11–16. https://doi.org/10.5120/

ijca2015906548

4. Alberti, C., Andor, D., Pitler, E., Devlin, J., Collins, M. (2019). Synthetic QA Corpora Generation with Roundtrip Consistency.

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. https://doi.org/10.18653/v1/p19-1620

5. Lichtarge, J., Alberti, C., Kumar, S., Shazeer, N., Parmar, N., Tong, S. (2019). Corpora Generation for Grammatical Error Correction.

Proceedings of the 2019 Conference of the North. https://doi.org/10.18653/v1/n19-1333

6. Al-Thwaib, E., Hammo, B. H., Yagi, S. (2020). An academic Arabic corpus for plagiarism detection: design, construction and

experimentation. International Journal of Educational Technology in Higher Education, 17 (1). https://doi.org/10.1186/

s41239-019-0174-x

7. Tanaka, K., Chu, C., Kajiwara, T., Nakashima, Y., Takemura, N., Nagahara, H., Fujikawa, T. (2022). Corpus Construction for

Historical Newspapers: A Case Study on Public Meeting Corpus Construction Using OCR Error Correction. SN Computer Science,

3 (6). https://doi.org/10.1007/s42979-022-01393-6

8. Yusyn, Y. O., Zabolotnia, T. M. (2021). Text data corpora generation on the basis of the deterministic method. KPI Science News,

3, 38–45. Available at: http://scinews.kpi.ua/article/view/240780

9. Yusyn, Ya. O. (2022). Metody ta prohramni zasoby metamorfichnoho testuvannia prohramnykh system avtomatychnoi

klasteryzatsiyi pryrodnomovnykh tekstovykh danykh. Kyiv, 357. Available at: https://ela.kpi.ua/handle/123456789/52417

10. Parallel programming in .NET: A guide to the documentation (2022). Microsoft Learn. Available at: https://learn.microsoft.com/

en-us/dotnet/standard/parallel-programming/

11. Claessen, K., Hughes, J. (2000). QuickCheck. Proceedings of the Fifth ACM SIGPLAN International Conference on Functional

Programming. https://doi.org/10.1145/351240.351266

12. Aichernig, B. K., Schumi, R. (2016). Property-Based Testing with FsCheck by Deriving Properties from Business Rule Models.

2016 IEEE Ninth International Conference on Software Testing, Verification and Validation Workshops (ICSTW). https://

doi.org/10.1109/icstw.2016.24

13. Overview | BenchmarkDotNet. .NET Foundation and contributors. BenchmarkDotNet. Available at: https://benchmarkdotnet.org/

articles/overview.html

14. Akinshin, A. (2019). Pro .NET Benchmarking. Apress. https://doi.org/10.1007/978-1-4842-4941-3

15. Soukhanov, A. H. (1992). The American Heritage Dictionary of the English Language. Houghton Mifflin.

