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and available for its organization into corpora has increased 
rapidly. Given this, another way to build corpora of textual 
data has emerged and developed, which is the generation of 
corpora based on natural unstructured texts or completely 
artificial generation. Owing to automatic generation, the 
process of building corpora is greatly simplified, and the 
time required for this is reduced but there is a need for meth-
ods and algorithms of generation. Such methods and algo-
rithms can be both general-purpose and specialized – those 
that generate corpora for a specific purpose. Considering 
the wide variety of natural language processing tasks and 
the possible applications of corpora with them, the need for 
corpora generation methods does not diminish.

Therefore, research into devising new methods for gen-
erating (general and specialized purpose) text data corpora 
is relevant.

2. Literature review and problem statement

Many studies have been conducted on generating corpo-
ra using natural texts for various natural language process-
ing tasks, such as [2–7].

In work [2], the authors describe the method of gener-
ating a corpus of texts in the Tunisian dialect of modern 
standard Arabic. In order to achieve this, it uses an existing 
corpus of Modern Standard Arabic and the mapping rules 
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was performed in this work; a property-based testing 
methodology was used to validate both implementations.

The results of efficiency testing showed that for corpora 
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methods speeds up the generation time by 2 times, compared 
to the base method. The acceleration effect is explained 
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practical application depends on whether or not the ability to 
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1. Introduction

Most problems in the field of natural language process-
ing are related to the analysis and transformation of text 
data collected into corpora, for example: clustering, classi-
fication, training of language models, etc. In this case, the 
corpus is a set of selected, processed, and annotated texts in 
a certain way (according to the task) [1].

At the same time, the results of corpora processing can be 
both valuable in themselves and used only as an intermediate 
stage. For example, the results obtained on certain reference 
corpora can be used to compare and evaluate the effective-
ness of natural language processing methods. Also, corpora 
are necessary when solving (for software implementations 
of natural language processing methods) pure software 
engineering problems: benchmarking implementations of 
different methods/implementations of one method, ensuring 
the quality of developed implementations, etc.

Historically, the first way to build corpora of textual 
data is manual. In this case, all texts for the corpus are se-
lected, processed, and annotated by a person. However, with 
the growing need for corpora of different sizes, different 
thematic focus, intended for different tasks, this approach 
loses its relevance because the manual approach requires a 
lot of time and human effort. In addition, with the spread 
of the Internet and social networks, the amount of unstruc-
tured textual information that is generated by humankind 
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sion history of Wikipedia pages could be used not only for 
generating corpora to solve the problem of correcting gram-
matical errors but also for other tasks of natural language 
processing. For example, it can involve simplifying the text 
or paraphrasing the sentence. In the cited work, the authors 
make some efforts to speed up the proposed approaches, for 
example, reduce the amount of input data by using only a 
part of the entire editing history. However, the authors do 
not provide clear data about speed and other acceleration 
possibilities.

In paper [6], the authors consider their own experience in 
the automatic generation of a corpus in the Arabic language, 
intended for the detection of academic plagiarism. As input 
natural data, the authors used 2,312 dissertations obtained 
from the depository at the University of Jordan. The method 
of automatic processing of text data proposed by the authors 
consists of the following stages: removal of diacritics, punc-
tuation, and special characters; unification of letter forms; 
tokenization and stemming; division into n-grams; tagging 
parts of speech. Despite the fact that the authors declare 
research on three components of work with the corpus (de-
sign, generation, and experimentation), most of the work 
considers the third component – conducting experiments 
with the finished corpus. This subjective reason (focusing 
on work with an already generated corpus) can explain the 
lack of consideration in the cited paper of the issue of the 
speed of the proposed corpus generation method. It is only 
indirectly possible to draw a conclusion about the rather 
moderate effectiveness of the proposed method, caused by 
the specificity of the input data format and the large number 
of processing stages.

In work [7], the authors propose a method for generating 
a thematic corpus of historical texts from newspapers, which 
are represented in the form of scanned copies. The proposed 
method is based on a pipeline of the following stages: image 
processing, optical character recognition (including error 
correction), and filtering. For the character recognition 
error correction stage, the authors also propose their own 
model, formed on the basis of a manually collected data set. 
The speed of the proposed pipeline may depend on many 
factors, and primarily on the quality and resolution of the 
scanned copies used. Such a strong dependence of the speed 
of work on not only the amount but also other parameters 
of the input data can be explained by the lack of attempts 
by the authors to evaluate or measure it. However, it can be 
argued that the methods that work with textual data (re-
ported in [2–6]) are more effective in terms of speed than 
the one proposed by the authors, as they do not require work 
with images.

There are also studies that consider the generation of fully 
synthetic corpora for their use in solving software engineer-
ing tasks (for example, benchmarking or quality assurance). 
When solving such problems, it may be necessary to generate 
hundreds or even thousands of different corpora, and the 
time required for this may be an important parameter. In 
works [8, 9], the authors proposed and later expanded the de-
terministic method of corpus generation – CorDeGen. This 
method has such properties as the determinism of the result 
and the minimum amount of input data, which simplifies the 
use of this method in solving software engineering tasks. In [8], 
the authors show an example of the use of corpora generated 
by the CorDeGen method when searching for defects in the 
software implementation of the k-means clustering method. 
In [9], the CorDeGen method is used to test the effectiveness 

that apply to that corpus. As a result, the authors designed 
a tool called Tunisian Dialect Translator. The generated 
corpus of the Tunisian dialect is expected to be used to solve 
other tasks of processing texts (and not only) written in this 
dialect, including training of machine learning models. In 
general, the described approach can be used to generate a 
corpus of texts of any dialect of any language. To this end, 
it is only necessary to have a corpus of texts in the original 
language and a set of rules for conversion. The authors do 
not provide any data on the performance of the developed 
method and the TDT software tool. This can be explained 
by the fact that during the experimental verification of the 
effectiveness of the developed method, the authors used a 
small amount of data (150 verbs and 89 sentences), which 
the ineffective method would also process quickly enough.

In work [3], the authors consider the problem of automat-
ic generation of corpora for multidimensional intellectual 
analysis (mining) and analytics of social media. The tweet 
processing algorithm developed by the authors solves such 
problems as processing slang and non-standard abbrevia-
tions, connected words and regional terms. The described 
problems are typical for the content of social networks. The 
developed implementation automates the entire process of 
collecting and cleaning the content of social networks (in 
particular, tweets). Using the algorithm developed by the 
authors and its implementation, it is possible to automatical-
ly build  thematic corpora of content generated by users of 
social networks. The authors do not provide data on the com-
putational complexity of the proposed algorithm or measure-
ments of the speed of its implementation, which is related to 
the peculiarities of the latter. The developed implementation 
uses a mechanism for streaming tweets on the desired topic 
immediately upon their appearance (the so-called Twitter 
Streaming API). Provided that the processing time of one 
tweet is less than the interval between the appearance of 
tweets (which is performed for unpopular topics), the specif-
ic time indicator and its possible reduction is unimportant. 
However, if it is necessary to process an existing archive of 
tweets or if they appear quickly in the stream, the algorithm 
proposed by the authors may show slow results.

In work [4], the authors consider the task of generating 
a synthetic “question-answer” corpus. To this end, the au-
thors trained three models, each of which is responsible for a 
certain stage. The first stage involves extracting the answer 
from the given passage (natural data). The second step is 
to generate a question using the passage and the extracted 
answer. The final, third stage involves predicting the answer 
using the passage and the generated question. If the predict-
ed and extracted answers match, then this “passage-ques-
tion-answer” triple is added to the generated corpus. The 
main time expenditure in this case falls on the stage of model 
training, which is performed only once. Having trained 
ready-made models, the proposed corpus generation method 
could be effectively used for various practical tasks, includ-
ing those where generation speed is important. However, 
this method is highly specialized, limited to the generation 
of corpora of only one type – “question-answer”.

In [5], the authors describe two approaches to the gen-
eration of large parallel corpora for their use in solving the 
task of correcting grammatical errors. Both approaches use 
Wikipedia as a source of natural texts (not necessarily in 
English): the first approach uses page editing history, and 
the second approach uses two-way machine translation. 
The idea of the approach of collecting data from the revi-
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of the developed methods of metamorphic testing of software 
clustering systems. In both works [8, 9], the authors report the 
results of speed measurements of the developed implementation 
of the method (on different platforms) but without analyzing 
the possibilities for its acceleration. Although any possible 
acceleration is relevant for the results, especially in work [9], in 
which generation is performed several times for each test in the 
cloud, with payment for consumed resources.

Based on our review of the literature [2–9], it is possi-
ble to conclude that the available works focus only on the 
generation of corpora itself (development of approaches, 
methods, algorithms). Available studies leave the question 
of the speed of the developed methods and algorithms (and 
their possible acceleration) outside the scope of the research, 
although it is also important. This can be explained by a 
combination of both objective and subjective 
reasons. Among the subjective reasons, it is 
possible to include the fact that in many works 
the generated corpus itself is considered as the 
main scientific achievement, and not the meth-
od of its generation, therefore the method is 
not analyzed much. Objective reasons include 
conducting experiments on small amounts of 
data or on such tasks that do not require high 
speed, which is why its issue is not considered. 
Separately, it is possible to single out the case 
of using the corpus generation process when 
solving software engineering problems. In this case, avail-
able works provide speed data but consider it as sufficient, 
despite the significant potential for acceleration and the 
possible effect of it.

All this suggests that it is advisable to conduct research 
into the development of ways to accelerate the existing 
methods for generating text data corpora (especially the 
development of parallelized methods).

3. The aim and objectives of the study

The purpose of our study is to identify the possibility of 
speeding up the process of generating corpora of text data 
using the CorDeGen method by developing modification(s) 
of this method that would support parallel execution. This 
will make it possible to improve the processes of solving 
software engineering tasks in the field of natural language 
processing that use the generation of text data corpora, re-
ducing their execution time.

To achieve the goal, the following tasks were set:
– to devise parallel method(s) for deterministic generation 

of text data corpora based on the basic CorDeGen method;
– to develop a software implementation of the devised 

parallel method(s) and validate it;
– to analyze the effectiveness of the devised parallel 

method(s) according to the corpus generation speed criteri-
on, using the developed software implementation.

4. The study materials and methods 

4. 1. The object and hypothesis of the study
The object of our study is the process of generating cor-

pora of text data using the CorDeGen method.
The main hypothesis of the research assumes that the 

corpus generation process using the CorDeGen method 

could be parallelized and, starting with a sufficiently large 
corpus size, the speedup effect should exceed the additional 
cost of parallelization.

The main simplifications adopted in the research pro-
cess are:

– consideration of only one method for generating corpora 
of text data, CorDeGen, since the rate of corpus generation, 
among the considered methods, is the most important for it;

– consideration of only one technique for speeding up the 
process of generating corpora of text data – parallelization.

4. 2. CorDeGen: deterministic method for generating 
corpora of texts

The abstract CorDeGen method consists of the steps 
shown in Fig. 1 [8].

Fig. 1 demonstrates that the abstract method does not 
define specific functions f(x), g(x), and the technique of ob-
taining a linear representation of the term by its index i, but 
sets certain requirements for them [9]:

– the function f(x) should slow down its growth as x 
increases;

– the function g(x) must allocate different terms to dif-
ferent documents in different amounts;

– the technique of obtaining a string representation of 
a term by its index should not require any additional data.

The basic CorDeGen method [8] defines the function f(x) 
as 4 x 

   and uses the hexadecimal representation of the index 
i as a way to obtain the string representation of the term. The 
representation of the function g(x) for calculating the j-th ele-
ment of the vector tf  for term i is given in formula (1) [8]:
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In formula (1), ci is the index of the “central” document for 
term i; r is the half-length of the range of documents to which 
the term i is recorded in non-zero quantities. By “central” 
document, we mean the document in the center of the range to 
which the term i will be written in twice as much as compared 
to the others. At the same time, the range (ci–r…ci+r) is closed 
in a ring with respect to the collection of documents.

Thus, the algorithm implementing the basic CorDeGen 
method is as follows [8]:

1. Calculate the parameters Ndocs and r from formulas (2) 
and (3):

4 ,docs termsN N =  

 

 
  

Method 1. Abstract CorDeGen method 
1: Input parameter termsN  (number of unique terms) 
2: Calculation of the number of documents docsN  using the function ( )f x  
3: Calculation of the vector tf  for each term i , containing the number of 

occurrences of the term in documents, using the calculation of the function 
( )g x  

4: Entry to each document of term i , based on the calculation of the number of 
occurrences 

Fig.	1.	Abstract	CorDeGen	method
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1.
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docsN

r
 = +  

2. For i from 0 to Nterms (not inclusive):
a) calculate the linear value of the term that will be re-

corded in the documents, using the conversion of the number 
i into the hexadecimal number system;

b) calculate the total number of occurrences of term i in 
the corpus according to formula (4):

( )mod 1 ;i docs docsN N i N= +  

c) calculate the indexes of documents that will include 
term i using formulas (5) and (6):

mod ,i docsc i N=

( );range i ii c r c r= − +

d) write the i-th term 
2

2 2 iN
r +

 times to the document  

with index ci. To all other documents whose indices belong 

to the irange range, write by 1
2 2 iN

r +
occurrence.

The asymptotic computational complexity of this algo-
rithm is O(N1,5) [9].

4. 3. Applied hardware and software
To perform all experiments with developed soft-

ware implementations, a physical machine with the fol-
lowing hardware was used: Intel Core i7-9750H CPU 
2.60GHz, 1 CPU (6/12 cores); 16 Gb of RAM (2667 MHz). 
The described physical machine is running Win-
dows 10 (10.0.19045.3448/22H2/2022Update).

The .NET 8 platform (runtime environment 8.0.0) was 
used as the main platform for building the software imple-
mentation of the CorDeGen method and the devised parallel 
methods. The .NET platform provides parallel programming 
capabilities known within the platform as the Task Parallel 
Library (shown in Fig. 2).

Fig. 2 demonstrates that the TPL provides data paral-
lelism capabilities and an implementation of the task-based 
asynchronous pattern, which can also be used to parallelize 
computations, as tasks are executed in different threads from 
the pool in parallel.

4. 4. Validation of the developed software imple-
mentation

The primary user need expected to be satisfied by the 
software implementation of CorDeGen’s parallel method(s) 
is the equivalence of the results to the results generated by 
the underlying method.

Given that the CorDeGen method is defined for any 
positive Nterms, and that the execution process of the parallel 
method(s) may be non-deterministic, traditional oracle-based 
tests for validating the developed software are inefficient.

The property-based testing (PBT) methodology was used 
to validate the developed software implementation. PBT is a 
testing methodology that, instead of testing the exact value at 
the output of the system under test for a given input, tests wheth-
er the resulting value satisfies specified specific properties [11]. 
In this case, the system under test is a software implementation 
of the basic and parallel method, and the output is two gen-
erated corpora (generated by the basic and parallel method).

Two properties can be defined for such a system under test:
– “weak”: for any Nterms, for each document Di∈{1,Ndocs} 

generated by the basic and parallel method of generating 
text data corpora, the set of terms, and the number of their 
occurrences must match;

– “strong”: for any Nterms, for each document Di∈{1,Ndocs} 
generated by the basic and parallelized method of generating 
text data corpus, the set of terms, the number of their occur-
rences and their order must match.

The description of the properties demonstrates that 
when a strong property is satisfied, the weak one will also 
be satisfied automatically, so a certain parallel version of the 
CorDeGen method can satisfy one or both properties.

The FsCheck library was used for the software implemen-
tation of PBT based on the defined properties [12]. An example 
of property implementation using this library is shown in Fig. 3.

 

 
  

Fig.	2.	Parallel	programming	in	.NET	[10]
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Fig. 3 demonstrates that this library provides the ability 
to generate random input data (in this case, the size of the 
corpus, which is a positive integer), with support for their 
compression in the case of failing the test.

4. 5. Designing tests for the developed implementa-
tion performance 

The purpose of performance tests of the developed imple-
mentation is not only to measure the speed of generating cor-
pora of different sizes but also to compare this speed with the 
speed of generating corpora of the same size using the basic 
CorDeGen method. Essentially, this means benchmarking 
should be performed, using the basic method as a baseline.

The BenchmarkDotNet library [13] is the de facto 
standard of the .NET framework for writing benchmarks, 
as it is used by the platform developers themselves. This li-
brary automates most benchmarking processes (for example, 
choosing the number of method calls, the number of warm-
up and actual iterations), thus providing reliable results and 
immediately providing their statistical 
treatment [14].

6 terms of a geometric progression se-
ries with a step of 5 and an initial value of 
100 are chosen as the corpus size parameter 
during performance tests. Such parameter 
values make it possible to evaluate the 
effectiveness of the developed implementa-
tion over the entire range from microcorpo-
ra to super-large corpora (312,500 unique 
terms is comparable to the number of words 
in the English language [15]).

5. Results of research into the 
parallelization of the corpus generation 

process using the CorDeGen method

5. 1. Devising parallelized method(s) 
for deterministic generation of text data 
corpora

In the basic CorDeGen generation 
method, each iteration performed for each 
term is independent and can be run in par-
allel. The only issue that arises relates to 
synchronizing the recording of generated 
terms to documents.

One of the options for solving this 
task is to refuse synchronization. In this 

case, each iteration of the work-
ing cycle of the method is per-
formed completely in parallel and 
immediately writes the term to 
documents. This version of the 
CorDeGen parallel method was 
named “naive” parallel.

Thus, the “naive” parallel Cor-
DeGen method is shown in Fig. 4.

Due to the refusal to syn-
chronize the order of writing 
terms to generated texts – terms 
are written immediately after 
generation – only the “weak” 
property can be fulfilled for this 
method. However, this method 
is easy to implement program-

matically, and among all possible ways to parallelize the 
basic method, this method will show the best results in 
terms of speed (for large Nterms).

Another approach to constructing a parallel CorDeGen 
method is to split the entire range 0…Nterms into p separate 
parts. For each received part of the range, it is possible 
to generate separate, independent documents that will 
contain only terms from this part of the range (we shall 
call these documents sub-documents). After completing 
the generation process for all parts, the resulting corpus 
documents can be obtained by combining the received 
sub-documents of each part in the appropriate order. The 
method built on the basis of this approach was called simply 
a  parallel method.

Thus, the parallel CorDeGen method is shown in Fig. 5.
This parallel method satisfies the defined “strong” prop-

erty: terms are written sequentially for each part, and all 
parts are also combined sequentially.

 

 
  

Fig.	3.	An	example	of	implementing	a	“strong”	property	using	the	FsCheck	library

 

 
  

Method 2. “Naive” parallel CorDeGen method 
1: Input parameter termsN  (number of unique terms) 
2: Calculation of the number of documents docsN  using the function ( )f x  
3: In parallel, with a certain degree of parallelism p , for each term i  
4:  Calculation of the vector tf , containing the number of occurrences of the 

term in documents, using the calculation of the function ( )g x  
5:  Entry to each document of term i , based on the calculation of the number of 

occurrences  

Fig.	4.	The	“naive”	parallel	CorDeGen	method

 

 
  

Method 3. Parallel CorDeGen method 
1: Input parameter termsN  (number of unique terms) 
2: Calculation of the number of documents docsN  using the function ( )f x  
3: Division of the range 0 termsN  into p  consecutive parts 
4: In parallel, with a certain degree of parallelism p , for each part jp  
5:  for each term i  from this part of the range 
6:   Calculation of the vector tf , containing the number of occurrences of 

the term in subdocuments, using the calculation of the function ( )g x  
7:   Entry to each document of term i , based on the calculation of the 

number of occurrences 
8: In parallel, with a certain degree of parallelism p , for each document d  
9:  Get a document by combining the corresponding subdocuments of all parts 

of the range 0 termsN  in the order of division 

Fig.	5.	Parallel	CorDeGen	method
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5. 2. Development of the software implementation of 
the devised parallel methods and its validation

The general architecture of the developed software im-
plementation of parallel methods for generating text data 
corpora is shown in Fig. 6.

In general, the developed software implementation con-
sists of four modules:

– a module containing software implementations of Cor-
DeGen methods;

– a module containing tests based on the properties of 
software implementations of parallel methods;

– a module containing performance tests (benchmarks);
– an application module with a command line interface 

for generating corpora of text data.
The software implementations module of CorDeGen 

methods contains software implementations of three meth-
ods: basic, “naive” parallel, and parallel. These software 
implementations use the abstraction of obtaining a string 
representation of a term by its index (“Strategy” design 
template). Such an architectural solution allows us to 
expand the software implementation in various ways of 
obtaining a string representation of a term by its index (for 
researching modifications of the CorDeGen method in this 
part), without changing the implementation of the methods 
themselves.

The command-line interface program enables the end 
user to generate text data corpora and save them to text 
files using the developed software implementations of the 
CorDeGen methods.

The test module implements the properties described 
above in the form of property-based tests to validate the 
developed software implementations of parallel methods. 
The “weak” property is used to check the implementation of 
the “naive” parallel method, the “strong” property is used to 
check the implementation of the parallel method. The valida-
tion results are shown in Fig. 7.

The Performance Tests module contains benchmark im-
plementations of implemented text corpus generation methods, 
with the base method as a baseline. The results obtained using 
these benchmarks are represented in the next subchapter.

 

 
  

Fig.	6.	General	software	architecture

 

 
  Fig.	7.	Results	of	validation	of	the	developed	software	

implementations	of	parallel	generation	methods
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5. 3. Analyzing performance of the devised 
parallel methods according to the criterion of the 
speed of generating corpora

When testing the effectiveness of the devised 
parallel methods, the choice of the optimal val-
ue (the value that will provide the best results 
in terms of speed) of the degree of parallelism is 
important for the obtained results. In the general 
case, the optimal value of the degree of parallelism 
can depend on many factors but the main ones are 
two factors: the hardware on which the generation 
is performed and the size of the corpus that needs 
to be generated.

This study uses a physical machine with 6 phys-
ical/12 logical cores. The selection of the optimal 
value of the degree of parallelism for this machine was 
carried out experimentally: by measuring the speed of 
generating the corpus of the same size by the parallel 
method but with different values of the degree of paral-
lelism. As the corpus size for this experiment, the size of 
312500 terms was chosen (the largest corpus that will 
be used subsequently when testing the effectiveness of 
the devised parallel methods).

The average corpus generation time for differ-
ent values of the degree of parallelism is shown 
in Fig. 8.

Fig. 8 demonstrates that the average time of gen-
erating the corpus from the beginning drops rapidly, 
then remaining at approximately the same level. 
The minimum value is reached when the degree of 
parallelism is equal to the number of logical cores 
of the physical machine used. Therefore, in further 
comparative testing of the effectiveness of the devised par-
allel methods, the value of the degree of parallelism for both 
methods will be fixed and equal to 12.

The results of testing performance of the devised parallel 
methods are given in Table 1.

Our results have high accuracy with low variance – the 
standard error is in the range from 0.06 % to 0.57 % of the 
average value. Parallel implementations have a higher value 
of this ratio than the base method implementation because 
they are more sensitive to random changes in Windows op-
erating system load, while the base method implementation 
only occupies and runs on one core.

6. Discussion of results of investigating the parallelization of 
the corpus generation process using the CorDeGen method

The devised parallel methods of CorDeGen generation 
inherit from the basic method the main features that con-
stitute their advantages over the methods reported in [2–7]. 
Unlike the methods proposed in [2–7], the methods devised 
do not use natural text data as input. This makes it possible 
to significantly simplify the process of generating text data 
corpus when solving software engineering tasks, due to the 
absence of the need to store input text data.

Both devised parallel CorDeGen meth-
ods have advantages and disadvantages rel-
ative to each other and relative to the basic 
CorDeGen method reported in [8, 9]. These 
advantages and disadvantages also affect 
their applicability in specific practical cases.

The main advantage of the “naive” par-
allel method (Fig. 4) is the simplicity of its 
algorithmic and software implementation (at 
the level of the basic CorDeGen method) 
since most programming languages provide 
the possibility of parallel execution of cycle 
iterations. Also, for large corpus sizes, this 
method could show the best results in terms 
of speed, as it has no additional overhead.

The disadvantage of this “naive” parallel 
method, compared to parallel and basic, is 
that terms are written to documents in a ran-
dom order – depending on how the iterations 
of the work cycle were parallelized. In other 
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Fig.	8.	Average	corpus	generation	time	(size:	312500	terms)	for	different	values	
of	the	degree	of	parallelism

Table	1

Results	of	testing	performance	of	the	devised	parallel	methods

Method Minimum Q1 Median Q3 Maximum

Corpus size: 100 unique terms (µs)

CorDeGen 13.46 14.012 14.197 14.242 14.424

«Naïve» parallel 39.446 39.509 39.591 39.676 39.912

Parallel 15.717 15.801 15.852 15.878 15.925

Corpus size: 500 unique terms (µs)

CorDeGen 103.935 110.170 110.871 111.428 112.500

«Naïve» parallel 173.927 174.279 174.329 174.723 175.215

Parallel 128.877 131.012 131.999 133.624 135.282

Corpus size: 2500 unique terms (µs)

CorDeGen 1.331 1.412 1.422 1.426 1.442

«Naïve» parallel 1.022 1.028 1.029 1.030 1.038

Parallel 0.634 0.644 0.651 0.657 0.662

Corpus size: 12500 unique terms (µs)

CorDeGen 14.117 14.285 14.349 14.554 14.731

«Naïve» parallel 8.730 8.920 8.983 9.067 9.165

Parallel 14.550 15.264 15.440 15.835 16.474

Corpus size: 62500 unique terms (µs)

CorDeGen 117.891 119.496 120.616 121.522 123.189

«Naïve» parallel 61.172 62.383 63.827 64.825 67.181

Parallel 64.670 67.344 68.574 71.205 74.863

Corpus size: 312500 unique terms (s)

CorDeGen 1.254 1.259 1.265 1.270 1.277

«Naïve» parallel 0.587 0.609 0.629 0.636 0.645

Parallel 0.667 0.679 0.694 0.712 0.739
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words, documents generated by the “naive” parallel method dif-
fer from documents generated by the basic CorDeGen method 
by the order of the terms in the documents.

If the corpus generated by the “naive” parallel method is 
further processed by methods that ignore the order (for exam-
ple, clustering methods based on the “bag of words” model), 
then the above drawback can be neglected. This is explained by 
the fact that in this case the processing result would completely 
coincide with the processing result of the corpus of the same 
size generated by the basic method.

If the corpus is supposed to be treated by methods that do 
not neglect the order of terms in documents (for example, based 
on n-gram language models), then the use of a “naive” parallel 
method may be complicated from the point of view of predict-
ing the processing result.

The main advantage of the parallel method (Fig. 5) over the 
“naive” parallel one is that the received corpora completely coin-
cide with the corpora obtained by the basic CorDeGen method. 
Therefore, regardless of how the corpus is treated further, the 
results for corpora generated by both methods will be the same.

The disadvantage of the parallel method is the need for an 
additional stage of combining the generated sub-documents 
into the final corpus. In addition to complicating the algorithm 
that implements this method, it could also lead to additional 
overhead when the software implementation of the method is 
running, compared to the base method.

Validation of the developed implementations of parallel 
methods (Fig. 7) confirms their validity as for each of the de-
vised methods the corresponding defined property between 
its output data and the output data of the basic method is 
performed. In this case, the “weak” property corresponds to 
the “naive” parallel method and the “strong” property to the 
parallel method.

Our results (Table 1) of testing performance of implementa-
tions of the proposed parallel CorDeGen methods confirm the 
main hypothesis of the current study. Starting with a sufficient-
ly large size of the corpus (2500 unique terms) to be generated, 
both parallel methods begin to outperform the basic method 
reported in [8, 9]. The resulting situation where the parallel 
method is faster than the base method for a size of 2500 terms, 
slower for a size of 12500, and faster again for a size of 62500 
may be considered an outlier. Such an outlier can be the result of 
testing on a normal operating system (with crowding out mul-
titasking), as well as possible garbage collector intervention. At 
the same time, as we can see, the parallel method is faster than 
the “naive” parallel method on small corpus sizes, and only 
with the increase of Nterms, the “naive” parallel method is faster.

The practical effect of using the proposed parallel meth-
ods in comparison with the use of the basic method reported 
in [8, 9] can be demonstrated using the following example. Let 
100 integration tests based on properties, which accept a body 
of text data as input, be used to validate a conditional informa-
tion system. Considering that the FsCheck library calls each 
such test by default 100 times with different inputs, this means 
in total the need to generate 10,000 corpora when running all 
the tests once. If the average size of the corpus during such 
testing is equal to 62,500 terms, then the total effect of acceler-
ation from the use of the devised parallel methods will be about 
9 minutes. This is a significant result, considering that with the 
active development of information systems, integration tests 
can be run multiple times during one working day.

It should be noted that implementations of parallel methods 
were tested with only one fixed value of the degree of paral-
lelism, selected by testing on the largest size of experimental 

data (Fig. 8). For small corpus sizes, reducing the degree of 
parallelism could significantly speed up the generation process 
by parallel methods and at least reduce the gap between them 
and the base method. Analysis of such a two-factor dependence 
“hardware-corpus size-degree of parallelism” may be of scientif-
ic interest for further work on the topic of this study. However, 
this direction of development may contain difficulties related 
to the possible variety of hardware that must be taken into 
account. Another possible continuation of the work on the topic 
of this research may be the use of other acceleration techniques, 
for example, memoization or distributed computing.

7. Conclusions 

1. Based on the analysis of stages of the basic CorDeGen 
generation method, approaches to its parallelization have been 
determined. As a result, two parallel CorDeGen methods have 
been devised and described – “naive” parallel and parallel, 
which differ in their approach to solving the task of preserving 
the order of writing terms in the formed corpus. The “naive” 
parallel method does not enable preservation of the order of 
terms in the generated texts relative to the basic method, which 
limits its applicability. The parallel method preserves the order, 
so it can be used everywhere instead of the base method.

2. The software implementation of the basic and devised 
parallel CorDeGen methods is based on a modular architec-
ture. To validate the developed software implementation of 
parallel methods, a property-based test methodology was used, 
for which two properties (“weak” and “strong”) are defined, 
which connect the result of generation by basic and abstract 
parallel methods.

3. The effectiveness of the devised parallel methods was 
verified using the developed software implementation. To this 
end, data on the speed of generating corpora of six different 
sizes (from 100 to 312,500 terms) by basic, “naive” parallel, and 
parallel methods were collected. The results showed that for 
large enough corpora, the use of parallel CorDeGen methods 
accelerates the generation time by 2 times, compared to the 
basic method.
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