
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (129) 2024

42

Therefore, the study of program execution efficiency is
needed in practice due to the growing importance of opti-
mizing compilers of functional programming languages.

2. Literature review and problem statement

The use of advanced machine learning techniques to op-
timize compilers and interpreters of programming languages
is not new. Thus, work [4] considered the optimization of the
GCC and LLVM compilers for the C programming language
using Bayesian optimization. This work is an example of the
application of machine learning methods in the field of opti-
mizing C compilers. The advantage of the study is that, as a
result of such optimization, it was possible to significantly
improve the compilation speed compared to the standard
approach of automatic tuning. However, the work does not
consider other means of optimization and does not consider
the optimization of interpreters and compilers for a function-
al programming language. This can be solved by researching
the application of machine learning methods to optimize a
functional programming language.

In turn, work [5] considered CompilerGym, which was
proposed to use artificial intelligence methods to study
compilers and interpreters. The strength of the work is
how the proposed CompilerGym acts as a testing ground,
providing a means to explore programming languages.
However, the proposed platform does not allow for the op-
timization of programming languages, and CompilerGym’s
compatibility with functional programming languages is
not specified.

THE APPROACH
DEVELOPMENT OF

DATA EXTRACTION
FROM LAMBDA TERMS

O l e k s a n d r D e i n e h a
Corresponding author

PhD Student*
E-mail: oleksandr.deineha@karazin.ua

V o l o d y m y r D o n e t s
PhD Student*

G r y g o r i y Z h o l t k e v y c h
Doctor of Technical Sciences, Professor*

*Department of Theoretical and 	
Applied Computer Science

V. N. Karazin Kharkiv National University
Svobody sq., 4, Kharkiv, Ukraine, 61022

The study's object is the process of extracting the characteristics of
lambda terms, which indicate the optimality of the reduction strategy
and increase the productivity of compilers and interpreters. The
solution to the problem of extracting specific strategy priority data from
lambda terms using Machine Learning methods was considered.

Such data was extracted using the large language model Microsoft
CodeBERT, which was trained to solve the problem of summarizing
the software code. The resulting matrices of embeddings were used to
obtain vectors of average embeddings of size 768 and a latent space of
size 8 thousand. Further, vectors of average embeddings were used for
cluster analysis using the DBSCAN and Hierarchical Agglomerative
clustering methods. The most informative variables affecting clustering
were determined. Next, the clustering results were compared with the
priorities of reduction strategies, which showed the impossibility of
separating terms with RI priority. A feature of the obtained results is
using machine learning methods to obtain knowledge.

The clustering results showed many of the same informative
variables, which is explained by the similar shape of the obtained
clusters. The results of comparing the clustering values with the real
priority are explained by the impossibility of clearly determining the
priority and the use of the Microsoft CodeBERT model, which was not
trained for the analysis of lambda terms.

The proposed approach can find application in the development
of compilers and interpreters of functional programming languages,
allowing to analyze the code and extract important data to optimize the
execution of programs. The obtained data can be used to develop rules
aimed at improving the efficiency of compilation and interpretation

Keywords: functional programming, Lambda Calculus, Large
Language Model, unsupervised learning methods

UDC 004.4`6:004.4`4

DOI: 10.15587/1729-4061.2024.298991

How to Cite: Deineha, O., Donets, V., Zholtkevych, G. (2024). The approach development of data

extraction from lambda terms. Eastern-European Journal of Enterprise Technologies, 3 (2 (129)), 42–54.

https://doi.org/10.15587/1729-4061.2024.298991

Received date 26.02.2024

Accepted date 06.05.2024

Published date 28.06.2024

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license

1. Introduction

Functional programming languages form the basis of
modern software development, offering elegant solutions
to complex problems [1]. As performance requirements
increase, compiler optimization becomes paramount. To
achieve this goal, Lambda Calculus was considered a funda-
mental representation of functional programming languages.
The point is to reveal the hidden connections of the program
code to unravel reduction strategies, significantly increasing
the performance of compilers and interpreters [2].

Lambda Calculus is the most straightforward function-
al programming language for studying the execution and
interpretation of programs. Lambda Calculus allows for the
simulation of the processes of interpreters and compilers in
order to find optimal strategies for code execution and inter-
pretation. The developed method of lambda term generation
provides a reliable test ground for the proposed approaches in
improving the quality of reduction [2, 3]. The complex process
of choosing between building unique strategies for individual
terms and choosing a global strategy such as the Rightmost
Innermost approach reveals a subtle understanding of the
complexity of the reduction. Machine learning methods to
extract term data and find internal relationships between
extracted data and normalization strategies will optimize the
normalization process. The successful application of machine
learning methods to extract these terms will allow to extend
this approach to a broader range of functional programming
languages. Such machine learning methods will optimize not
only the reduction of lambda terms but also the interpretation
and compilation of functional programming languages.

Information technology

43

functional programming languages. However, existing studies
have not thoroughly analyzed the relationship between lambda
terms and priorities in the reduction strategy. Therefore, a
detailed study of the relationship between terms and reduction
strategies is appropriate. Features obtained using machine
learning as a term analysis tool can indicate such a relationship.

3. The aim and objectives of the study

The study aims to develop an approach to extracting lamb-
da term data related to reduction strategies. This will make
it possible to apply advanced machine learning techniques to
represent lambda calculus terms as feature vectors. In turn,
analyzing feature vectors for resolution and comparing resolu-
tion with the priority of the term reduction strategy will allow
the development of approaches to optimizing compilers and
interpreters.

To achieve the aim, the following objectives were set:
– analyze the applicability of the chosen method of ma-

chine learning as an instrument for extracting features from
lambda terms;

– perform a cluster analysis of lambda-term data and
check the presence of internal relationships or the possibility
of data separation;

– check the dependencies between the obtained features
and existing clusters;

– check the dependencies between the obtained clusters
and reduction strategies.

4. The study materials and methods

4. 1. Object and research hypothesis
The object of research is the process of extracting the

characteristics of lambda terms, which can indicate the
priorities of reduction strategies. Such characteristics may
combine specific redex types, leading to different reduction
trajectories. The difficulty of extracting such characteristics
lies in the different volumes of terms in which they can ap-
pear, which imposes additional data noise and the presence
of certain redexes that can eliminate their appearance.

The work’s central hypothesis is that applying machine
learning methods will make it possible to transform lambda
terms into some meaningful numerical representation. The
methods of uninformed learning will make it possible to
extract specific characteristics from the meaningful represen-
tation, which will indicate the priority of reduction strategies.

The research aims to improve understanding of the pro-
cesses occurring in existing interpreters and compilers for
functional programming languages. Therefore, according to
previous works, Lambda Calculus is assumed to be a simple
representation of functional programming languages [2, 3].
Lambda calculus allows the simulation interpreters or compil-
ers to choose appropriate reduction strategies. In addition, it
will allow the artificial generation of a vast number of lambda
terms, which can be used to test the proposed strategies accu-
rately. An appropriate reduction strategy can be selected by
constructing a unique strategy for each independent term or
choosing a specific reduction strategy (e.g., Rightmost Inner-
most) for the entire term reduction procedure. Both approaches
were considered. The first allows for building a greedy strategy
that chooses the optimal redex in the current state. For this,
an analysis of the inequality of redexes (which means that

Most of the works related to compiler and interpreter
optimization are considered the most popular programming
languages, and they are object-oriented [6–8]. Research [6]
used cluster analysis to identify the similarity of functions.
The study [7] considered the transformation of program data
using the PCA method for the LLVM compiler and applied
optimization using expert logic. Paper [8] examines the
iterative compilation approach, exploring only part of the
optimization space and demonstrating its effectiveness in
optimizing code segments. The advantage of studies [6–8]
is an overview of the problem of optimization of compilers
and interpreters from different angles with the introduction
of various machine learning methods. However, the works
do not show the effectiveness of the proposed approaches for
functional programming languages. This can be corrected
with appropriate research. Also, the article [9] discusses the
use of reinforcement learning to optimize compilers using
neural optimization agents to replace manually created op-
timization sequences. This shows that it is possible to effec-
tively apply the methods of uninformed learning to solve the
problem of optimizing compilers and interpreters.

Fewer studies devoted to their optimization are consid-
ered for functional programming compilers. The research [10]
considered heap profiling of a functional compiler with expert
logic. In addition, in the study [11], expert optimization of the
interpreter of the functional language of the web application
was carried out. The advantage of studies [10, 11] is that such
studies consider optimizing functional programming lan-
guages and show the possibility of successful implementation
of such modifications. However, studies have not focused on a
more detailed investigation of such optimizations. This is due
to the lack of appropriate technologies for work [10] and for
research [11] due to the introduction of excessive complexity.
The solution to these shortcomings can be the application of
modern machine learning methods for the analysis of func-
tional programming languages.

The solution to the problem of the lack of a research play-
ground for Lambda Calculus is considered in works [2, 3].
Here, the Pure Calculus Environment was proposed to
explore Lambda Calculus, which represents functional pro-
gramming languages. The papers consider a random strategy
of reducing and adjusting this strategy by estimating the
computational price of the corresponding steps. It is worth
noting that the works considered either a random or a greedy
algorithm for the reduction of lambda terms, and did not
consider the root causes of the priority of some strategies over
others. The solution to this problem can be applying machine
learning methods to find such connections.

Also, in the study [12], the analysis of the influence of the
structure of lambda term graphs on the number of reduction
steps during their normalization according to the chosen
strategy was considered. The advantage of this study is the
application of various Artificial Neural Networks (ANNs)
to analyze lambda term graphs through a simplified textual
representation of terms. The disadvantage of this study is
the lack of consideration of the influence of variables on the
normalization process. The solution to this problem can be
using more voluminous ANN models to perceive information
about lambda-term variables.

Considering all the above, optimizing compilers and in-
terpreters of functional programming languages is essential.
In addition, machine learning methods have been successfully
applied to optimize object-oriented compilers. It is shown that
lambda calculus can serve to simplify the representation of

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (129) 2024

44

they require different resources to process their reduction) is
performed. Computational complexity was chosen to measure
their inequality, which can be measured by timing the reduc-
tion step [3]. The second was investigated by estimating a spe-
cific strategy’s number of lambda-term reduction steps. In [12],
a simplified representation of terms was used, which preserves
only the tree structure with the loss of information about term
variables. Typical ANN models for natural language processing
tasks were used to estimate the number of reduction steps for
specific strategies [12].

During experiments, it has been observed that some spe-
cific redexes indicate that terms have priority in one of the
standard reduction strategies. However, this study suggests
that such redexes are insufficient to indicate that a term should
be prioritized in a particular strategy. In other words, it is
necessary to analyze the terms in depth to decide whether a
particular redex is sufficient to indicate the priority of the
reduction. In previous studies, a simplified representation of
terms was proposed [3, 12], which, as the practice has shown,
is insufficient for qualitative analysis of terms and loses im-
portant discriminatory information. Therefore, it was assumed
that preserving information about variable terms can improve
their distinction in priority in a specific reduction strategy. This
means it is possible to know that a term has fewer reduction
steps for a given strategy without researching a specific number
of reductions. Also, the research assumes that the best method
for solving this problem is the Large Language Model (LLM),
which is trained to analyze programming languages. Due to
resource constraints, a pre-trained model was considered for
solving problems related to programming languages.

4. 2. Collection and analysis of embeddings
The most advanced LLMs are built on the Transformer

architecture [13, 14]. Due to the nature of ANNs, especially
Transformers, it is possible to use average-level outputs as a
feature vector. In other words, LLMs are suitable for con-
verting text information into vectors or matrices of attribute
values [13, 15]. Therefore, it is possible to convert the lambda

terms into vectors or matrices of values that can be used for
further investigation.

First, existing and publicly available LLMs were com-
pared for solving different tasks related to programming
languages. Information about existing models can be
found using the HuggingFace service; the most trending
models are listed in Table 1. The most advanced broad-
based models are the Code Llama models [16], which
include three possible model sizes for parameters 7B, 13B,
and 34B. These models are trained in the most popular
programming languages, such as Python, Java, JavaScript,
and others, to solve various code-related tasks. However,
the problem with this model is the computational require-
ments, so the models are not available for personal use.
There is a similar problem with the code completion model
Replit Code [17]. Other models, such as CodeTrans [18],
CodeBERT [19], and CodeT5 [20], are suitable for use on
personal computers, but fine-tuning them is challenging.
In addition, the problem with these models is training
them for tasks related mainly to object-oriented program-
ming languages.

Using imprecisely adjusted models can cause incon-
venient results. CodeTrans and CodeT5 are based on the
architecture of the T5 model [18, 20], which uses the entire
Transformer architecture (encoder and decoder). At the
same time, CodeBERT is based on the architecture of the
BERT model [19], which uses only the encoder part of the
Transformer architecture. Microsoft CodeBERT is better
suited for this purpose because more model weights are
used for feature extraction, and CodeBERT is suitable for
narrower tasks.

In order to discriminate terms by strategy priority, two
standard strategies were chosen with different approaches
to reducing terms used: Leftmost Innermost (LO) and
Rightmost Innermost (RI). The LO strategy uses the
first redexes for reduction. The RI strategy is the oppo-
site and accepts most internal redexes (or right-hand side
redexes) (Fig. 1).

Table 1

Comparison of LLMs for Programming Languages

No. Model Description Tasks Size

1 CodeTrans model

The model is based on the T5-small model. The model has its
own SentencePiece dictionary model. Pre-training was used for

seven unsupervised datasets in the field of software development.
The model was then adapted to the task of program synthesis for

Lisp-inspired DSL code [18]

Software synthesis;
documentation generation;

code compilation;
comment generation

242 MB

2 Replit Code

A causal language model is trained on a subset of the Stack Ded-
up v1.2 dataset. The training mix includes 20 different languag-
es, listed here in descending order of tokens: Markdown, Java,

JavaScript, Python, TypeScript, PHP, and others [17]

Code completion 10.4 GB

3 Code Llama
Code Llama is a set of pre-trained and fine-tuned generative text

models ranging from 7 to 34 billion parameters [16]
General synthesis and

understanding of the code
~13 GB – ~70 GB

4 CodeT5

CodeT5 is a unified pre-trained Transformer model. The model was
pre-trained in CodeSearchNet (Go, Java, JavaScript, PHP, Python,
and Ruby). In addition, the authors collected two C/C# datasets
from BigQuery1 to ensure that all subsequent tasks overlap pro-

gramming languages with pre-training data [20]

Code generalization,
generation, translation,
refinement and defect

detection

892 MB

5 CodeBERT

CodeBERT is a bimodal pretrained model for programming
languages and natural language using a Transformer-based neural
architecture and a hybrid objective function that includes a pre-

trained task of detecting substituted tokens. The authors con-
sidered datasets containing Go, Java, JavaScript, PHP, Python,

Ruby, and other code samples for training [19]

Generation of code
documentation

499 MB

Information technology

45

Thus, one can reduce the generated terms using LO and
RI strategies and collect the number of reduction steps. The
number of reduction steps can be used to distinguish terms
by strategy priority. For this task, three possible classes of
terms were considered:

1) LO priority terms (which have fewer reduction steps
with the LO strategy);

2) RI priority terms (which have fewer reduction steps
with the RI strategy);

3) terms of the same priority (with the same number of
reduction steps with both the LO and RI strategies).

A data set of 4,000 artificially generated lambda terms
was used for further analysis. The dataset was generated us-
ing a recursive randomization algorithm, evenly distributing
the variables, applications, and abstractions in the term body
to cover a diverse range of term variants. Details of the term
generation algorithm can be found in the article [12]. The
generated lambda terms can be represented as text that can
be entered directly into the selected LLM model.

Therefore, a pre-trained CodeBERT model was considered
for translating lambda terms with variable information in the
value matrix. The selected model converts the textual infor-
mation representing the lambda terms into token vectors with
dimensions equal to the length of the terms. Token vectors
can be fed into the CodeBERT model. Processing these token
vectors results in matrices of size 768 by the number of tokens.
These resulting matrices are called embeddings, encapsulating
the content of the entered text [19]. It is difficult to compare
the collected matrices and process them further, so the possi-
bility of using average vectors of code embeddings of size 768
was considered. Further, it is possible to calculate such vectors
through the Word2Vec approach [21], which allows word
embeddings (vectors that represent the meaning of a word in
some N-dimensional space). Applying addition or subtraction
operations to embeddings can lead to the appearance of new
embeddings, combining the meanings of the words involved in
this operation [21, 22].

4. 3. Means of unsupervised data separation and as-
sessment of such separation

When studying the distribution of data in average em-
bedding space, it was observed that unsupervised learning
approaches, in particular cluster analysis, are practical for
delineating the data. By plotting different strategic priori-
ties in the space of average embeddings, it became possible
to recognize potential clusters with inherent logical coher-
ence, offering a promising route for automatic segmentation.
However, it is essential to note that the scope of this study
explicitly excludes strategy classification, focusing instead
on examining distributional characteristics and identifying
meaningful patterns using unsupervised methods. Standard
approaches for cluster analysis are the following methods:

– K-means is a partitioning method that divides a data set
into ‘k’ clusters by minimizing the sum of squared distances

between data points and the correspond-
ing centroids of the clusters [23, 24]. The
method assigns each data point to the
cluster whose centroid is closest. Standard
metric: Euclidean. Advantages: computa-
tional efficiency, suitable for large data sets,
works well with spherical clusters. Disad-
vantages: sensitivity to the initial choice of
the cluster center, struggles with non-lin-
ear or irregularly shaped clusters, requires
a predetermined number of clusters.

– DBSCAN (Density-Based Spatial Clustering of Appli-
cations with Noise) combines data points that are close to each
other and separates dense areas from sparse ones. The method
defines clusters as regions with a high density of data points,
separated by regions with a lower density [25, 26]. Standard
metric: Euclidean, cosine, L1, L2. Advantages: resistant to out-
liers, not required in the specification of the number of clusters,
can work with clusters of complex shapes and different sizes.
Disadvantages: sensitive to the choice of hyperparameters, may
have problems with clusters of different densities.

– The Gaussian Mixture Model (GMM) assumes that
the data is a mixture of several Gaussian distributions. The
method models each cluster as a Gaussian distribution and
estimates the parameters (mean, covariance, and weight) to
maximize the likelihood of the observed data [27]. Standard
metric: Euclidean. Advantages: flexibility in handling differ-
ent cluster shapes, provides probabilistic cluster assignment,
and can estimate the density of data points. Disadvantages:
computational cost, susceptibility to convergence problems.

– Hierarchical Agglomerative Clustering (HAC) starts
with each data point as a single cluster, and iteratively merg-
es the closest pairs of clusters until only one cluster remains.
The process creates a binary tree or dendrogram, and the
user can slice it at the desired level to obtain clusters [26].
Standard metrics: Euclidean, cosine, L1, L2. Advantages: it
can work with clusters of complex shapes and different sizes,
and results can be visualized using dendrograms. Disadvan-
tages: sensitive to choice of binding method and distance
metric, may scale poorly for large data.

Due to the visual analysis of possible forms of clus-
ters (Fig. 3), the DBSCAN and HAC methods were con-
sidered for further cluster analysis of the dataset. These
methods require hyperparameter tuning, so an appro-
priate set of hyperparameters needs to be selected and
to evaluate this appropriate set of hyperparameters, the
following metrics were considered to evaluate clustering
quality:

1. Silhouette Score [27] measures how similar an object
is to its cluster compared to others. The Silhouette Score
ranges from −1 to +1, where a high value indicates that the
object matches its cluster well and matches its neighbors
poorly. A Silhouette Score greater than 0.7 indicates accu-
rate clustering, a value greater than 0.5 is satisfactory, and a
value smaller than 0.25 is weak. The problem lies in cluster-
ing high-dimensional data, where silhouette values become
similar. Silhouette Score measures cluster quality when the
clusters have a convex shape and may not perform well when
the data clusters have irregular shapes or different sizes. Sil-
houette Score is suitable for any metric.

2. Davies-Bouldin Index (DBI) [28] is an average indicator
of the similarity of each cluster with its most similar cluster,
where similarity is the ratio of distances within a cluster to dis-
tances between clusters. Thus, more distant and less scattered

 Fig. 1. Comparison of term reduction with LO and RI strategies

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (129) 2024

46

clusters will give a better result. The minimum score is zero,
and lower values indicate better clustering.

3. CH Index (Calinski-Harabasz Index) [29] is an inter-
nal evaluation metric in which clustering quality is based
solely on the data set and clustering results, not on external
truth labels. The score is the ratio of the sum of intercluster
variance and intracluster variance.

4. Within-Cluster Sum of Squares (WCSS) [30] is a
metric used to assess the compactness or homogeneity of
clusters in a clustering algorithm, particularly in the con-
text of K-Means clustering. The metric measures the sum of
squared distances between each data point in a cluster and
the centroid of that cluster. WCSS provides a quantitative
estimate of how closely clustered data points are.

4. 4. Overlap coefficient and strategies differentiation
The overlap ratio between the obtained clusters and the

priority of the target strategy was also considered for further
analysis of the clustering results. The idea behind the
overlap ratio is to determine the precision for each clus-
ter: if most elements of a cluster are labeled as a specific
class, the entire cluster should be labeled as that class.
It is now possible to calculate precision for all elements
using the initial class labeling and cluster labeling, even
if the number of clusters differs from the number of class-
es. This can help evaluate how well the clusters estimate
the target classes. However, this indicator cannot be
sufficient to evaluate the quality of clustering due to the
nature of the strategy priority idea.

4. 5. Sensitivity analysis and feature distribution
For further research, sensitivity analysis was con-

sidered, which can be used to highlight the most in-
formative parameters in cluster analysis. Due to their
specificity, the methods of cluster analysis cannot pro-
vide information about the quality of clustering, so the
possibility of using the analysis of the importance of
features in cooperation with other methods was consid-
ered. In this case, the idea of sensitivity analysis is to use
a combination of feature importance analysis [31] with
the permutation importance method [32]. The core of
this combination is an artificial neural network model
for solving multi-class classification problems explicitly
trained on data labeled with clustering models.

Permutation importance is a popular technique for
evaluating the impact of individual input parameters on
neural network predictions [32]. The method works by
randomly changing the value of a specific variable in the
training data and observing changes in the forecasts of the
ANN model – the more significant the change in the model
forecast, the higher the importance of this parameter.

4. 6. Autoencoder model and hidden space analysis
Autoencoders are a class of neural networks designed

for unsupervised learning that aim to encode input data
into a lower dimensional representation known as latent
space [33, 34]. The encoder component compresses the
input into this reduced representation, and the decoder
reconstructs the original input from the encoded represen-
tation. The hidden space serves as a collapsed, multifunc-
tional representation of the data, which captures its main
characteristics. Autoencoders are widely used for tasks
such as data compression, variable learning, and anomaly
detection, where the structure and patterns within the

latent space play a critical role in extracting meaningful infor-
mation from the input data [33, 34]. The quality of the hidden
space is fundamental to the performance of autoencoders, as it
determines the ability of the model to capture and represent
the main characteristics of the input data in a compact and
meaningful way.

A convolution-based autoencoder best suits this problem
because it can effectively reduce the size of embeddings
without using many weights. However, the problem lies in
the predefined size of the inputs and outputs of the model.
ANN cannot be used for this configuration. Therefore, an
input/output matrix size of 500×768 was used, where 768
is the size of the vector of token embeddings, and 500 is the
number of tokens. The number 500 was chosen because most
terms in the dataset have token counts less than 500, so zero
padding was added for most, and terms that were too long
were truncated. The architecture with such an autoencoder
is shown in Fig. 2.

a b

Fig. 2. Architecture of the autoencoder model, 	
which includes parts: a – encoder; b – decoder

Information technology

47

The developed encoder (Fig. 2, a) contains 5 Con-
v1D layers with a decrease in dimensionality after every
second layer, which allows to transform the matrices of
term embeddings into latent space vectors with a size of
8 thousand. The idea of the decoder (Fig. 2, b) reflects an
encoder with 5 layers of Conv1DTranspose, which allows
the transformation of hidden space vectors back into em-
bedding matrices.

5. Results of research of feature extraction from
lambda terms

5. 1. The effectiveness analysis of the selected method
of machine learning as a means of extracting features
from lambda terms

Using 4,000 generated terms as input to the Microsoft
CodeBERT model, embedding matrices were obtained.
Average embedding vectors are obtained by further apply-
ing the matrix reduction procedure shown in section 4. 1.
Average embedding vectors can be visualized using prin-
cipal component analysis (PCA) [35] and t-distributed
stochastic neighbor embedding (t-SNE) [36]. The results
of such data compression of average attachments are
shown in Fig. 3, a for PCA and Fig. 3, b for t-SNE with
the coloring of the best reduction strategy for terms.
As shown in Fig. 3, an equal strategy priority (RI=LO)
can be visually separated from LO and RI priorities.
However, the priorities of the LO and RI strategies are
almost impossible to separate. Furthermore, given this
compression, it was investigated whether an automat-
ic search for the appropriate strategy is possible using
the information represented in the space of average
embeddings.

Fig. 4 shows the proposed autoencoder’s training re-
sult. The plot was achieved by reducing the PCA size
from 8k to 2 principal components. As shown in Fig. 4, it
is still difficult to distinguish the RI-priority and LO-pri-
ority terms from each other, but the RI=LO terms can be
separated.

Fig. 3, a shows the results of PCA compression of average
embeddings, which differ from the latent space achieved
using an autoencoder (Fig. 4). However, the main idea is
presented, and the fact that the terms are inseparable from
the proposed priority remains.

5. 2. Carrying out cluster analysis of lambda term data
After considering the selected clustering methods and

metrics for evaluating the clustering quality, the appropriate
epsilon value was chosen for DBSCAN clustering on 4 thou-
sand vectors of average embeddings (Fig. 5, 6). Selecting the
epsilon value is difficult for this data set due to the conflicting
values of the clustering quality measures and the requirement
to minimize the number of outliers. In general, WCSS can-
not use the Elbow method for Euclidean and cosine metric
clustering. Maximization is considered for Silhouette and
CHI estimation, as well as for DBI minimization. Therefore,
epsilon=1.25 was chosen for DBSCAN based on the Euclid-
ean metric. Additionally, epsilon=0.00205 was chosen for
cosine-based DBSCAN.

Fig. 4. 8k hidden space represented with PCA compression
in 2D space

a b

Fig. 3. Comparison of the value of the average embeddings with the indication of the strategy priority according to 	
the compression algorithms: 	

a – principle components: b – t-stochastic distribution

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (129) 2024

48

а

b

Fig. 5. Setting the DBSCAN epsilon hyperparameter by comparing the clustering quality (Silhouette, CHI, DBI, WCSS metrics)
at interelement distances: a – Euclidean; b – cosine

a b

Fig. 6. Setting the DBSCAN epsilon hyperparameter by comparing the number of clusters and outliers 	
at interelement distances: a – Euclidean; b – cosine

Information technology

49

The next step was the selection of appropriate count-
ing clusters for HAC on 4,000 average data embed-
dings (Fig. 7). Four metrics were considered: Euclidean,
cosine, L1, and L2. For this case, the WCSS metric was
applied using the Elbow method, so extreme locations on
the graphs and values around those locations were con-
sidered. Corresponding rules were used for other metrics:
Silhouette and CHI should be maximized, and DBI should
be minimized. Choosing the optimal number of clusters
gave 5 clusters for Euclidean distance, 6 for cosine simi-
larity, and 5 for L1 and L2 distances.

Fig. 8 shows the results of clustering using DBSCAN
and HAC with different metrics. It also shows the PCA
honey compression results, highlighted in different colors
by the corresponding color. It should also be noted that

for the DBSCAN results (Fig. 8, a, b), a cluster with the
number “–1” is indicated, which is an outlier and indi-
cates data that cannot be assigned to a specific cluster. In
further calculations, such data were marked as a separate
cluster.

The cosine metric (popular in NLP programs [21, 22])
does not provide sufficiently different results. Howev-
er, as for DBSCAN (Fig. 8, b) and for HAC (Fig. 8, c),
the results do not provide significant differenc-
es from the Euclidean metric for DBSCAN (Fig. 8, a)
and HAC (Fig. 8, c). HAC with L2 metric (Fig. 8, e)
looks similar to HAC with Euclidean (Fig. 8, c) and
cosine (Fig. 8, d). The results of DBSCAN (Fig. 8, a, b)
look like they can distinguish terms by their strategy
priorities.

a b

c d

Fig. 7. Selection of the appropriate number of clusters combining Silhouette, DBI, CHI, 	
and WCSS indicators for HAC with metrics: 	

a – Euclidean; b – cosine; с – L1; d – L2

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (129) 2024

50

a b

c d

e f

Fig. 8. Compression of the space of average embeddings with visualization of clustering results: 	
a – DBSCAN, Euclidean; b – DBSCAN, cosine; c – HAC, Euclidean; d – HAC, cosine; e – HAC, L1; f – HAC, L2

Information technology

51

5. 3. Checking the dependence between the obtained
features and clusters

Table 2 shows the 5 most informative parameters in se-
lected clustering models obtained by combining feature im-
portance analysis with the permutation importance method.

Table 2 indicates that some variables are the most infor-
mative, marked with the same colors. The most common are
var_183, which appear in the DBSCAN and HAC models.
Other variables are the same for DBSCAN (var_371, var_47)
and HAC (var_71, var_229). Admittedly, HAC with the
cosine metric does not have in the top 5 informative vari-
ables that appear in other configurations of the method. In
this case, it may be related to the number of clusters, which
means that the cluster configuration affects the most infor-
mative variables.

5. 4. Verification of the dependence between the ob-
tained clusters and reduction strategies

The results shown in Table 3 indicate that the three larg-
est overlap values were in the clustering models DBSCAN
with Euclidean and cosine metrics and HAC with cosine
metrics.

Furthermore, it is worth acknowledging that the pure
accuracy of the RI-best priority class indicates that the
unsupervised approach cannot distinguish the RI-best
terms from others. However, the approach could distinguish
LO=RI from LO and RI terms, and the most successful
models for this task were HACs. Nevertheless, due to the
imbalance of the data set according to the corresponding
priority classes, the overall accuracy was higher in the DB-
SCAN models.

6. Discussion of research results on feature extraction
from lambda terms

The advantage of this research is the use of advanced
machine learning methods to highlight hidden features of
terms. These features could potentially indicate priority in a
particular reduction strategy. The discovery of such features

in Lambda Calculus will allow to assume that such features
can be found in other functional programming languages.
Also, using LLM to search features is impractical due to
computational inefficiency. However, it will show that with
LLMs, it is possible to find features indicating the priority of

a strategy, and using simpler techniques (such
as pattern search), it is possible to apply them
in practice). This will improve the efficiency
of compilers and interpreters of functionally
oriented programming languages in the fu-
ture. However, it made it possible to test a new
way of applying LLM as a research method.
These advantages are justified by the greater
capabilities of machine learning methods to
analyze many terms and the ability to use
trained LLMs for feature extraction. What
differs from [11] is that such features for the
interpreter of a functional programming lan-

guage were obtained by applying expert logic. The research
considered the Lambda Calculus Environment [2, 3], which,
unlike CompilerGym [5], provides an opportunity to work
with Lambda Calculus and generate artificial terms. Where
CompilerGym is used as an experimental environment.

Several experiments were conducted using advanced
machine learning methods to extract features from lambda
terms. At the preparatory stage of the research, 4,000 terms
were generated and played through LLM for tasks related
to software code analysis. This made it possible to prepare
matrices of embeddings, which carried meaningful content
that characterized each term. However, using embeddings to
analyze informativeness introduces limitations because it is
necessary to compare data of different sizes. In order to solve
this limitation, average embedding vectors and hidden space
vectors obtained using an autoencoder were proposed. Fig. 3
and Fig. 4 show the results of the analysis of such vectors; it

is shown that the vectors of average embeddings
provide a broader idea of terms. As a result, the
Microsoft CodeBERT model can be used to
obtain vectors of average embeddings. This can
be explained by the limitations on the size of the
autoencoder input data and the relatively small
size of the autoencoder model itself.

Next, a cluster analysis was performed using
the DBSCAN and HAC methods. It is shown
that the specified methods with selected met-
rics (Fig. 7) can be applied to select features in a

dataset. However, the cosine metric did not provide superior
results for both methods, which can be explained by the large
size of the data and the specificity of the results obtained
from the Microsoft CodeBERT model.

Next, the dependencies between the obtained features
and clusters were checked. The results of the most informa-
tive variables are shown in Table 2. It is noted that the same
variables are informative for most of the clustering results.
The similarity of the obtained results can explain this. The
dependence between the received clusters and the strategy’s
priority was also checked. It is shown in Table 3 that the RI-
best terms are almost impossible to separate from the others,
but the other priors had quite acceptable separation accura-
cy. Such results can be explained by insufficient awareness
of the CodeBERT model in the terms analysis, which led to
an insufficiently informative space of average embeddings.
Also, the artificial origin of the considered terms and the
blurring of the strategy priority are possible reasons.

Table 2

Top 5 most informative variable results of cluster analysis of average
embedding vectors

Informativeness
rank

DBSCAN,
Euclidean

DBSCAN,
cosine

HAC,
Euclidean

HAC,
cosine

HAC,
L1

HAC,
L2

1st var_183 var_183 var_637 var_372 var_1 var_71

2nd var_371 var_283 var_71 var_15 var_70 var_637

3rd var_47 var_47 var_183 var_382 var_71 var_183

4th var_284 var_117 var_229 var_260 var_683 var_43

5th var_7 var_371 var_453 var_227 var_117 var_229

Table 3

The overlapping value of cluster analysis results

Strategy
DBSCAN,
Euclidean

DBSCAN,
cosine

HAC,
Euclidean

HAC,
cosine

HAC,
L1

HAC, L2

LO-best 82.92 % 82.75 % 64.42 % 82.25 % 64.55 % 64.42 %

RI-best 0 % 0 % 0 % 0 % 0 % 0 %

LO=RI 42.24 % 39.32 % 73.47 % 67.31 % 72.81 % 73.47 %

Overall 83.02 % 86.44 % 72.60 % 78.43 % 69.91 % 72.60%

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (129) 2024

52

The results of compressing the space of medium em-
beddings (indicated in Fig. 3, 4) and the overlap results
(indicated in Table 3) show the proposed approach’s prom-
isingness. Machine learning methods for extracting certain
features of program code can be used to optimize compilers
or interpreters.

The study’s limitations are the imprecise determination
of the priority of the term strategy: the calculation of the
steps of reduction to two strategies was removed. Also,
limitations are the use of the CodeBert model, which was
initially trained in other programming languages (Go, Java,
Python, and others), which can lead to the incorrect repre-
sentation of lambda calculus terms in embedding matrices,
as well as to the problem of converting these matrices into
a universal representation for further analysis. The study’s
shortcoming is the assumption that using LLM as a tool for
representing terms can sufficiently accurately determine the
features that induce priority in the reduction strategy.

Given these limitations, further research can be conduct-
ed using the retrained LLM model for problems related to
Lambda Calculus. Models for text summarization can also
be used, which will solve the problem of data loss during the
transition to the space of medium embeddings.

7. Conclusions

1. This study transformed lambda terms into 768-di-
mensional average embedding vectors using the Word2Vec
methodology and the Microsoft CodeBERT model. It also
compared the space of average embeddings to the alternative
in the form of a latent space. Through PCA and t-SNE anal-
ysis of the space visualizations of mean embeddings, indica-
tions were seen that the representation of lambda terms in
these mean embeddings could be clearly distinguished. This
confirmed the initial hypothesis of identifying relationships
using cluster analysis.

2. The study further examined data clustering using the
DBSCAN method using both Euclidean and cosine metrics
and the HAC method using Euclidean, cosine, L1, and L2
metrics. This clustering effort highlighted the effectiveness of
the CodeBERT model in extracting meaningful features from
lambda terms. Despite this, the versatility of Microsoft Code-
BERT, trained in different programming languages, introduces

complexity in accurately representing lambda calculus terms in
embedding matrices. This complexity extends to transforming
these matrices into comprehensible average embeddings or la-
tent space vectors, especially when using autoencoders.

3. The sensitivity analysis of the variables was conducted
to assess the informativeness of the variables in the identified
clusters. This made it possible to determine the influence of
specific variables on the clustering results and to reveal that
certain most informative variables are the same regardless of
the chosen clustering method. This is explained by the exis-
tence of some multidimensional structures, which different
clustering methods define in approximately the same way.

4. The introduction of the overlap factor facilitated the
assessment of interdependence between clusters and applied
strategies. This evaluation found no correlation between
the previously determined strategy priorities and the actual
achieved priority of the strategies. This indicates a potential
need to fine-tune the CodeBERT model or consider alter-
native models more suitable for feature extraction in this
domain.

Conflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial,
personal, authorship, or any other, that could affect the study
and the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

Data will be provided upon reasonable request.

Use of artificial intelligence

The authors confirm that they did not use artificial intel-
ligence technologies when creating the current work.

References

1.	 Pollak, D., Layka, V., Sacco, A. (2022). Functional Programming. Beginning Scala 3, 79–109. https://doi.org/10.1007/978-1-4842-

7422-4_4

2.	 Deineha, O., Donets, V., Zholtkevych, G. (2023). On Randomization of Reduction Strategies for Typeless Lambda Calculus.

Communications in Computer and Information Science, 25–38. https://doi.org/10.1007/978-3-031-48325-7_3

3.	 Deineha, O., Donets, V., Zholtkevych, G. (2023). Estimating Lambda-Term Reduction Complexity with Regression Methods.

Information Technology and Implementation 2023. Available at: https://ceur-ws.org/Vol-3624/Paper_13.pdf

4.	 Chen, J., Xu, N., Chen, P., Zhang, H. (2021). Efficient Compiler Autotuning via Bayesian Optimization. 2021 IEEE/ACM 43rd

International Conference on Software Engineering (ICSE). https://doi.org/10.1109/icse43902.2021.00110

5.	 Cummins, C., Wasti, B., Guo, J., Cui, B., Ansel, J., Gomez, S. et al. (2022). CompilerGym: Robust, Performant Compiler Optimization

Environments for AI Research. 2022 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). https://

doi.org/10.1109/cgo53902.2022.9741258

6.	 Martins, L. G. A., Nobre, R., Cardoso, J. M. P., Delbem, A. C. B., Marques, E. (2016). Clustering-Based Selection for the Exploration

of Compiler Optimization Sequences. ACM Transactions on Architecture and Code Optimization, 13 (1), 1–28. https://doi.org/

10.1145/2883614

7.	 Ashouri, A. H., Bignoli, A., Palermo, G., Silvano, C., Kulkarni, S., Cavazos, J. (2017). MiCOMP. ACM Transactions on Architecture

and Code Optimization, 14 (3), 1–28. https://doi.org/10.1145/3124452

Information technology

53

8.	 de Souza Xavier, T. C., da Silva, A. F. (2018). Exploration of Compiler Optimization Sequences Using a Hybrid Approach.

Computing and Informatics, 37 (1), 165–185. https://doi.org/10.4149/cai_2018_1_165

9.	 Mammadli, R., Jannesari, A., Wolf, F. (2020). Static Neural Compiler Optimization via Deep Reinforcement Learning. 2020 IEEE/

ACM 6th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC) and Workshop on Hierarchical Parallelism for

Exascale Computing (HiPar). https://doi.org/10.1109/llvmhpchipar51896.2020.00006

10.	 Runciman, C., Wakeling, D. (1993). Heap Profiling of a Lazy Functional Compiler. Workshops in Computing, 203–214. https://

doi.org/10.1007/978-1-4471-3215-8_18

11.	 Chlipala, A. (2015). An optimizing compiler for a purely functional web-application language. Proceedings of the 20th ACM

SIGPLAN International Conference on Functional Programming. https://doi.org/10.1145/2784731.2784741

12.	 Deineha, O., Donets, V., Zholtkevych, G. (2023). Deep Learning Models for Estimating Number of Lambda-Term Reduction Steps. 3rd

International Workshop of IT-professionals on Artificial Intelligence 2023. Available at: https://ceur-ws.org/Vol-3641/paper12.pdf

13.	 Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N. et al. (2017). Attention is All you Need. arXiv. https://

doi.org/10.48550/arXiv.1706.03762

14.	 Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y. et al. (2023). A Survey of Large Language Models. arXiv. https://doi.org/

10.48550/arXiv.2303.18223

15.	 Ormerod, M., del Rincón, J. M., Devereux, B. (2024). How Is a “Kitchen Chair” like a “Farm Horse”? Exploring the Representation

of Noun-Noun Compound Semantics in Transformer-based Language Models. Computational Linguistics, 50 (1), 49–81. https://

doi.org/10.1162/coli_a_00495

16.	 Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X. et al. (2023). Code Llama: Open Foundation Models for Code. arXiv.

https://doi.org/10.48550/arXiv.2308.12950

17.	 Replit. replit-code-V1-3B. Hugging Face. Available at: https://huggingface.co/replit/replit-code-v1-3b

18.	 Elnaggar, A., Ding, W., Jones, L., Gibbs, T., Fehér, T. B., Angerer, C. et al. (2021). CodeTrans: Towards Cracking the Language

of Silicon's Code Through Self-Supervised Deep Learning and High Performance Computing. arXiv. https://doi.org/10.48550/

arXiv.2104.02443

19.	 Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M. et al. (2020). CodeBERT: A Pre-Trained Model for Programming and

Natural Languages. Findings of the Association for Computational Linguistics: EMNLP 2020. https://doi.org/10.18653/v1/2020.

findings-emnlp.139

20.	 Wang, Y., Wang, W., Joty, S., Hoi, S. C. H. (2021). CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for

Code Understanding and Generation. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.

https://doi.org/10.18653/v1/2021.emnlp-main.685

21.	 Styawati, S., Nurkholis, A., Aldino, A. A., Samsugi, S., Suryati, E., Cahyono, R. P. (2022). Sentiment Analysis on Online

Transportation Reviews Using Word2Vec Text Embedding Model Feature Extraction and Support Vector Machine (SVM)

Algorithm. 2021 International Seminar on Machine Learning, Optimization, and Data Science (ISMODE). https://doi.org/

10.1109/ismode53584.2022.9742906

22.	 Dwivedi, V. P., Shrivastava, M. (2017). Beyond Word2Vec: Embedding Words and Phrases in Same Vector Space. ICON. Available

at: https://aclanthology.org/W17-7526.pdf

23.	 Hartigan, J. A., Wong, M. A. (1979). Algorithm AS 136: A K-Means Clustering Algorithm. Applied Statistics, 28 (1), 100. https://

doi.org/10.2307/2346830

24.	 Hahsler, M., Piekenbrock, M., Doran, D. (2019). dbscan: Fast Density-Based Clustering with R. Journal of Statistical Software,

91 (1). https://doi.org/10.18637/jss.v091.i01

25.	 Zhang, Y., Li, M., Wang, S., Dai, S., Luo, L., Zhu, E. et al. (2021). Gaussian Mixture Model Clustering with Incomplete Data. ACM

Transactions on Multimedia Computing, Communications, and Applications, 17 (1s), 1–14. https://doi.org/10.1145/3408318

26.	 Monath, N., Dubey, K. A., Guruganesh, G., Zaheer, M., Ahmed, A., McCallum, A. et al. (2021). Scalable Hierarchical Agglomerative

Clustering. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. https://doi.org/

10.1145/3447548.3467404

27.	 Shahapure, K. R., Nicholas, C. (2020). Cluster Quality Analysis Using Silhouette Score. 2020 IEEE 7th International Conference

on Data Science and Advanced Analytics (DSAA). https://doi.org/10.1109/dsaa49011.2020.00096

28.	 Ros, F., Riad, R., Guillaume, S. (2023). PDBI: A partitioning Davies-Bouldin index for clustering evaluation. Neurocomputing,

528, 178–199. https://doi.org/10.1016/j.neucom.2023.01.043

29.	 Lima, S. P., Cruz, M. D. (2020). A genetic algorithm using Calinski-Harabasz index for automatic clustering problem. Revista

Brasileira de Computação Aplicada, 12 (3), 97–106. https://doi.org/10.5335/rbca.v12i3.11117

30.	 Li, X., Liang, W., Zhang, X., Qing, S., Chang, P.-C. (2019). A cluster validity evaluation method for dynamically determining the

near-optimal number of clusters. Soft Computing, 24 (12), 9227–9241. https://doi.org/10.1007/s00500-019-04449-7

31.	 Chung, H., Ko, H., Kang, W. S., Kim, K. W., Lee, H., Park, C. et al. (2021). Prediction and Feature Importance Analysis for Severity

of COVID-19 in South Korea Using Artificial Intelligence: Model Development and Validation. Journal of Medical Internet

Research, 23 (4), e27060. https://doi.org/10.2196/27060

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (129) 2024

54

32.	 Pereira, J. P. B., Stroes, E. S. G., Zwinderman, A. H., Levin, E. (2022). Covered Information Disentanglement: Model Transparency

via Unbiased Permutation Importance. Proceedings of the AAAI Conference on Artificial Intelligence, 36 (7), 7984–7992. https://

doi.org/10.1609/aaai.v36i7.20769

33.	 Chen, X., Ding, M., Wang, X., Xin, Y., Mo, S., Wang, Y. et al. (2023). Context Autoencoder for Self-supervised Representation

Learning. International Journal of Computer Vision, 132 (1), 208–223. https://doi.org/10.1007/s11263-023-01852-4

34.	 Yin, C., Zhang, S., Wang, J., Xiong, N. N. (2022). Anomaly Detection Based on Convolutional Recurrent Autoencoder for

IoT Time Series. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52 (1), 112–122. https://doi.org/10.1109/

tsmc.2020.2968516

35.	 Niedoba, T. (2014). Multi-parameter data visualization by means of principal component analysis (PCA) in qualitative evaluation

of various coal types. Physicochemical Problems of Mineral Processing, 50 (2), 575–589. Available at: https://bibliotekanauki.pl/

articles/109595

36.	 Oliveira, F. H. M., Machado, A. R. P., Andrade, A. O. (2018). On the Use of t-Distributed Stochastic Neighbor Embedding for Data

Visualization and Classification of Individuals with Parkinson’s Disease. Computational and Mathematical Methods in Medicine,

2018, 1–17. https://doi.org/10.1155/2018/8019232

