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Therefore, the study of program execution efficiency is 
needed in practice due to the growing importance of opti-
mizing compilers of functional programming languages.

2. Literature review and problem statement

The use of advanced machine learning techniques to op-
timize compilers and interpreters of programming languages 
is not new. Thus, work [4] considered the optimization of the 
GCC and LLVM compilers for the C programming language 
using Bayesian optimization. This work is an example of the 
application of machine learning methods in the field of opti-
mizing C compilers. The advantage of the study is that, as a 
result of such optimization, it was possible to significantly 
improve the compilation speed compared to the standard 
approach of automatic tuning. However, the work does not 
consider other means of optimization and does not consider 
the optimization of interpreters and compilers for a function-
al programming language. This can be solved by researching 
the application of machine learning methods to optimize a 
functional programming language.

In turn, work [5] considered CompilerGym, which was 
proposed to use artificial intelligence methods to study 
compilers and interpreters. The strength of the work is 
how the proposed CompilerGym acts as a testing ground, 
providing a means to explore programming languages. 
However, the proposed platform does not allow for the op-
timization of programming languages, and CompilerGym’s 
compatibility with functional programming languages is 
not specified.
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1. Introduction 

Functional programming languages form the basis of 
modern software development, offering elegant solutions 
to complex problems [1]. As performance requirements 
increase, compiler optimization becomes paramount. To 
achieve this goal, Lambda Calculus was considered a funda-
mental representation of functional programming languages. 
The point is to reveal the hidden connections of the program 
code to unravel reduction strategies, significantly increasing 
the performance of compilers and interpreters [2].

Lambda Calculus is the most straightforward function-
al programming language for studying the execution and 
interpretation of programs. Lambda Calculus allows for the 
simulation of the processes of interpreters and compilers in 
order to find optimal strategies for code execution and inter-
pretation. The developed method of lambda term generation 
provides a reliable test ground for the proposed approaches in 
improving the quality of reduction [2, 3]. The complex process 
of choosing between building unique strategies for individual 
terms and choosing a global strategy such as the Rightmost 
Innermost approach reveals a subtle understanding of the 
complexity of the reduction. Machine learning methods to 
extract term data and find internal relationships between 
extracted data and normalization strategies will optimize the 
normalization process. The successful application of machine 
learning methods to extract these terms will allow to extend 
this approach to a broader range of functional programming 
languages. Such machine learning methods will optimize not 
only the reduction of lambda terms but also the interpretation 
and compilation of functional programming languages.
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functional programming languages. However, existing studies 
have not thoroughly analyzed the relationship between lambda 
terms and priorities in the reduction strategy. Therefore, a 
detailed study of the relationship between terms and reduction 
strategies is appropriate. Features obtained using machine 
learning as a term analysis tool can indicate such a relationship.

3. The aim and objectives of the study

The study aims to develop an approach to extracting lamb-
da term data related to reduction strategies. This will make 
it possible to apply advanced machine learning techniques to 
represent lambda calculus terms as feature vectors. In turn, 
analyzing feature vectors for resolution and comparing resolu-
tion with the priority of the term reduction strategy will allow 
the development of approaches to optimizing compilers and 
interpreters.

To achieve the aim, the following objectives were set:
– analyze the applicability of the chosen method of ma-

chine learning as an instrument for extracting features from 
lambda terms;

– perform a cluster analysis of lambda-term data and 
check the presence of internal relationships or the possibility 
of data separation;

– check the dependencies between the obtained features 
and existing clusters;

– check the dependencies between the obtained clusters 
and reduction strategies.

4. The study materials and methods

4. 1. Object and research hypothesis
The object of research is the process of extracting the 

characteristics of lambda terms, which can indicate the 
priorities of reduction strategies. Such characteristics may 
combine specific redex types, leading to different reduction 
trajectories. The difficulty of extracting such characteristics 
lies in the different volumes of terms in which they can ap-
pear, which imposes additional data noise and the presence 
of certain redexes that can eliminate their appearance.

The work’s central hypothesis is that applying machine 
learning methods will make it possible to transform lambda 
terms into some meaningful numerical representation. The 
methods of uninformed learning will make it possible to 
extract specific characteristics from the meaningful represen-
tation, which will indicate the priority of reduction strategies.

The research aims to improve understanding of the pro-
cesses occurring in existing interpreters and compilers for 
functional programming languages. Therefore, according to 
previous works, Lambda Calculus is assumed to be a simple 
representation of functional programming languages [2, 3]. 
Lambda calculus allows the simulation interpreters or compil-
ers to choose appropriate reduction strategies. In addition, it 
will allow the artificial generation of a vast number of lambda 
terms, which can be used to test the proposed strategies accu-
rately. An appropriate reduction strategy can be selected by 
constructing a unique strategy for each independent term or 
choosing a specific reduction strategy (e.g., Rightmost Inner-
most) for the entire term reduction procedure. Both approaches 
were considered. The first allows for building a greedy strategy 
that chooses the optimal redex in the current state. For this, 
an analysis of the inequality of redexes (which means that 

Most of the works related to compiler and interpreter 
optimization are considered the most popular programming 
languages, and they are object-oriented [6–8]. Research [6] 
used cluster analysis to identify the similarity of functions. 
The study [7] considered the transformation of program data 
using the PCA method for the LLVM compiler and applied 
optimization using expert logic. Paper [8] examines the 
iterative compilation approach, exploring only part of the 
optimization space and demonstrating its effectiveness in 
optimizing code segments. The advantage of studies [6–8] 
is an overview of the problem of optimization of compilers 
and interpreters from different angles with the introduction 
of various machine learning methods. However, the works 
do not show the effectiveness of the proposed approaches for 
functional programming languages. This can be corrected 
with appropriate research. Also, the article [9] discusses the 
use of reinforcement learning to optimize compilers using 
neural optimization agents to replace manually created op-
timization sequences. This shows that it is possible to effec-
tively apply the methods of uninformed learning to solve the 
problem of optimizing compilers and interpreters.

Fewer studies devoted to their optimization are consid-
ered for functional programming compilers. The research [10] 
considered heap profiling of a functional compiler with expert 
logic. In addition, in the study [11], expert optimization of the 
interpreter of the functional language of the web application 
was carried out. The advantage of studies [10, 11] is that such 
studies consider optimizing functional programming lan-
guages and show the possibility of successful implementation 
of such modifications. However, studies have not focused on a 
more detailed investigation of such optimizations. This is due 
to the lack of appropriate technologies for work [10] and for 
research [11] due to the introduction of excessive complexity. 
The solution to these shortcomings can be the application of 
modern machine learning methods for the analysis of func-
tional programming languages.

The solution to the problem of the lack of a research play-
ground for  Lambda Calculus is considered in works [2, 3]. 
Here, the Pure Calculus Environment was proposed to 
explore Lambda Calculus, which represents functional pro-
gramming languages. The papers consider a random strategy 
of reducing and adjusting this strategy by estimating the 
computational price of the corresponding steps. It is worth 
noting that the works considered either a random or a greedy 
algorithm for the reduction of lambda terms, and did not 
consider the root causes of the priority of some strategies over 
others. The solution to this problem can be applying machine 
learning methods to find such connections.

Also, in the study [12], the analysis of the influence of the 
structure of lambda term graphs on the number of reduction 
steps during their normalization according to the chosen 
strategy was considered. The advantage of this study is the 
application of various Artificial Neural Networks (ANNs) 
to analyze lambda term graphs through a simplified textual 
representation of terms. The disadvantage of this study is 
the lack of consideration of the influence of variables on the 
normalization process. The solution to this problem can be 
using more voluminous ANN models to perceive information 
about lambda-term variables.

Considering all the above, optimizing compilers and in-
terpreters of functional programming languages is essential. 
In addition, machine learning methods have been successfully 
applied to optimize object-oriented compilers. It is shown that 
lambda calculus can serve to simplify the representation of 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 ( 129 ) 2024

44

they require different resources to process their reduction) is 
performed. Computational complexity was chosen to measure 
their inequality, which can be measured by timing the reduc-
tion step [3]. The second was investigated by estimating a spe-
cific strategy’s number of lambda-term reduction steps. In [12], 
a simplified representation of terms was used, which preserves 
only the tree structure with the loss of information about term 
variables. Typical ANN models for natural language processing 
tasks were used to estimate the number of reduction steps for 
specific strategies [12].

During experiments, it has been observed that some spe-
cific redexes indicate that terms have priority in one of the 
standard reduction strategies. However, this study suggests 
that such redexes are insufficient to indicate that a term should 
be prioritized in a particular strategy. In other words, it is 
necessary to analyze the terms in depth to decide whether a 
particular redex is sufficient to indicate the priority of the 
reduction. In previous studies, a simplified representation of 
terms was proposed [3, 12], which, as the practice has shown, 
is insufficient for qualitative analysis of terms and loses im-
portant discriminatory information. Therefore, it was assumed 
that preserving information about variable terms can improve 
their distinction in priority in a specific reduction strategy. This 
means it is possible to know that a term has fewer reduction 
steps for a given strategy without researching a specific number 
of reductions. Also, the research assumes that the best method 
for solving this problem is the Large Language Model (LLM), 
which is trained to analyze programming languages. Due to 
resource constraints, a pre-trained model was considered for 
solving problems related to programming languages.

4. 2. Collection and analysis of embeddings
The most advanced LLMs are built on the Transformer 

architecture [13, 14]. Due to the nature of ANNs, especially 
Transformers, it is possible to use average-level outputs as a 
feature vector. In other words, LLMs are suitable for con-
verting text information into vectors or matrices of attribute 
values [13, 15]. Therefore, it is possible to convert the lambda 

terms into vectors or matrices of values that can be used for 
further investigation.

First, existing and publicly available LLMs were com-
pared for solving different tasks related to programming 
languages. Information about existing models can be 
found using the HuggingFace service; the most trending 
models are listed in Table 1. The most advanced broad-
based models are the Code Llama models [16], which 
include three possible model sizes for parameters 7B, 13B, 
and 34B. These models are trained in the most popular 
programming languages, such as Python, Java, JavaScript, 
and others, to solve various code-related tasks. However, 
the problem with this model is the computational require-
ments, so the models are not available for personal use. 
There is a similar problem with the code completion model 
Replit Code [17]. Other models, such as CodeTrans [18], 
CodeBERT [19], and CodeT5 [20], are suitable for use on 
personal computers, but fine-tuning them is challenging. 
In addition, the problem with these models is training 
them for tasks related mainly to object-oriented program-
ming languages.

Using imprecisely adjusted models can cause incon-
venient results. CodeTrans and CodeT5 are based on the 
architecture of the T5 model [18, 20], which uses the entire 
Transformer architecture (encoder and decoder). At the 
same time, CodeBERT is based on the architecture of the 
BERT model [19], which uses only the encoder part of the 
Transformer architecture. Microsoft CodeBERT is better 
suited for this purpose because more model weights are 
used for feature extraction, and CodeBERT is suitable for 
narrower tasks.

In order to discriminate terms by strategy priority, two 
standard strategies were chosen with different approaches 
to reducing terms used: Leftmost Innermost (LO) and 
Rightmost Innermost (RI). The LO strategy uses the 
first redexes for reduction. The RI strategy is the oppo-
site and accepts most internal redexes (or right-hand side  
redexes) (Fig. 1).

Table 1

Comparison of LLMs for Programming Languages

No. Model Description Tasks Size 

1 CodeTrans model

The model is based on the T5-small model. The model has its 
own SentencePiece dictionary model. Pre-training was used for 

seven unsupervised datasets in the field of software development. 
The model was then adapted to the task of program synthesis for 

Lisp-inspired DSL code [18]

Software synthesis;  
documentation generation; 

code compilation;  
comment generation

242 MB

2 Replit Code 

A causal language model is trained on a subset of the Stack Ded-
up v1.2 dataset. The training mix includes 20 different languag-
es, listed here in descending order of tokens: Markdown, Java, 

JavaScript, Python, TypeScript, PHP, and others [17]

Code completion 10.4 GB

3 Code Llama
Code Llama is a set of pre-trained and fine-tuned generative text 

models ranging from 7 to 34 billion parameters [16]
General synthesis and  

understanding of the code
~13 GB – ~70 GB

4 CodeT5

CodeT5 is a unified pre-trained Transformer model. The model was 
pre-trained in CodeSearchNet (Go, Java, JavaScript, PHP, Python, 
and Ruby). In addition, the authors collected two C/C# datasets 
from BigQuery1 to ensure that all subsequent tasks overlap pro-

gramming languages with pre-training data [20]

Code generalization,  
generation, translation, 
refinement and defect 

detection

892 MB

5 CodeBERT

CodeBERT is a bimodal pretrained model for programming 
languages and natural language using a Transformer-based neural 
architecture and a hybrid objective function that includes a pre-

trained task of detecting substituted tokens. The authors con-
sidered datasets containing Go, Java, JavaScript, PHP, Python, 

Ruby, and other code samples for training [19]

Generation of code  
documentation

499 MB
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Thus, one can reduce the generated terms using LO and 
RI strategies and collect the number of reduction steps. The 
number of reduction steps can be used to distinguish terms 
by strategy priority. For this task, three possible classes of 
terms were considered:

1) LO priority terms (which have fewer reduction steps 
with the LO strategy);

2) RI priority terms (which have fewer reduction steps 
with the RI strategy);

3) terms of the same priority (with the same number of 
reduction steps with both the LO and RI strategies).

A data set of 4,000 artificially generated lambda terms 
was used for further analysis. The dataset was generated us-
ing a recursive randomization algorithm, evenly distributing 
the variables, applications, and abstractions in the term body 
to cover a diverse range of term variants. Details of the term 
generation algorithm can be found in the article [12]. The 
generated lambda terms can be represented as text that can 
be entered directly into the selected LLM model.

Therefore, a pre-trained CodeBERT model was considered 
for translating lambda terms with variable information in the 
value matrix. The selected model converts the textual infor-
mation representing the lambda terms into token vectors with 
dimensions equal to the length of the terms. Token vectors 
can be fed into the CodeBERT model. Processing these token 
vectors results in matrices of size 768 by the number of tokens. 
These resulting matrices are called embeddings, encapsulating 
the content of the entered text [19]. It is difficult to compare 
the collected matrices and process them further, so the possi-
bility of using average vectors of code embeddings of size 768 
was considered. Further, it is possible to calculate such vectors 
through the Word2Vec approach [21], which allows word 
embeddings (vectors that represent the meaning of a word in 
some N-dimensional space). Applying addition or subtraction 
operations to embeddings can lead to the appearance of new 
embeddings, combining the meanings of the words involved in 
this operation [21, 22].

4. 3. Means of unsupervised data separation and as-
sessment of such separation

When studying the distribution of data in average em-
bedding space, it was observed that unsupervised learning 
approaches, in particular cluster analysis, are practical for 
delineating the data. By plotting different strategic priori-
ties in the space of average embeddings, it became possible 
to recognize potential clusters with inherent logical coher-
ence, offering a promising route for automatic segmentation. 
However, it is essential to note that the scope of this study 
explicitly excludes strategy classification, focusing instead 
on examining distributional characteristics and identifying 
meaningful patterns using unsupervised methods. Standard 
approaches for cluster analysis are the following methods:

– K-means is a partitioning method that divides a data set 
into ‘k’ clusters by minimizing the sum of squared distances 

between data points and the correspond-
ing centroids of the clusters [23, 24]. The 
method assigns each data point to the 
cluster whose centroid is closest. Standard 
metric: Euclidean. Advantages: computa-
tional efficiency, suitable for large data sets, 
works well with spherical clusters. Disad-
vantages: sensitivity to the initial choice of 
the cluster center, struggles with non-lin-
ear or irregularly shaped clusters, requires 
a predetermined number of clusters.

– DBSCAN (Density-Based Spatial Clustering of Appli-
cations with Noise) combines data points that are close to each 
other and separates dense areas from sparse ones. The method 
defines clusters as regions with a high density of data points, 
separated by regions with a lower density [25, 26]. Standard 
metric: Euclidean, cosine, L1, L2. Advantages: resistant to out-
liers, not required in the specification of the number of clusters, 
can work with clusters of complex shapes and different sizes. 
Disadvantages: sensitive to the choice of hyperparameters, may 
have problems with clusters of different densities.

– The Gaussian Mixture Model (GMM) assumes that 
the data is a mixture of several Gaussian distributions. The 
method models each cluster as a Gaussian distribution and 
estimates the parameters (mean, covariance, and weight) to 
maximize the likelihood of the observed data [27]. Standard 
metric: Euclidean. Advantages: flexibility in handling differ-
ent cluster shapes, provides probabilistic cluster assignment, 
and can estimate the density of data points. Disadvantages: 
computational cost, susceptibility to convergence problems.

– Hierarchical Agglomerative Clustering (HAC) starts 
with each data point as a single cluster, and iteratively merg-
es the closest pairs of clusters until only one cluster remains. 
The process creates a binary tree or dendrogram, and the 
user can slice it at the desired level to obtain clusters [26]. 
Standard metrics: Euclidean, cosine, L1, L2. Advantages: it 
can work with clusters of complex shapes and different sizes, 
and results can be visualized using dendrograms. Disadvan-
tages: sensitive to choice of binding method and distance 
metric, may scale poorly for large data.

Due to the visual analysis of possible forms of clus-
ters (Fig. 3), the DBSCAN and HAC methods were con-
sidered for further cluster analysis of the dataset. These 
methods require hyperparameter tuning, so an appro-
priate set of hyperparameters needs to be selected and 
to evaluate this appropriate set of hyperparameters, the 
following metrics were considered to evaluate clustering 
quality:

1. Silhouette Score [27] measures how similar an object 
is to its cluster compared to others. The Silhouette Score 
ranges from −1 to +1, where a high value indicates that the 
object matches its cluster well and matches its neighbors 
poorly. A Silhouette Score greater than 0.7 indicates accu-
rate clustering, a value greater than 0.5 is satisfactory, and a 
value smaller than 0.25 is weak. The problem lies in cluster-
ing high-dimensional data, where silhouette values become 
similar. Silhouette Score measures cluster quality when the 
clusters have a convex shape and may not perform well when 
the data clusters have irregular shapes or different sizes. Sil-
houette Score is suitable for any metric.

2. Davies-Bouldin Index (DBI) [28] is an average indicator 
of the similarity of each cluster with its most similar cluster, 
where similarity is the ratio of distances within a cluster to dis-
tances between clusters. Thus, more distant and less scattered 

 

 
  Fig. 1. Comparison of term reduction with LO and RI strategies
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clusters will give a better result. The minimum score is zero, 
and lower values indicate better clustering.

3. CH Index (Calinski-Harabasz Index) [29] is an inter-
nal evaluation metric in which clustering quality is based 
solely on the data set and clustering results, not on external 
truth labels. The score is the ratio of the sum of intercluster 
variance and intracluster variance.

4. Within-Cluster Sum of Squares (WCSS) [30] is a 
metric used to assess the compactness or homogeneity of 
clusters in a clustering algorithm, particularly in the con-
text of K-Means clustering. The metric measures the sum of 
squared distances between each data point in a cluster and 
the centroid of that cluster. WCSS provides a quantitative 
estimate of how closely clustered data points are.

4. 4. Overlap coefficient and strategies differentiation
The overlap ratio between the obtained clusters and the 

priority of the target strategy was also considered for further 
analysis of the clustering results. The idea behind the 
overlap ratio is to determine the precision for each clus-
ter: if most elements of a cluster are labeled as a specific 
class, the entire cluster should be labeled as that class. 
It is now possible to calculate precision for all elements 
using the initial class labeling and cluster labeling, even 
if the number of clusters differs from the number of class-
es. This can help evaluate how well the clusters estimate 
the target classes. However, this indicator cannot be 
sufficient to evaluate the quality of clustering due to the 
nature of the strategy priority idea.

4. 5. Sensitivity analysis and feature distribution
For further research, sensitivity analysis was con-

sidered, which can be used to highlight the most in-
formative parameters in cluster analysis. Due to their 
specificity, the methods of cluster analysis cannot pro-
vide information about the quality of clustering, so the 
possibility of using the analysis of the importance of 
features in cooperation with other methods was consid-
ered. In this case, the idea of sensitivity analysis is to use 
a combination of feature importance analysis [31] with 
the permutation importance method [32]. The core of 
this combination is an artificial neural network model 
for solving multi-class classification problems explicitly 
trained on data labeled with clustering models.

Permutation importance is a popular technique for 
evaluating the impact of individual input parameters on 
neural network predictions [32]. The method works by 
randomly changing the value of a specific variable in the 
training data and observing changes in the forecasts of the 
ANN model – the more significant the change in the model 
forecast, the higher the importance of this parameter.

4. 6. Autoencoder model and hidden space analysis
Autoencoders are a class of neural networks designed 

for unsupervised learning that aim to encode input data 
into a lower dimensional representation known as latent 
space [33, 34]. The encoder component compresses the 
input into this reduced representation, and the decoder 
reconstructs the original input from the encoded represen-
tation. The hidden space serves as a collapsed, multifunc-
tional representation of the data, which captures its main 
characteristics. Autoencoders are widely used for tasks 
such as data compression, variable learning, and anomaly 
detection, where the structure and patterns within the 

latent space play a critical role in extracting meaningful infor-
mation from the input data [33, 34]. The quality of the hidden 
space is fundamental to the performance of autoencoders, as it 
determines the ability of the model to capture and represent 
the main characteristics of the input data in a compact and 
meaningful way.

A convolution-based autoencoder best suits this problem 
because it can effectively reduce the size of embeddings 
without using many weights. However, the problem lies in 
the predefined size of the inputs and outputs of the model. 
ANN cannot be used for this configuration. Therefore, an 
input/output matrix size of 500×768 was used, where 768 
is the size of the vector of token embeddings, and 500 is the 
number of tokens. The number 500 was chosen because most 
terms in the dataset have token counts less than 500, so zero 
padding was added for most, and terms that were too long 
were truncated. The architecture with such an autoencoder 
is shown in Fig. 2. 

a                                              b 

Fig. 2. Architecture of the autoencoder model, 	
which includes parts: a – encoder; b – decoder
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The developed encoder (Fig. 2, a) contains 5 Con-
v1D layers with a decrease in dimensionality after every 
second layer, which allows to transform the matrices of 
term embeddings into latent space vectors with a size of 
8 thousand. The idea of the decoder (Fig. 2, b) reflects an 
encoder with 5 layers of Conv1DTranspose, which allows 
the transformation of hidden space vectors back into em-
bedding matrices.

5. Results of research of feature extraction from 
lambda terms

5. 1. The effectiveness analysis of the selected method 
of machine learning as a means of extracting features 
from lambda terms

Using 4,000 generated terms as input to the Microsoft 
CodeBERT model, embedding matrices were obtained. 
Average embedding vectors are obtained by further apply-
ing the matrix reduction procedure shown in section 4. 1. 
Average embedding vectors can be visualized using prin-
cipal component analysis (PCA) [35] and t-distributed 
stochastic neighbor embedding (t-SNE) [36]. The results 
of such data compression of average attachments are 
shown in Fig. 3, a for PCA and Fig. 3, b for t-SNE with 
the coloring of the best reduction strategy for terms. 
As shown in Fig. 3, an equal strategy priority (RI=LO) 
can be visually separated from LO and RI priorities. 
However, the priorities of the LO and RI strategies are 
almost impossible to separate. Furthermore, given this 
compression, it was investigated whether an automat-
ic search for the appropriate strategy is possible using 
the information represented in the space of average  
embeddings.

Fig. 4 shows the proposed autoencoder’s training re-
sult. The plot was achieved by reducing the PCA size 
from 8k to 2 principal components. As shown in Fig. 4, it 
is still difficult to distinguish the RI-priority and LO-pri-
ority terms from each other, but the RI=LO terms can be 
separated.

Fig. 3, a shows the results of PCA compression of average 
embeddings, which differ from the latent space achieved 
using an autoencoder (Fig. 4). However, the main idea is 
presented, and the fact that the terms are inseparable from 
the proposed priority remains.

5. 2. Carrying out cluster analysis of lambda term data
After considering the selected clustering methods and 

metrics for evaluating the clustering quality, the appropriate 
epsilon value was chosen for DBSCAN clustering on 4 thou-
sand vectors of average embeddings (Fig. 5, 6). Selecting the 
epsilon value is difficult for this data set due to the conflicting 
values of the clustering quality measures and the requirement 
to minimize the number of outliers. In general, WCSS can-
not use the Elbow method for Euclidean and cosine metric 
clustering. Maximization is considered for Silhouette and 
CHI estimation, as well as for DBI minimization. Therefore, 
epsilon=1.25 was chosen for DBSCAN based on the Euclid-
ean metric. Additionally, epsilon=0.00205 was chosen for 
cosine-based DBSCAN.

 
  

Fig. 4. 8k hidden space represented with PCA compression 
in 2D space

 

  
a                                                                                        b 

Fig. 3. Comparison of the value of the average embeddings with the indication of the strategy priority according to 	
the compression algorithms: 	

a – principle components: b – t-stochastic distribution
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а 
 

 
b

Fig. 5. Setting the DBSCAN epsilon hyperparameter by comparing the clustering quality (Silhouette, CHI, DBI, WCSS metrics) 
at interelement distances: a – Euclidean; b – cosine

 

  

a                                                                                           b 

Fig. 6. Setting the DBSCAN epsilon hyperparameter by comparing the number of clusters and outliers 	
at interelement distances: a – Euclidean; b – cosine
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The next step was the selection of appropriate count-
ing clusters for HAC on 4,000 average data embed-
dings (Fig. 7). Four metrics were considered: Euclidean, 
cosine, L1, and L2. For this case, the WCSS metric was 
applied using the Elbow method, so extreme locations on 
the graphs and values around those locations were con-
sidered. Corresponding rules were used for other metrics: 
Silhouette and CHI should be maximized, and DBI should 
be minimized. Choosing the optimal number of clusters 
gave 5 clusters for Euclidean distance, 6 for cosine simi-
larity, and 5 for L1 and L2 distances.

Fig. 8 shows the results of clustering using DBSCAN 
and HAC with different metrics. It also shows the PCA 
honey compression results, highlighted in different colors 
by the corresponding color. It should also be noted that 

for the DBSCAN results (Fig. 8, a, b), a cluster with the 
number “–1” is indicated, which is an outlier and indi-
cates data that cannot be assigned to a specific cluster. In 
further calculations, such data were marked as a separate 
cluster.

The cosine metric (popular in NLP programs [21, 22]) 
does not provide sufficiently different results. Howev-
er, as for DBSCAN (Fig. 8, b) and for HAC (Fig. 8, c), 
the results do not provide significant differenc-
es from the Euclidean metric for DBSCAN (Fig. 8, a) 
and HAC (Fig. 8, c). HAC with L2 metric (Fig. 8, e) 
looks similar to HAC with Euclidean (Fig. 8, c) and 
cosine (Fig. 8, d). The results of DBSCAN (Fig. 8, a, b) 
look like they can distinguish terms by their strategy  
priorities.

 

  

 

  

a                                                                                        b

c                                                                                       d

Fig. 7. Selection of the appropriate number of clusters combining Silhouette, DBI, CHI, 	
and WCSS indicators for HAC with metrics: 	

a – Euclidean; b – cosine; с – L1; d – L2
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a                                                                                          b

c                                                                                          d

e                                                                                          f

Fig. 8. Compression of the space of average embeddings with visualization of clustering results: 	
a – DBSCAN, Euclidean; b – DBSCAN, cosine; c – HAC, Euclidean; d – HAC, cosine; e – HAC, L1; f – HAC, L2
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5. 3. Checking the dependence between the obtained 
features and clusters

Table 2 shows the 5 most informative parameters in se-
lected clustering models obtained by combining feature im-
portance analysis with the permutation importance method.

Table 2 indicates that some variables are the most infor-
mative, marked with the same colors. The most common are 
var_183, which appear in the DBSCAN and HAC models. 
Other variables are the same for DBSCAN (var_371, var_47) 
and HAC (var_71, var_229). Admittedly, HAC with the 
cosine metric does not have in the top 5 informative vari-
ables that appear in other configurations of the method. In 
this case, it may be related to the number of clusters, which 
means that the cluster configuration affects the most infor-
mative variables.

5. 4. Verification of the dependence between the ob-
tained clusters and reduction strategies

The results shown in Table 3 indicate that the three larg-
est overlap values were in the clustering models DBSCAN 
with Euclidean and cosine metrics and HAC with cosine 
metrics.

Furthermore, it is worth acknowledging that the pure 
accuracy of the RI-best priority class indicates that the 
unsupervised approach cannot distinguish the RI-best 
terms from others. However, the approach could distinguish 
LO=RI from LO and RI terms, and the most successful 
models for this task were HACs. Nevertheless, due to the 
imbalance of the data set according to the corresponding 
priority classes, the overall accuracy was higher in the DB-
SCAN models.

6. Discussion of research results on feature extraction 
from lambda terms

The advantage of this research is the use of advanced 
machine learning methods to highlight hidden features of 
terms. These features could potentially indicate priority in a 
particular reduction strategy. The discovery of such features 

in Lambda Calculus will allow to assume that such features 
can be found in other functional programming languages. 
Also, using LLM to search features is impractical due to 
computational inefficiency. However, it will show that with 
LLMs, it is possible to find features indicating the priority of 

a strategy, and using simpler techniques (such 
as pattern search), it is possible to apply them 
in practice). This will improve the efficiency 
of compilers and interpreters of functionally 
oriented programming languages in the fu-
ture. However, it made it possible to test a new 
way of applying LLM as a research method. 
These advantages are justified by the greater 
capabilities of machine learning methods to 
analyze many terms and the ability to use 
trained LLMs for feature extraction. What 
differs from [11] is that such features for the 
interpreter of a functional programming lan-

guage were obtained by applying expert logic. The research 
considered the Lambda Calculus Environment [2, 3], which, 
unlike CompilerGym [5], provides an opportunity to work 
with Lambda Calculus and generate artificial terms. Where 
CompilerGym is used as an experimental environment.

Several experiments were conducted using advanced 
machine learning methods to extract features from lambda 
terms. At the preparatory stage of the research, 4,000 terms 
were generated and played through LLM for tasks related 
to software code analysis. This made it possible to prepare 
matrices of embeddings, which carried meaningful content 
that characterized each term. However, using embeddings to 
analyze informativeness introduces limitations because it is 
necessary to compare data of different sizes. In order to solve 
this limitation, average embedding vectors and hidden space 
vectors obtained using an autoencoder were proposed. Fig. 3 
and Fig. 4 show the results of the analysis of such vectors; it 

is shown that the vectors of average embeddings 
provide a broader idea of terms. As a result, the 
Microsoft CodeBERT model can be used to 
obtain vectors of average embeddings. This can 
be explained by the limitations on the size of the 
autoencoder input data and the relatively small 
size of the autoencoder model itself.

Next, a cluster analysis was performed using 
the DBSCAN and HAC methods. It is shown 
that the specified methods with selected met-
rics (Fig. 7) can be applied to select features in a 

dataset. However, the cosine metric did not provide superior 
results for both methods, which can be explained by the large 
size of the data and the specificity of the results obtained 
from the Microsoft CodeBERT model.

Next, the dependencies between the obtained features 
and clusters were checked. The results of the most informa-
tive variables are shown in Table 2. It is noted that the same 
variables are informative for most of the clustering results. 
The similarity of the obtained results can explain this. The 
dependence between the received clusters and the strategy’s 
priority was also checked. It is shown in Table 3 that the RI-
best terms are almost impossible to separate from the others, 
but the other priors had quite acceptable separation accura-
cy. Such results can be explained by insufficient awareness 
of the CodeBERT model in the terms analysis, which led to 
an insufficiently informative space of average embeddings. 
Also, the artificial origin of the considered terms and the 
blurring of the strategy priority are possible reasons.

Table 2

Top 5 most informative variable results of cluster analysis of average 
embedding vectors

Informativeness 
rank

DBSCAN, 
Euclidean

DBSCAN, 
cosine

HAC,  
Euclidean

HAC, 
cosine

HAC, 
L1

HAC, 
L2

1st var_183 var_183 var_637 var_372 var_1 var_71

2nd var_371 var_283 var_71 var_15 var_70 var_637

3rd var_47 var_47 var_183 var_382 var_71 var_183

4th var_284 var_117 var_229 var_260 var_683 var_43

5th var_7 var_371 var_453 var_227 var_117 var_229

Table 3

The overlapping value of cluster analysis results

Strategy
DBSCAN,  
Euclidean

DBSCAN,  
cosine

HAC,  
Euclidean

HAC,  
cosine

HAC,  
L1

HAC, L2

LO-best 82.92 % 82.75 % 64.42 % 82.25 % 64.55 % 64.42 %

RI-best 0 % 0 % 0 % 0 % 0 % 0 %

LO=RI 42.24 % 39.32 % 73.47 % 67.31 % 72.81 % 73.47 %

Overall 83.02 % 86.44 % 72.60 % 78.43 % 69.91 % 72.60% 
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The results of compressing the space of medium em-
beddings (indicated in Fig. 3, 4) and the overlap results 
(indicated in Table 3) show the proposed approach’s prom-
isingness. Machine learning methods for extracting certain 
features of program code can be used to optimize compilers 
or interpreters.

The study’s limitations are the imprecise determination 
of the priority of the term strategy: the calculation of the 
steps of reduction to two strategies was removed. Also, 
limitations are the use of the CodeBert model, which was 
initially trained in other programming languages (Go, Java, 
Python, and others), which can lead to the incorrect repre-
sentation of lambda calculus terms in embedding matrices, 
as well as to the problem of converting these matrices into 
a universal representation for further analysis. The study’s 
shortcoming is the assumption that using LLM as a tool for 
representing terms can sufficiently accurately determine the 
features that induce priority in the reduction strategy.

Given these limitations, further research can be conduct-
ed using the retrained LLM model for problems related to 
Lambda Calculus. Models for text summarization can also 
be used, which will solve the problem of data loss during the 
transition to the space of medium embeddings.

7. Conclusions

1. This study transformed lambda terms into 768-di-
mensional average embedding vectors using the Word2Vec 
methodology and the Microsoft CodeBERT model. It also 
compared the space of average embeddings to the alternative 
in the form of a latent space. Through PCA and t-SNE anal-
ysis of the space visualizations of mean embeddings, indica-
tions were seen that the representation of lambda terms in 
these mean embeddings could be clearly distinguished. This 
confirmed the initial hypothesis of identifying relationships 
using cluster analysis.

2. The study further examined data clustering using the 
DBSCAN method using both Euclidean and cosine metrics 
and the HAC method using Euclidean, cosine, L1, and L2 
metrics. This clustering effort highlighted the effectiveness of 
the CodeBERT model in extracting meaningful features from 
lambda terms. Despite this, the versatility of Microsoft Code-
BERT, trained in different programming languages, introduces 

complexity in accurately representing lambda calculus terms in 
embedding matrices. This complexity extends to transforming 
these matrices into comprehensible average embeddings or la-
tent space vectors, especially when using autoencoders.

3. The sensitivity analysis of the variables was conducted 
to assess the informativeness of the variables in the identified 
clusters. This made it possible to determine the influence of 
specific variables on the clustering results and to reveal that 
certain most informative variables are the same regardless of 
the chosen clustering method. This is explained by the exis-
tence of some multidimensional structures, which different 
clustering methods define in approximately the same way.

4. The introduction of the overlap factor facilitated the 
assessment of interdependence between clusters and applied 
strategies. This evaluation found no correlation between 
the previously determined strategy priorities and the actual 
achieved priority of the strategies. This indicates a potential 
need to fine-tune the CodeBERT model or consider alter-
native models more suitable for feature extraction in this 
domain.
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