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Modern heterogeneous packet networks 
generate network traffic with a complex struc-
ture. In this article, the object of study is a time 
series. The total number of User Datagram 
Protocol (UDP) packets has reached 250242. 
According to analysts, the growth trend of traf-
fic, including real-time applications, will con-
tinue and the volume of data will grow, which 
may lead to the formation of packet queues 
when processed by network devices. In this 
case, there may be losses in case of long queues. 
To solve this problem, a power spectrum assess-
ment was carried out. The AR maximum entropy 
estimator has been shown to be more sensitive 
than the auxiliary Fourier estimator.

Accounting for non-stationarity by spectral 
methods is possible only through estimation in 
a sliding time window. Nine diagrams of spec-
tral-temporal analysis of the original series, 
its increments, and the mixed series of incre-
ments were obtained: with default parameters, 
with small and large windows. Diagrams rela-
ted to the original series reflect the dynamics 
of changes in data transmission intensity in the 
network; they show higher temporal resolution, 
indicating the presence of high-frequency com-
ponents (noise) and the presence of low-fre-
quency components (trend). Diagrams with 
increments describe signals of periodic com-
ponents; changing the length of the window 
did not reflect the presence of noise or trend 
signs. Diagrams with mixed increments show 
that frequency components are uniformly dis-
tributed. The uniqueness of this work lies in the 
real measured data, and a distinctive feature 
of the obtained results is the visual examina-
tion of the complex traffic structure, allowing 
for the resolution of the investigated problem. 
Practical application of the results obtained can 
be applied in Quality of Service (QoS) manage-
ment, resource planning, and network perfor-
mance optimization
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1. Introduction

Modern multiservice networks, operating under the 
NGN/IMS (Next Generation Network/IP Multimedia Sub-
system) concept, feature an optical transport core utilizing 
IP/MPLS technology. By the year 2022, this network 
reached the development level of a 4G optical network 
with DWDM HWT (Dense Wavelength Division Multi-
plexing) and ROADM (Reconfigurable Optical Add-Drop 
Multiplexer) technology, achieving a data transmission rate 
of 48*100 Gbps. This signifies the establishment of a fully  

digital, automated, and programmable world connecting 
people, machines, things, and locations in the Republic of 
Kazakhstan (RK). In 2023, the RK became a leader in inter-
net speed within the EAEU and Central Asia, securing the  
72nd position globally. Correspondingly, network traffic loads 
are growing and are expected to continue increasing. This 
leads to an uneven intensity in the arrival of packets to the ser-
vicing network devices [1]. The study of real network traffic 
in modern heterogeneous networks remains a pertinent task. 

To handle the increasingly growing network traffic, it is 
necessary to conduct research on empirical data, as it allows 
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for identifying the laws of packet intensity distribution.  
If previously it was a Poisson distribution, today it is already 
a Pareto distribution, and perhaps tomorrow it will be some 
other distribution. All this is very important for network 
devices to operate in accordance with QoS.

2. Literature Review and Problem Statement

In article [2], instead of numerical methods, a formula is 
developed for nonlinear compression of large-scale covariance  
matrices, based on the deep connection between nonlinearity 
and nonparametric estimation of the Hilbert transform of 
the sample spectral density. In this case, a kernel estimates 
of not the density itself (as done previously), but its Hilbert 
transform, is introduced. The authors of article [3] note that 
the definition of the Hilbert spectrum is described in terms 
of total energy and amplitude. However, there is a mismatch 
between the Hilbert spectrum and the traditional Fourier 
spectrum, which is defined through energy density. Corre-
sponding difficulties hindered the transformation of Hilbert 
and Fourier spectral results. The authors of this article es-
tablished a simple connection between them and obtained 
results of spectral analysis of Hilbert and Fourier spaces.

In work [4], tools for analyzing the singular spectrum (SSA) 
are considered. In this case, a one-dimensional series is divided 
into trends, periodic oscillations, other statistically significant 
components, and noise. Then the series is restored based on 
contributions from selected components with an estimation of 
the power spectra of the time series.

All the methods mentioned above have evolved into more 
modern methods today, such as estimating power spectra of 
time series using the AR estimation method, which is inves-
tigated in this article.

In article [5], a real-time monitoring method is proposed 
for satellite navigation. A spectral analysis using the least 
squares method is suggested, which can detect and classify 
changes in newly acquired data. Additionally, cross-wavelet 
analysis using the least squares method demonstrates tem-
perature and precipitation to assess the results. The work is 
based on the classical least squares method or its modification, 
which simplifies it due to the low intensity of the time series.

The papers [6, 7] present the results of research on detect-
ing seizure onset in electroencephalography (EEG) signals.  
This difficulty arises from the non-stereotypical nature of sei-
zure activities and their inherent stochastic and non-statio-
nary characteristics, just as in our time series. To effectively 
capture important characteristics from non-stationary EEG 
signals, a framework for joint spectral-temporal feature learn-
ing has been introduced. This involves the utilization of both 
continuous wavelet transform (CWT) and discrete wavelet 
transform (DWT) to extract spectral-temporal features and 
generate a time-frequency image. 

The paper [8] presents traditional and some new methods 
of time series analysis, including spectral and wavelet analysis.  
In our opinion, the output data are not very informative, 
possibly due to the representativeness of the sample. Spec-
tral-temporal diagrams depict time and frequency, but do not 
display signal power.

But there are still unresolved issues in these studies rela-
ted to the time window, i. e. discrete transform. This approach 
more or less was used in [9]. In this paper was considered two 
approaches, namely convolutional sparse analysis and tempo-
ral spectral unmixing, are introduced within this framework 

to characterize distinct spatial structures and address the 
challenges posed by spectral variability. Additionally, a mul-
tiple change detection based on subpixel analysis is explored. 
Experiments conducted on three bitemporal hyperspectral 
imaging (HSI) datasets demonstrate the robustness of the 
proposed framework in capturing meaningful features and 
achieving high detection accuracy. 

However, the multidimensional functions obtained con-
tain redundant information and require substantial compu-
tational load.

Although there is a common belief that Fourier methods 
are poorly suited for processing non-stationary signals, the 
authors of the following paper [10] argue otherwise.

They introduce a novel and adaptive Fourier decomposi-
tion method (FDM) based on Fourier theory, showcasing its 
effectiveness in analyzing nonlinear and non-stationary time 
series. This FDM breaks down any dataset into a small set of 
’Fourier intrinsic band functions’ (FIBFs). The FDM offers  
a generalized Fourier expansion, incorporating variable ampli-
tudes and frequencies of a time series through the Fourier me-
thod itself. To analyze multivariate nonlinear and non-statio-
nary time series, they propose the concept of a zero-phase filter 
bank-based multivariate FDM (MFDM) utilizing the FDM.  
The proposed MFDM generates a finite number of band-lim-
ited multivariate FIBFs (MFIBFs), preserving intrinsic 
physical properties such as scale alignment, trend, and in-
stantaneous frequency in multivariate data. These methods 
yield a time-frequency-energy (TFE) distribution, exposing 
the intrinsic structure of the data. This approach to revealing 
the internal structure of data is very similar to our study.  
It is also possible to use methods for deeper exploration 
of data structure. While these approaches find numerous 
practical applications, the outcomes of this paper were only 
moderately successful. The reason for this is that they do not 
consider the use of sliding windows.

In papers [11, 12], the authors made predictions for a time  
series with incomplete observations using the spectral-tem-
poral metrics method (Missing Observation Prediction based 
on Spectral-Temporal Metrics, MOPSTM), yielding promis-
ing outcomes. The use of supervised random forest classifica-
tion problems in this work using artificial gap filling of simu-
lated datasets may not be applicable for measured empirical 
data like ours, there may be a loss of valid data. This narrows 
the scope of use of this approach.

The paper [13] addresses the shortcomings of the Fourier 
transform and proposes a multiplicative perspective on using 
trigonometric functions to quantify nonlinear interactions in 
any time series. The multidimensional spectral representation of 
a time series, which in this paper is called the Huang spectrum, 
identifies interactions between time-varying amplitude and fre-
quency oscillatory components of different periods of the time 
series and explicitly quantifies the nonlinear interactions. The 
use of the proposed method does not give the expected results, 
since the series considered in this article is one-dimensional.

All this suggests that it is advisable to conduct a study on 
using discrete transformation, it allows to take a deeper look 
at the structure of the series and then use these facts for fur-
ther research. Here a narrow time window, also the using wide 
windows very help us.

A narrow time window in spectral-temporal analysis can 
provide good temporal resolution and localization of rapid 
changes in the signal, specifically the high-frequency compo-
nents. This is particularly useful for detecting high-frequency 
components in the signal. It also determines how well one can 
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identify the moment in time when changes occur in the signal 
and «focus» on narrow time intervals, which is crucial for 
highlighting rapid transitions and short-term events.

All above suggests that research on time series related to 
real measured data is worthwhile. 

3. The aim and objectives of the study

The aim of the study is to identify patterns of non-statio-
narity in time series data of network traffic using spectral-tem-
poral analysis. Visual identification of non-stationarity patterns 
can contribute to the development of more accurate models 
explaining the behavior of the time series. Furthermore, under-
standing non-stationarity patterns can enhance the ability to 
forecast future changes in the time series. This can be crucial for 
decision-making and managing network resources or processes.

To achieve this aim, the following objectives are addressed:
– to construct a time series of UDP packet intensity;
– to perform differentiation of the time series;
– to conduct a power spectrum estimation of the original 

series;
– to generate three-dimensional diagrams of the distri-

bution of spectral amplitudes for the original series, its shifts, 
and the shuffled series of increments.

4. Materials and methods of research

The object of the study is to empirical data of network traffic. 
The subject of the study is the patterns of non-stationa-

rity in time series data. As the network is heterogeneous, the 
structure of the series becomes more complex and variable, 
therefore the hypothesis of the study is that the series is non- 
stationary.

The original dataset was obtained using the Wireshark 2.2.10 
analyzer program on the Bostandyk district line in Almaty city 
on April 7, 2017, from 14:00 to 19:00. The Wireshark output 
data was processed by a specially written program in the C# 
programming language to sort packets by individual protocols, 
namely TCP, UDP, MPEG, IGMP, ARP, DHCP, DNS (packet 
intervals). Additionally, the overall traffic is presented in a text 
document totaling 63 MB for further research.

In total, 278557 packets were read, covering various 
protocols, such as 158 Transmission Control Protocol (TCP) 
packets, 493 Address Resolution Protocol (ARP) packets, 
25733 Moving Picture Experts Group (MPEG) packets, 
and 250242 User Datagram Protocol (UDP) packets, among 
others. Based on the collected data, a time series was con-
structed, specifically representing the packet intensity of 
the User Datagram Protocol. Simultaneously, their counting 
was performed every 10 seconds using the numerical-mathe-
matical modeling package Matlab. Below is a segment of the 
measured network traffic:

278544 589.407462 192.168.172.1 239.2.1.4 UDP 
Source_port:_bre Destination_port:_cisco-sccp 
1358 bytes;
278545 589.407948 192.168.172.20 239.2.2.52 UDP 
Source_port:_bre Destination_port:_cisco-sccp 
1358 bytes;
278546 589.410029 192.168.172.1 239.2.1.4 UDP 
Source_port:_bre Destination_port:_cisco-sccp 
1358 bytes;

278547 589.410032 192.168.172.20 239.2.2.52 UDP 
Source_port:_bre Destination_port:_cisco-sccp 
1358 bytes;
278548 589.411109 192.168.172.1 239.2.1.4 UDP 
Source_port:_bre Destination_port:_cisco-sccp 
1358 bytes;
278549 589.412045 192.168.172.20 239.2.2.52 UDP 
Source_port:_bre Destination_port:_cisco-sccp 
1358 bytes;
278550 589.412680 192.168.172.1 239.2.1.4 UDP 
Source_port:_bre Destination_port:_cisco-sccp 
1358 bytes;
278551 589.414572 192.168.172.20 239.2.2.52 UDP 
Source_port:_bre Destination_port:_cisco-sccp 
1358 bytes;
278552 589.414575 192.168.172.1 239.2.1.4 UDP 
Source_port:_bre Destination_port:_cisco-sccp 
1358 bytes;
278553 589.417032 192.168.172.1 PTS_1380.644433333 
MPEG_PES_audio-stream 1358 bytes;
278554 589.417037 192.168.172.20 239.2.2.52 UDP 
Source_port:_bre Destination_port:_cisco-sccp 
1358 bytes;
278555 589.417995 192.168.172.1 239.2.1.4 UDP 
Source_port:_bre Destination_port:_cisco-sccp 
1358 bytes;
278556 589.419081 192.168.172.20 239.2.2.52 UDP 
Source_port:_bre Destination_port:_cisco-sccp 
1358 bytes;
278557 589.419924 192.168.172.1 239.2.1.4 UDP 
Source_port:_bre Destination_port:_cisco-sccp 
1358 bytes.

Early assumptions about the stationarity of the series 
may be unacceptable today due to the heterogeneous nature 
of the network. For this reason, this study employs the diffe-
rentiation method for simplification, as well as the methods of 
AR maximum entropy estimation, Fourier estimation, sliding 
window, random data shuffling, and spectral-temporal analy-
sis methods. Spectral-temporal analysis will aid in studying 
both the frequency and time characteristics of the signal. Joint 
spectral-temporal features are believed to contain sufficient and 
powerful feature information for working with network packets.

5. Research results based on an analysis of  
the distribution of spectral amplitudes in a time series  

to determine the main frequency components

5. 1. Visual analysis of the time series
The User Datagram Protocol (UDP) packets accounted 

for 89.95 % of the total 278557 packets. UDP is utilized for 
transmitting real-time traffic without ensuring packet deli-
very, making it crucial to analyze its structure. The measured 
UDP traffic dynamics series is shown in Fig. 1.

The time series contains 1800 levels. Visually, it is appa-
rent that the graphic of the UDP protocol packet distribution 
has uneven intensity (the spread of observations increa ses and 
decreases over time). There are fluctuations in traffic intensi-
ty with significant variance, groupings in «bundles» in certain 
places, or sparse sections in other time intervals where there 
are few or no incoming packets. For a visual comparison of the 
presence of presumed non-stationary (trend) in the original 
series, differentiation has been performed, i. e., excluding the 
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non-stationary component. This involves transitioning to  
a time series composed of differences between successive va-
lues of the series, i. e., the increments of the original time series.

 
Fig.	1.	UDP	protocol	packet	arrival	intensity

A visual analysis of the UDP packet intensity time series 
reveals that the original series exhibits uneven intensity. The 
dispersion of observations fluctuates over time, displaying 
traffic intensity pulsations with significant variance. There 
are clusters or «bursts» of intensity in certain periods, while 
other time intervals experience sparse sections with little to 
no incoming packets. Such behavior in the series can lead  
to network congestion or reduced performance.

5. 2. Performing time series differentiation
To visually compare the presence of presumed non-sta-

tionarity features (trend) in the original series, differentiation 
has been carried out, eliminating the 
non-stationary component. For this 
purpose, let’s transit to a time series 
composed of the differences between 
successive values of the series, i. e., to 
the series of increments of the original 
time series (1).

To transform the original non-sta-
tionary series into a stationary one 
based on the mathematical expecta-
tion of the time series, differentiation 
is applied-taking the finite differences 
of the series values (with a dominance 
of low frequencies) using the formula:

Y t X t X t( ) = +( ) − ( )1 . (1)

Fig. 2 displays the original series (in 
blue) and its increments (in red).

On the above figure, it can be 
observed that after the first differen-
tiation of the time series, its visual 
pattern closely resembles a stationary 
series. The intensity appears relative-
ly uniform, without traffic intensity 
pulsations, and lacks distinct clusters 
or «bursts». Therefore, first-order dif-
ferentiation is deemed sufficient for 
further investigation.
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Fig.	2.	The	original	series	and	its	increments

Differentiation can be performed at various orders, in-
cluding first, second, and beyond. In this study, first-order 
differentiation of the time series was applied. The process in-
volved subtracting the previous value of the time series from 
the current one to eliminate the low-frequency component 
and stabilize the variance.

5. 3. Using the Auto-Regression (AR)-maximum en-
tropy period estimation and an auxiliary «background» 
Fourier estimation in a double logarithmic scale

To proceed with further investigations, the file contain-
ing the UDP packet intensity time series data was selected 
in the «Spectra analyzer» program. Fig. 3 illustrates the pro-
gram window with the chosen original file – UDP protocol 
packet intensity with a set polling interval of 10 seconds and 
an initial timestamp for the first measurement equal to 0. The 
series contains outliers, so it underwent winsorization.

In the Fig. 3, it is evident that the series appears smoother 
after the iterative removal of significant outliers. Power spec-
trum estimation of the original series data has been conduc-
ted in a double logarithmic scale, considering periods, as the 
«Freg» feature is not marked, as shown in Fig. 4.

 
Fig.	3.	The	original	series	selected	in	the	‘Spectra	Analyzer’
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In the Fig. 4, there are two plots depicting power spec-
trum estimates of the original series: AR-maximum entropy 
period estimation (dark blue) and an auxiliary «background» 
Fourier estimation (light green on the monitor). 

5. 4. Spectral amplitude distribution diagrams
Spectral-temporal analysis diagrams for non-stationary 

series are three-dimensional, where frequency is plotted on 
the vertical axis, time on the horizontal axis, and spectral 
power density (SPD) along the depth axis. In this process,  
a sliding time window spectral analysis procedure is em-
ployed, evaluating the evolution of the logarithm of power 
spectra in sliding time windows of a specified length. The 
output map is presented as a diagram of spectral amplitude 
distribution, where each column represents a Fourier ampli-
tude spectrum calculated within the designated sliding time 
window. Darker areas on the diagrams (Fig. 5) correspond to 
higher amplitude spectra.

The above diagrams differ in the sizes of the areas colo red 
in corresponding hues. In the first one, these areas are some-
what larger, and their quantity is smaller, creating an overall 
brighter image compared to the other two. This indicates the 
presence of low-frequency components (trend), harmonic 
components (signal), and high-frequency components (noise) 
in the first diagram. The more vivid colors specifically pertain 
to the latter two, suggesting the dominance of harmonic and 
high-frequency components. This is because the second dia-
gram has almost no low-frequency components, and in the 
third diagram, both components were randomly distributed, 
forming a stochastic signal.

Decomposition of the original series into components 
using spectral methods is possible by adjusting the lengths of 
the sliding windows. The study involves examining the time 
series when selecting very short time windows. In Fig. 8–10, 

spectral-temporal analysis maps were obtained with very 
short selected time windows for the original series (AR-or-
der = 9, Length window = 38, Mutual shift of time win-
dows = 11), for the increment series (AR-order = 4, Length 
window = 16, Mutual shift of time windows = 11), and for 
the increment series shuffled in random order (AR-order = 9, 
Length window = 38, Mutual shift of time windows = 11), re-
spectively. The diagram presented in Fig. 6 has high temporal 
resolution, allowing for the detection of rapid changes in the 
signal, i. e., high-frequency components.

However, as the frequency resolution decreases in this 
case, the narrow window does not capture low-frequency 
components. This map describes fast changes in the signal. 
The diagram shown in Fig. 7 exhibits fewer changes in fre-
quencies over time, indicating the presence of stable frequen-
cy characteristics in the series.

Clear and stable vertical frequency bands are visible on 
this map (Fig. 7).

In the diagram presented in Fig. 8, the frequency com-
ponents have become more evenly distributed over time, 
and a random distribution of energy across frequencies is 
also visible. This map is colorful, and the vertical bands are  
less structured.

The spectral-temporal analysis diagrams shown in Fig. 6–8 
were constructed using a very narrow analysis window, 
ranging from 0.9 % to 2.1 % of the series length. A narrow 
time window in spectral-temporal analysis can provide good 
temporal resolution and localization of rapid changes in the 
signal, i. e., high-frequency components. This is particularly 
useful for detecting high-frequency components in the signal 
and determining how well the moment of change in the signal 
can be identified, focusing on narrow time intervals, which  
is important for highlighting rapid transitions and short-
term events.

 
Fig.	4.	Power	spectrum	estimation	of	the	original	series	and	background	Fourier	estimation



Mathematics and Cybernetics – applied aspects 

37

 
 
 

 
 
 

 

 
 
 

 
 
 

 

a b

 
 
 

 
 
 

 
c

Fig.	5.	Spectral-time	analysis	diagrams:	a – diagram	of	the	original	series;	b –	diagram	of	the	increment	series;		
c –	diagram	of	the	shuffled	increment	series

Fig.	6.	Spectral-time	analysis	diagram	of	the	original	series
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From the perspective of the Heisenberg principle, which 
involves a trade-off between temporal and frequency reso-
lution, a narrow time window leads to a reduction in 
frequency resolution, making it less accurate in determin-
ing frequency components, especially those that change 
slowly over time. Meanwhile, too short a window length 
increases purely statistical fluctuations in current spectrum 
estimates, making the diagram too noisy and less informa-
tive [14–16].

Investigation of the time series with the choice of long-
time windows.

In Fig. 9–11, maps with selected large time windows (900) 
are obtained for the original time series (AR order = 9, Length 
window = 38, Mutual shift of time windows = 11), the incre-
ment series (AR order = 4, Length window = 16, Mutual shift 
of time windows = 11), and randomly shuffled values of the 
increment series (AR order = 9, Length window = 38, Mutual 
shift of time windows = 11), respectively.

 
Fig.	7.	Spectral-time	analysis	diagram	of	the	increment	series

Fig.	8.	Spectral-time	analysis	diagram	of	the	shuffled	increment	series
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In the diagram presented in Fig. 9, the horizontal bands 
are more blurred over time, revealing general trends. This 
map is bright and has several frequencies with a predomi-
nance of low-frequency components.

In the diagram shown in Fig. 10, the frequency areas are 
clearly delineated without bright and very dark regions. This 
map highlighted the absence of trend and noise.

In the diagram presented in Fig. 11, the vertical bands are 
less structured, and the frequency components are relatively 

evenly distributed. This map exhibits a uniform distribu-
tion of energy across frequencies, independent of time. The 
diagrams shown above with wide windows provide better 
resolution of low-frequency signal components. A broader 
window offers a more accurate representation in the frequen-
cy domain, which is beneficial for detecting long-term trends, 
i. e., low-frequency components. These maps lack high-fre-
quency harmonics and irregularities in the high-frequency 
spectrum.

Fig.	9.	Spectral-temporal	analysis	diagram	of	the	original	series

Fig.	10.	Spectral-temporal	analysis	diagram	of	the	first	increment
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6. Discussion of the results of identifying signs  
of non-stationarity using spectral-temporal analysis

In work describing SSA method [4], it decomposes a time 
series into linear combinations of its components without con-
sidering the time-varying frequency characteristics of the signal. 
Spectral-temporal analysis in this study breaks the signal into 
short segments, thanks to that the Fourier transform for each 
segment calculated. This allows analyzing changes in the fre-
quency characteristics of the signal for each segment over time. 

Unlike study using periodograms [5], which provides only 
spectral information, spectral-temporal analysis diagrams 
help analyze both frequency and time characteristics of the 
signal simultaneously, enabling a more comprehensive assess-
ment of network traffic dynamics. This is made possible by 
the identification of patterns that might be overlooked when 
using only periodograms.

As for the methods in studies [6, 7] and present one, both 
methods provide tools for data analysis, but their applicabili-
ty and scope depend on the type of data and specific research 
tasks. The advantage of spectral-temporal analysis lies in its 
ability to simultaneously analyze both frequency and time 
characteristics of the signal, thereby providing a more com-
prehensive understanding of the signal dynamics.

The authors of papers [11, 12] use the MOPSTM method 
for modeling artificial datasets with subsequent imputation of 
missing values. This approach may be limited in its applicabi-
lity to measured empirical data, such as in the present study, as 
it can lead to the loss of actual data. In contrast, spectral-tem-
poral analysis may offer a more versatile approach, as it can be 
applied directly to real data without the need for modeling or 
imputing missing values.

The results obtained in this work are explained by the 
following data:

– the visually expressed complex structure of the time 
series, presented in Fig. 1, could influence the obtained results 

of its further study of its spectral characteristics. Spectral-tem-
poral analysis performed decomposition and allowed the slow, 
periodic and high-frequency components to be highlighted. 
The study of dynamic traffic characteristics becomes relevant 
when assessing the performance of a high-speed network;

– the performed first-order differentiation proved that the  
structure of the series is multicomponent, highlighting the 
displacement from the series (Fig. 2), which, unlike the ori-
ginal one, had a uniform intensity, there were no clusters of 
packets in certain places or, on the contrary, discharged areas. 
This helped to see and notice features and changes in intensi-
ty that were not very obvious in the original series;

– study of increments and its mixing. The results of study-
ing the structure of increments and randomly mixed incre-
ments help to see and understand the presence/absence of 
random components in the structure of the original series and 
allow to identify certain patterns;

– uneven traffic intensity affects the dynamics of the time 
series, and this can be seen visually by constructing the time 
series. And the features of this intensity were highlighted using 
window management in the Spectra analyzer program. Using 
spectral-temporal analysis, it was discovered that the original 
series is non-stationary. This non-stationary series contains 
a trend, as evidenced by Fig. 9, in which several low-frequency 
components seem to be stratified and stretched over a large 
time interval. This non-stationary series contains periodic fluc-
tuations in the signal data and these periodic fluctuations are 
clearly visible in Fig. 5, which are represented as vertical bars at 
high frequencies. Basically, in all spectral-temporal analysis figu-
res there are large or small fractions associated with windowed 
possibilities, but they still dominate and the color intensity or 
brightness shows the extent of the presence of these frequencies 
at different points in time. This non-stationary series also con-
tains noise components that can be seen using spectral-temporal 
analysis using very small windows (Fig. 6) and that its offset 
shown in Fig. 7 becomes noisy and uninformative;

 
Fig.	11.	Spectral-temporal	analysis	diagram	of	the	shuffled	increment	series
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– factors and reasons that can explain the observed 
changes in the intensity and structure of the time series are 
packet data transmission, integration and convergence evo-
lutions in the network, as well as an increase in the number of 
consumers of telecommunications network services.

The limitations inherent in this study focus on the visual 
representation of the measured series. For an analytical de-
scription, there are many other studies, such as fractal analy-
sis, the theory of deterministic chaos, and others.

The development of this research method is the decom-
position of the original series into an infinite sum of periodic 
functions, each with a different frequency. Spectral methods 
typically cover a class of algorithms that represent matrices 
using linear algebraic methods, involving the eigenvalues of 
matrix vectors, such as the Hankel matrix.

Further research will be devoted to wavelet analysis with 
Gaussian kernel smoothing, involving the construction of 
Morlet diagrams, Heisenberg boxes, and skeletons. These 
methods are powerful tools for analyzing temporal data and 
signals that can be utilized in various scientific and engineer-
ing fields to identify patterns, structures, and characteristics 
in the data.

7. Conclusions

1. The choice of real measured data, specifically the 
UDP packets, is justified by the fact that functioning packet 
networks for real-time applications employ traffic classifi-
cation with a prioritization mechanism. Investigating the 
increasing dominance of real-time traffic serves as a test for 
the operational network to further develop this issue. Out 
of the measured 278,557 packets, the share of UDP packets 
was 89.84 %.

2. First-order differencing stabilized the series variance, 
removed the trend, and made the original series more sta-
tionary. This calls for further and more in-depth analysis of 
the time series.

3. The Fourier spectral estimation of the original series 
demonstrated a relatively weak sensitivity to extracting 
periodic components in the series and is primarily used for 

constructing two-dimensional periodograms compared to 
the AR maximum entropy estimation. The latter is adapted 
to capture nonlinearity and correlation in the data, forming 
three-dimensional diagrams.

4. Three-dimensional diagrams of spectral amplitude dis-
tribution visually revealed that the investigated series is 
non-stationary. Spectral-temporal analysis diagrams with 
the following parameters for the original time series (AR-or-
der = 22, Length window = 225, Mutual shift of time win-
dows = 11), for the increment series (AR-order = 22, Length 
window = 224, Mutual shift of time windows = 11), and for the 
randomly shuffled increment series (AR-order = 22, Length 
window = 224, Mutual shift of time windows = 11) visually 
confirmed that the real series exhibits signs of non-stationa-
rity, the increment series is stationary, and the shuffled series 
is purely random. Additionally, the obtained diagrams iden-
tified noise, signal, and trend in the series.
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