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The object of research is Markov models of network nodes 
with UDP (User Datagram Protocol) and TCP (Transmission 
Control Protocol) traffic and their differences.

The task solved is the lack of Markov models of network nodes 
describing the behavior of TCP traffic from the point of view of 
packet retransmissions and packet delivery guarantees.

Markov models of network nodes describing traffic behavior 
with guaranteed packet delivery have been further advanced. 
Given the comparison of the models, the differences from the clas-
sic models serving TCP traffic were shown, for each packet flow, 
an additional dimensionally was added to the graph of states and 
transitions, which takes into account the retransmission of a lost 
packet. The comparison graph shows similar behavior of queue 
length and packet loss for both types of traffic. But the nature of 
the curves is different. With TCP traffic, packet loss can exceed 
5 percent. In addition, lost packets must be retransmitted, which 
increases the load on the network node.

More failures and packet queue lengths at a network node 
during peak load typically occur with TCP traffic compared to 
UDP traffic. At peak load, the difference in service failures can 
reach 20–30 percent. The main reason is that TCP uses flow con-
trol and rate-limiting mechanisms to avoid network congestion 
and ensure efficient data transfer between nodes.

The Markov model of TCP traffic requires an additional  
dimensionally on the graph of states and transitions, which 
affects the behavior of queues and packet failures.

The investigated problem was solved due to the universali-
ty and diversity of the mathematical apparatus of Markov mass 
service systems.

The results could be used in network modeling software pro
ducts for building and reengineering the topology of electronic 
communications networks at enterprises and organizations
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1. Introduction

There is a huge increase in the amount of data transmitted 
over electronic communications networks. With this growth 
comes the need to efficiently transfer, process, and store this 
data. With the development of various services, such as video 
streaming, virtual reality, cloud services, and the Internet 
of Things, the volume of traffic on the network becomes 
significantly higher. Optimizing network resources makes it 
possible to better cope with this growth. Optimization makes 
it possible to maximize the use of available resources, reduces 
costs, and increases network performance. This is especially 
important in business environments where resource efficiency 
directly affects profitability. Managing the resources of net-
work nodes is necessary to ensure the quality of service (QoS), 
which allows maintaining a high level of service quality, espe-
cially under conditions when a large number of users compete 
for access to limited resources. The issue of reducing energy 
consumption by network devices and reducing the energy 
footprint has become increasingly important in the modern 
world. Therefore, taking into account the above, it is possible 
to assert the relevance of optimization of network resources.

2. Literature review and problem statement

The mass service system (MSS) mathematical apparatus 
is the most common mathematical apparatus used to model 
electronic communication networks. A classic work in the 
field of MSS theory is [1]; it was aimed at the development 
and implementation of innovative methods of management 
and optimization of business processes.

Nowadays, Markov models of MSS are an integral part 
of the theory of tele-traffic and have been developed due 
to the expansion of the range of problems of electronic 
communications and networks. Modern general issues of 
stochastic process modeling are discussed in [2]; it contains 
an introduction to the theory of stochastic processes, includ-
ing mass service Markov systems (MSMS), provides a clear 
understanding of the main concepts and methods of analysis 
of such systems, but it is purely theoretical and does not 
provide enough examples for understanding real situations 
of application in electronic communications.

Paper [3] provides an overview of the latest achieve-
ments in the theory of Markov models of mass service sys-
tems (MSS), new models of mass service systems, methods 
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of their analysis and optimization are considered here, and  
a general idea of new results in the field is given. But, in 
turn, a detailed description of the new results is not given 
and there are no practical examples of the application of the 
proposed models.

Study [4] considers Markov models of MSS with failures. 
Here, different types of MSS models with failures, their pro
perties and methods of analysis are considered, and a thor-
ough understanding of the theory of MSS with failures is 
given. But the authors do not give practical examples of the 
application of MSS models with failures.

Paper [5] discusses different types of MSS models with 
server-dependent arrivals, their properties and analysis me- 
thods, and gives an overview of the new results, but does not 
provide a detailed description of the new results.

In [6], a thorough introduction to the stochastic model-
ing methods used for the analysis of MSS is given. Stochastic 
modeling methods, their advantages and disadvantages are 
considered, a thorough understanding of stochastic modeling 
methods is given.

Paper [7] focuses on the application of queuing theory, 
in particular Markov models, to the design and evaluation of 
computer systems, it describes many additional mathemati-
cal concepts, but does not consider real network protocols.

Work [8] covers a wide range of topics on stochastic pro-
cesses, including Markov models for mass service systems, 
but it is not sufficiently detailed in some aspects of the appli-
cation of models in electronic communications.

In [9], Markov models of MSS with restrictions on the 
length of queues were considered, but no approximation was 
made to take network protocols into account.

In [10], modern problems and methods of queuing theory  
are described, modern achievements in the field are dis-
cussed, but the non-ordinary nature of traffic and multi-flow 
systems is not taken into account.

Thus, it is shown that the mathematical apparatus of 
Markov models is convenient enough to describe the process 
of packet transmission in network nodes, but the existing 
models describe only traffic with non-guaranteed delivery. 
Then there is the problem of the lack of a description of traf-
fic with guaranteed delivery by means of the mathematical 
apparatus of Markov models.

3. The aim and objectives of the study

The purpose of our study is to evaluate quality of ser-
vice (QoS) indicators in network nodes during peak load, 
taking into account certain differences between UDP and 
TCP protocols. This will make it possible to widely use the 
resulting UDP and TCP traffic models in network design and 
optimization where they could be used to analyze and simu-
late the behavior of TCP connections. These models make it 
possible to effectively study the interaction of traffic in the 
network, predict the load, optimize resources, and improve 
the quality of service (QoS). They are also useful for ana-
lyzing network protocols, designing routing strategies, and 
predicting possible failures and network recovery. All of this 
contributes to improving the performance, efficiency, and reli-
ability of the network environment in various areas, including 
business, telecommunications, and information technology.

To achieve the goal, the following tasks were set:
– to build a model of a network node serving UDP traffic, 

calculate probabilities of the states of such a system;

– to build a Markov model of a network node serving TCP 
traffic, calculate probabilities of the states of such a system;

– to compare the resulting models and calculation results.

4. The study materials and methods

The object of research is Markov models of network 
nodes with UDP and TCP traffic.

Research hypothesis assumes that Markov models could 
be effectively used to describe and predict the behavior of 
network nodes and show the difference in the functioning 
of network nodes from the point of view of UDP and TCP 
packet transmission.

Accepted assumptions: stationarity of traffic, ergodicity 
of the graph of states and transitions of the Markov chain, 
lack of correlation in stochastic traffic indicators.

Simplification: ideal communication channels, packets 
come from the outside from an unknown source and go no-
where after being serviced, the information carried by the 
packets is not considered, the priorities of the packets are 
not considered.

Hardware: personal computer.
Software: calculations were performed in Mathcad 14.
TCP and UDP are two different transport layer proto-

cols in the network architecture. The main difference lies in 
the approaches to data transmission: TCP provides reliable 
and consistent data delivery over an established connection 
with flow control mechanisms and confirmation of successful 
packet delivery. UDP provides a connectionless, unreliable 
transmission method without additional checks and delivery 
status messages.

It is obvious that mathematical differences in Markov 
models of network nodes for TCP and UDP traffic may arise 
due to different characteristics of these protocols. Some key 
aspects that affect the mathematical representation of Mar-
kov models include:

– in the case of TCP, there can be more states, because 
there is a mechanism for establishing and maintaining a con-
nection. There may be additional states associated with va
rious stages of the connection life cycle (establishment, data 
transfer, closing);

– the mathematical notation of state transition probabi
lities may differ for TCP and UDP. For example, the connec-
tion success and closing probabilities for TCP can affect the 
overall performance of a node;

– consideration of time delays and timeouts in Markov 
models can be important for TCP as it enables reliable data 
transmission with a connection;

– Markov models for TCP may include consideration of 
packet loss probabilities and retransmission mechanisms.

5. Results of the research on forecasting the state  
of the package service system

5. 1. Markov model of a network node serving two 
flows of User Datagram Protocol packets

The network node receives traffic with non-guaranteed 
delivery, which consists of the superposition of two Poisson 
flows with intensities λ1 and λ2, respectively. It is known that 
the packet service intensity of these flows is equal to µ1 and µ2, 
respectively. Node memory is divided between thread queues. 
The maximum number of packets n1 and n2 that they can 
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hold is calculated for the queues of each flow. Let’s introduce 
the set of possible states of the modeled network node. Let Eik  
be the state of a network node, which corresponds to the si
tuation when there are i packets of the first flow and k packets 
of the second flow in the system. The graph of states and 
transitions of such a system is shown in Fig. 1.

To solve the problem set, a decomposition approach is 
used – the initial problem of a large dimensionally is divided 
into stages, at which each time a problem of a smaller dimen-
sionally is solved. In this case, it is suggested to group the  
layers of states, for example, in rows (Fig. 2). Then the 
grouped states ERi contain in the middle the real states of the 
system {Ei0,Ei1,Ei2,…,Ein2,}, where i is the line number.

For the resulting graph of states and transitions, the 
dimensionality of which is smaller than the original one, the 
intensities of transitions from layer i to i+1 were calculated:

λ λ λi i
k

n

ik
k

n

ikP P, ,+
= =

= =∑ ∑1
0

1 1
0

2 2
 

	 (1)

where i = 0,1,…,n1–1.
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Pik  is the conditional probability of the system being 
in the k-th state of the i-th layer, provided that it is in  
this layer.
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, according to (1), λ1,i+1 = λ1, i = 0,1,…,n1–1.
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Fig. 1. A graph of states and transitions of a system with two streams of packets 	
in a network node
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Fig. 2. Reducing the dimensionality of the system by grouping states into series

The intensity of the transition 
from the state ER,i+1 to ERi was also 
found:
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where i = 0,1,…,n1–1.
Thus, the intensities of transi-

tions between group states have been 
obtained, and now we shall find the 
distribution of probabilities of the 
system being in each of the layers. 
Taking into account ratios (1), (2), 
the graph of states and transitions 
takes the form shown in Fig. 3.

To find the probabilities Pi, i = 1…
n1 of the system being in layer i, the 
balance equation for the system with 
grouped states is written:
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To simplify the form of relation (3), 
the substitution zi = λ1Pi–1–µ1P1 [9, 10] 
was made, and relation (4) was ob-
tained:
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Hence z1 = z2 = … = zn1 = 0, that is:

λ µ1 1 1 0P Pi i− + = ,	 (5)

where i = 1,2,…,n1. 
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Fig. 3. Graph of states and transitions of a system with 
grouped states

In this case:
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where i = 1,2,…,n1. 
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The value of P0, which corresponds to the absence of packets 
in the network node, is found from the normalization condition:
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where i = 1,2,…,n1.

We entered ρ λ µi = 1 1 – the reduced intensity of the first 
incoming stream. With:
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where i = 1,2,…,n1.
Since the system has a solution under the condition 

that ρ1<1, the sequence 1 1
2

1
1, , , , ,ρ ρ ρi

n…  forms a descending 
geometric progression with the first term equal to 1 and the 
denominator ρ. That is why:
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Then the probability distribution of the group states is 
as follows:
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where i = 1,2,…,n1.
Conditional probability distributions of system states 



Pik were found (conditional probability of the system being 
in the k-th state of the i-th layer, provided it is in this layer) 
inside each layer. These distributions are obviously the same 
because the graph of states and transitions for each of them 
takes the same form, shown in Fig. 4.

The conditional probabilities of the states of the system 
are found similar to (3) to (8):
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where k = 0,1,2,…,n2, and ρ λ µ2 2 2=  is the reduced intensity  
of the second incoming stream.

Then the unconditional probability of the system being in 
the k-th state of the i-th layer, that is, the state Eik of the real 
system, is determined by the ratio:
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where i = 0,1,…,n1, k = 0,1,…,n2.
Next, knowing the probabilities of all states of the 

system model, it is possible to calculate QoS indicators, 
such as network node and communication channel failure 
rates, packet losses, packet delay, and others. For example, 
to calculate the probability of packet loss, it is necessary  
to sum up the probabilities of critical states, which are 
shown in Fig. 5.
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Fig. 4. Graph of states and transitions inside the i -th layer
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The critical states of the system are considered, for exam
ple the En10 state; it corresponds to a real situation when the 
queue of packets of the first stream is full, and there are no 
packets of the second stream in the system. If another packet 
of the first stream arrives at the input, the model predicts 
that it will be filtered, since there is no room for it in the 
queue. But due to the fact that the queue for packets of the 
second flow is empty, half of the node’s memory is free for 
receiving packets. Thus, the proposed model needs to be 
corrected by taking into account the shared memory volume.

The probability of system failure is calculated:
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The probability of system failure, 
described as the probability of packet 
loss, corresponds to this situation in 
the model by the extreme states of the 
system, the probabilities of which must 
be summed up.

5. 2. Markov model of a network 
node that serves one stream of Trans-
mission Control Protocol packets

The model of a node of an elec-
tronic communication network is con-
sidered, at the input of which packets 
are received from a source with an in-
tensity λ1. Arriving packets are served 
(transmitted to the next node) with 

an intensity µ1, and their copies are 
placed in the router’s memory until 
confirmation of successful delivery; 
thereby removing the package from 
memory. The intensity of removing 
one packet from memory in case of 
successful transmission is µ2. If the 
sent packet does not reach the re-
cipient, its backup copy is moved 
to the general queue for resending. 
Let the intensity of occurrence of 
transmission errors of one packet be 
equal to λ2. The memory of the router 
can contain n packets, among which 
there can be both copies of already 
transmitted packets waiting for con-
firmation, and new ones queued up 
for service (transmission).

It is assumed that the intervals in 
the streams of events related to the 
arrival of packets at the node’s input, 
their transmission, the occurrence of 
errors, and the deletion of successful-
ly transmitted packets are exponen-
tially distributed. Then the apparatus 
of Markov processes can be used to 
analyze the system.

A graph of states and transitions of the described system 
was constructed (Fig. 6).

Here, state (i, j) corresponds to the situation when the 
system stores i copies of various transmitted packets awaiting 
confirmation of successful delivery to the addressee, and j 
new packets from the source awaiting service (transmission).

Thus, the purpose of the work is to find the probabilities 
of the described system being in multiple states, finding the 
probability of system failure and the probability of initiating 
a restraining packet. The set of system states is divided into 
subsets as follows (Fig. 7). Elements whose sum of indices is 
equal to i will fall into the subset Ei. For example, Ei = {(0,0)}, 
E1 = {(1,0),(0,1)}, E2 = {(2,0),(1,1),(0,2)}.

Fig. 5. Critical states of a system model with two threads that have their own amount 
of memory for queues

0,0 0,1 0,2 
2 2 2

0, n2 
2

µ2 µ2 µ2 µ2
1 µ1 1 µ1 1 µ1 1 µ1

1,0 1,1 1,2 
2 2 2

1, n2 
2

µ2 µ2 µ2 µ2
1 µ1 1 µ1 1 µ1 1 µ1

2,0 2,1 2,2 
2 2 2

2, n2 
2

µ2 µ2 µ2 µ2
1 µ1 1 µ1 1 µ1 1 µ1

1 µ1 1 µ1 1 µ1 1 µ1

n1,0 n1,1 n1,2 
2 2 2

n1,n2 
2

µ2 µ2 µ2 µ2

Critical states of thread 1 

Critical states of thread 2 

0,0 
1 0,1 0,2 0,3 0,n-1 0,n 

1 1 1 1 1

µ2 µ2 µ2µ1 
2 µ1

2 µ1
2 µ1

2

1,0 
1 1,1 1,2 1,3 

1 1 1

2µ2 2µ2 2µ2µ1
2

µ1
2

µ1
2

µ2µ1 
2 µ1

2

1,n-1 
1 1

µ1
22

(n
-2

)µ
2

µ1 µ1 µ1

n-2,0
1

(n
-1

)µ
2

n-2,1 n-2,2
1

µ1 µ1

n-1,0 n-1,1

µ1
n2 

n,0 

1

(n
-2

)µ
2

(n
-2

)µ
2

(n
-1

)µ
2

Fig. 6. Graph of states and transitions of the packet transmission system
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Fig. 7. Graph of group states and transitions

The balance equation for the resulting graph is compiled:

µ λ

µ λ λ µ
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

 1 1 1 0

	 (17)

Here, Pk is the probability of the system being in the 
group state k, µk,k–1 the intensity of transitions from the 
group state k to the group state k–1, λk,k+1 the intensity 
of transitions from the group state k to the group state  
k+1, k = 0,1,2,…,n.

Let’s introduce 


Pi k i, −  – the conditional probability of be-
ing in the i-th state of the k-th layer, under the condition of 
being in this layer.

Then the probability of transitions between layers is 
equal to:

λ λ λ λk k
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i k i
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The balance equation with condition (18), (19) has been 
rewritten:
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We introduced zk = kµ2Pk–λ1Pk–1 and, by substituting zk 
in (20), we obtained:

z
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Hence, it was found:

z k P Pk k k= − =−µ λ2 1 1 0.	 (22)

Using (22), the probability of system states due to P0  
is given:
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where k = 1,2,…,n.
We introduced ρ λ µ2 1 2= . From the normalization condi-

tion 
i

n

iP
=
∑ =

0

1, we get:
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Since it is clear from physical considerations that λ1<µ2, 
then for sufficiently large n we have:

1
2 3
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ρ ρ ρ ρ

! ! !
.

n
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e

Then:

P e0 ≈ −ρ.

In this case:

P
e

kk

k

=
−ρρ

!
,	 (23)

where k = 0,1,…,n.
Thus, the probabilities of group states of the system were 

found. We have now found the distribution of state probabi
lities within each layer. We considered the graph of states and 
transitions for the k layer (Fig. 8).
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Fig. 8. Graph of states and transitions for the k-th layer



Mathematics and Cybernetics – applied aspects 

29

The balance equation is constructed:
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Substitution of variables Z i P Pi i k i i k i= −− − − −( )λ µ2 1 1 1

 

, , , was 
performed, which leads system (24) to the form:
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Hence, it follows that Zi = 0, i = 1, …, k, therefore, 
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where i = 1, 2, …, k.
We introduced α µ λ= 1 2 . From the normalization condi-

tion 
i
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i k iP
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Similar to the previous one, we have:
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where i = 1, 2, …, k.
Thus, the conditional probability of the system being in 

the state (i, k–i) under the condition of being in the k layer 
is found. Then the unconditional probability of finding the 
system may (i, j) equal to:

P P P
i j i

ei j i j i j

i j i

, , , ! !
.= × =

+( )+( )

+
− +( ) ρ α ρ α 	 (27)

Thus, a relation was obtained to calculate the probabili-
ties of the system being on many states.

Then the probability of failure:

P P
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is equal to the probability of being in the n layer, and the 
probability of the router emitting a restraining packet [3] is 
equal to the probability of the system being in a group state, 
the number of which is calculated as the smallest integer 
greater than [0.8*n].

5. 3. Comparison of the models built and calculation 
results

Markov models of UDP and TCP traffic were constructed. 
To describe traffic with guaranteed delivery in the network 
model, additional states and transitions must be added, 
which make the calculations of the failure probabilities  
Рfailure_udp and Рfailure_tcp in the models different from each  
other according to ratios (16) and (28), respectively. To com-
pare these values, graphs of the dependence of the probability 
of system failure on the intensity of incoming traffic were 
constructed, Fig. 9, for the number of threads from two to five.

 
Fig. 9. Comparison of Рfailure_udp and Рfailure_tcp and different 

traffic intensity and different number of threads

More failures and packet queue lengths at a network node 
during peak load typically occur with TCP traffic compared 
to UDP traffic. The main reason is that TCP uses flow con-
trol and rate-limiting mechanisms to avoid network conges-
tion and ensure efficient data transfer between nodes. These 
mechanisms can cause TCP to create more packet queues to 
ensure reliability and correct delivery order.

In contrast, UDP has no such built-in mechanisms, so 
it can result in less packet queuing. However, this can also 
mean that under heavy load, UDP may drop packets without 
attempting to resend them or adjust the transmission rate.

6. Discussion of results of the models built  
and their calculations

In the work, the models of the network node under the 
modes of UDP and TCP traffic service were built; the dif-
ferences in the models are caused by taking into account the 
differences in the behavior of network protocols.

Fig. 1 shows the Markov model of a network node with 
UDP traffic; the problem can be solved by grouping the  
layers of the model, as shown in Fig. 2. The behavior model of 
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a separate layer of the original model is shown in Fig. 3, 4, and 
the critical states of the original model are shown in Fig. 5.

Unlike UDP traffic, for TCP traffic it is necessary to simu
late packet retransmission in case of packet loss. Fig. 6 shows 
that an additional dimensionally is added to take into account 
retransmission of TCP packets, and in Fig. 7, 8 it is decom-
posed into layers. In turn, Fig. 9 shows that the QoS indicators 
in the case of TCP traffic behave differently from the case of 
UDP, when, for example, the dependence of queue length on 
traffic intensity coincides with the classic plots for MSS [11].

In contrast to work [9], our study takes into account the 
essence of network protocols with and without guaranteed 
packet delivery. Also, in [7], a network node is considered as 
a collection of queues, each of which has its own memory vo
lume, which is not natural, and in the current paper a model 
with shared memory is proposed due to the triangular shape 
of the graph of states and transitions. However, for the cor-
rect operation of the model, it is important that the lengths of 
packets of different flows are almost equal, as in [4].

In practice, the proposed models of operation of the net-
work node have restrictions on their use. They can be used 
only under the condition of modeling traffic on the network 
layer of the ISO/OSI model. Their work was not checked on 
other layers. The proposed Markov models, on par with other 
Markov models, have a classical restriction on the law of ran-
dom variables. It describes a stochastic process. That is, their 
calculation can be performed only under the assumption that 
the incoming packet flow is a simpler Poisson flow [2].

The model data cannot be used in this form if the flow 
is, for example, self-similar. This limitation can be elimi-
nated in the future due to the Markov approximation of 
the incoming traffic. This can be done using the Markov 
approximation procedure.

The advancement of our research is connected, first of all, 
with the development of network protocols, which are con-
stantly changing. It would be very interesting to consider the 
sliding window algorithm of the TCP protocol, which is not 
taken into account in this work. Also, further research should 
focus on software defined networks (SDN) network models.

This study contributes to the development of the theory 
and practice of network technologies. The resulting models 
could be used to analyze and predict the behavior of UDP 
and TCP traffic in actual networks.

This work might be useful for network hardware and soft-
ware developers, as well as network design and optimization 
professionals.

7. Conclusions 

1. A model of a network node serving UDP traffic was 
built using the mathematical apparatus of Markov mass 
service systems. Unlike existing models, the proposed model 

takes into account the heterogeneity of the traffic due to the 
increase in the dimensionality of the system. For this case, 
the probabilities of the system states were calculated, and 
the ratio for QoS indicators in the case of UDP traffic was 
additionally obtained.

2. Using the mathematical apparatus of Markov mass 
service systems, a model of a network node serving TCP 
traffic was built. Unlike existing models, retransmission of 
lost packets is taken into account here, this was achieved due 
to the additional dimension of the system. The model takes 
into account the common memory for all threads, which 
corresponds to the real situation, increases the adequacy of 
the model in comparison with existing models for which the 
memory for each thread is fixed. Probabilities of system states 
are calculated for this model. We have additionally obtained 
ratios for QoS indicators (quality of service) in the case of 
TCP traffic. The model built and our findings allow us to 
better understand the behavior of TCP traffic in the network 
and to optimize the QoS parameters for this type of traffic.

3. The derived ratios for QoS indicators make it possible 
to evaluate the quality of service of UDP and TCP traffic in 
network nodes, take into account their differences, and opti-
mize network resources. It is shown that taking into account 
TCP traffic, in contrast to standard models that only take 
into account UDP traffic, worsens the queue length indica-
tors by 3 % at peak load, and the graph has a stepped shape, 
which distinguishes it from the curve that is built analytical-
ly using classic MSS formulas.
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