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1. Introduction

The energy system of the Republic of Kazakhstan, much 
like many other nations, is a complex network comprising 
multiple interconnected regions. The regions are intercon-
nected to ensure the stability and reliability of the energy 
system. Parallel operation of interconnected systems pro-
vides for mutual regulation of unplanned power flows caused 
by an unbalanced schedule of production and consumption 
of electric power. At the maximum load of the UES of the 
Republic of Kazakhstan in the amount of 14335 MW, de-
viations from the production-demand schedule amounted 
to 16.7 %, which was a critical value for managing normal 

and post-accident modes, one of the reasons is the insuf-
ficient controllability of generation, which should track 
changes in consumption [1]. The challenges faced in ensur-
ing stability and reliability within this system are not unique 
to the Republic of Kazakhstan alone but are shared by 
numerous countries worldwide. Therefore, the development 
of effective solutions for managing energy systems, such as 
accurate electrical load forecasting, is of global significance.

From July 1, 2023, the functioning of the balancing elec-
tric energy market has been transferred from a simulation 
mode (operating for more than 15 years) to a real-time mode 
in Kazakhstan. The balancing electricity market (BEM) is 
a system of relationships between market entities and the 
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This paper presents an approach for using a 
long short-term memory (LSTM)-based recur-
rent neural network with various configurations 
to construct a forecasting model for electrical 
load prediction of a 110 kV substation.

The issues of unbalances arising in ener-
gy management systems due to discrepancies 
between generated and consumed energy can 
lead to power outages and blackouts. With the 
introduction of the most accurate forecasts, the 
task of maintaining electrical reliability for grid 
operators can be greatly simplified.

Through an investigation into 81  different 
parameter combinations the research revealed 
the optimal setup for an LSTM model in the 
task of electrical load forecasting. This con-
figuration comprised 15 neurons, a batch size 
of 16, and employed the Adamax optimization 
algorithm. Applying this specific setup yield-
ed a mean squared error (MSE) of 5.584 MW2 
and an R2 value of 0.99. High R2 values and 
low MSE values indicate that the LSTM model 
accurately captures changes in electricity 
consumption with minimal deviation between 
predicted and actual consumption values. 
Selection of appropriate parameters signifi-
cantly enhances the performance of the pre-
dictive model and resulted in a reduction of 
the MSE error from 12.706 to 5.584 MW2. The 
optimized configuration of the LSTM model, 
tailored through extensive experimentation, 
enhances its predictive capabilities.

The proposed LSTM model holds practical 
utility for integrating into systems for monitor-
ing and forecasting mode reliability of electrical 
networks, particularly in the Western energy 
hub of the Republic of Kazakhstan. Its accu-
racy and reliability make it valuable for ener-
gy resource management and infrastructure 
planning
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settlement center of the balancing market, arising as a result 
of the physical settlement of electricity imbalances in the 
unified electric power system of the Republic of Kazakhstan 
by the system operator and associated with the purchase and 
sale of balancing electricity and negative imbalances  [2]. 
BEM entities are required to enter into agreements with the 
Settlement Center for the purchase and sale of balancing 
electricity and negative imbalances, as well as a connection 
agreement. In this regard, there is a need for accurate fore-
casting of electricity consumption.

One of the key features to improve the efficiency of 
power system management is electrical load forecasting, 
which plays an essential role in the control of balance be-
tween production and consumption. The value of the pre-
dicted consumption scale is an important indicator in the 
planning of electrical modes for the whole system, group 
of systems, individual electrical energy consumers, and 
particular nodes in the electrical system. The forecasting 
task is based on complex mathematical or empirical (intu-
itive) methods for searching for patterns in the considered 
time interval. Electrical load forecasting is generally a 
univariate time series forecasting problem, which is more 
complex than the corresponding multivariate time series 
forecasting problem. Compared with linear, stationary and 
seasonal time series, short-term time series of electrical 
load in power systems are nonlinear, non-stationary and 
non-seasonal, where non-seasonal means no obvious peri-
odicity in time. It is difficult to accurately forecast such 
time series over time. 

Electrical load forecasting is a crucial aspect of man-
aging the balance between electricity production and con-
sumption. Its importance extends beyond the borders of the 
Republic of Kazakhstan, as it directly impacts the planning 
and operation of electrical systems in diverse geographical 
locations. Moreover, the challenges associated with forecast-
ing electrical loads – such as nonlinearity, non-stationarity, 
and lack of obvious periodicity are common across various 
power systems globally. Owing to the operation of the elec-
tricity balancing markets and the necessity to mitigate ad-
verse imbalances for electrical energy consumers, alongside 
the complexities involved in employing conventional math-
ematical forecasting methods due to their linear correlation 
between observed and future time series, researches on the 
construction of more efficacious neural network-based fore-
casting models becomes relevant.

2. Literature review and problem statement

As the requirement for electrical load forecasting 
emerged, many different forecasting methods have been 
applied for electrical load predictions such as Time Series 
Analysis, Regression Analysis, Artificial Neural Networks, 
Support Vector Machines (SVM), Hybrid models, etc. 

Time series analysis involves analyzing historical load 
data to identify patterns, trends, and seasonality. It forms 
the basis for many load forecasting techniques. Common 
approaches within time series analysis include:

– moving Averages: Calculating the average load over a 
specific period, like days or weeks, to smooth out short-term 
fluctuations;

– exponential Smoothing: Assigning exponentially de-
creasing weights to past observations to emphasize recent 
data while minimizing the impact of older data.

– autoregressive integrated moving average (ARIMA) 
and the autoregressive moving average (ARMA) models 
seek to capture the temporal dependencies within a time 
series data by considering past values, past forecast errors, 
or both. These methods were first introduced in 1970 by two 
statisticians, George Box and Gwilym Jenkins [3].

A general class of methods includes statistical forecasting 
models, including autoregressive (AR), moving average (MA), 
autoregressive integrated moving average (ARIMA) models. 
Among them, ARIMA stands out as one of the most widely 
used time series forecasting methods. 

The paper [4] presents the utilization of two forecast-
ing methods: Auto Regressive Integrated Moving Aver-
age (ARIMA) and Artificial Neural Network (ANN). It 
compares the performance of both methods using Mean 
Absolute Percentage Error (MAPE). The results suggest 
that both ANN and ARIMA have the potential to predict 
consumption but ANN better copes with non-linear data. 
However, the issue of constructing an optimal model for the 
most accurate load forecast has not yet been resolved. The 
paper [5] proposes autoregressive moving average (ARMA) 
model using including non-Gaussian process considerations 
the concept of cumulant and bispectrum embedded into 
the ARMA model in order to facilitate the Gaussian and 
non-Gaussian process. Nevertheless, using this approach 
may increase the time and resources required for model fit-
ting and forecasting, particularly for large datasets.

The paper [6] proposes a study of different techniques: 
multiple linear regression (MLR), random forests (RF), 
artificial neural networks (ANNs), and automatic regres-
sion integrated moving average (ARIMA) to determine the 
load demand for the next month in the whole country and 
different municipal areas in Dubai, as well as to assist a util-
ity company in future system scaling by adding new power 
stations for high-demand regions. The findings indicated 
that both ANN and RF attained a high level of accuracy, 
approximately 97 %. Nonetheless, given the utilization of a 
test dataset, it proves challenging to definitively assert the 
suitability of these models for practical application. 

In [7], the authors introduced the application of SARI-
MAX with standard statistical measures. They endeavored 
to segregate the impacts of these events and forecast the 
static and dynamic components of system demand sepa-
rately. The resulting demand forecast accuracy proved to be 
superior compared to directly applying standard methods. 

However, these methods operate on the basis of a linear 
relationship between observed and future time series, which 
makes them less effective for time series that exhibit pro-
nounced nonlinear characteristics. In general, fluctuations 
in electrical load consumption turn out to be a complex 
non-stationary random process. They differ in seasonal 
changes in temperature and duration (longitude of the day) 
in the context of the year, the technological mode of opera-
tion of enterprises, the mode of work, and rest of the popula-
tion. This circumstance can be excluded by using intelligent 
methods such as artificial neural networks (ANNs).

Artificial Neural Networks (ANNs) are a type of ma-
chine learning model inspired by the human brain. They are 
used for complex load forecasting tasks by learning intricate 
relationships between input variables and historical load 
data. There are many research papers that deal with neu-
ral networks because the use of conventional models leads 
to unsatisfactory solutions due to the high complexity of 
variables relationships and the extent of computation power 
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requirements. The paper [8] provides a comprehensive re-
view of methodologies and applications using recent devel-
opments in ANN, ML, and DL for forecasting in microgrids, 
with the goal of providing a systematic analysis. Among the 
published studies, some were successful due to geographical 
location, workload, season, holidays, etc., but others failed 
to show good results. Possible explanations for this could 
include insufficient data for generating accurate forecasts, 
inadequate noise removal during data cleaning, and the se-
lection of inappropriate model parameters. Detailed analysis 
shows that ANNs cannot work effectively with time series 
that have variable intervals between samples, which is often 
typical for electricity consumption data. However, some ad-
aptations and extensions of support vector machines (SVM) 
have been proposed to handle time series data with irregular 
intervals. For instance, Support Vector Regression (SVR) 
has been developed to address time series forecasting tasks 
using SVM-based approaches.

SVM is a machine learning technique used for classifica-
tion and regression tasks. It works by finding a hyperplane 
that best separates data points in high-dimensional space, 
making it suitable for capturing nonlinear relationships 
in load forecasting. The use of SVM is presented in [9] 
where authors examined six metaheuristic optimization 
algorithms, culminating in the identification of the most 
effective algorithm for optimizing SVR model parameters. 
The integration of the SVR-AEO hybrid model facilitated 
the attainment of notably favorable forecast outcomes. 

In [10], the authors employ support vector regres-
sion (SVR) to address nonlinear electrical load forecasting 
issues under conditions of limited information. They propose 
SVR modeling utilizing the Gaussian kernel function along 
with historical electrical load data as input and target data. 
However, SVM techniques may not be efficient when deal-
ing with large data sets due to high computational complex-
ity, especially when using kernel functions.

Most of traditional methods have their limitations when 
dealing with complex load patterns and nonlinear relation-
ships between load and influencing factors. Therefore, there 
is a growing need for advanced forecasting techniques that 
can capture these intricate dynamics and provide reliable 
predictions. However, recurrent neural network-based elec-
trical load forecasting offers several advantages over con-
ventional methods. These advantages stem from the neural 
network’s ability to capture complex patterns and relation-
ships in data, making it a powerful tool for accurate load 
prediction. The use of neural network models for the problem 
of predicting electrical loads has the following advantages:

Handling complex dependencies: neural networks (NNs) 
are able to automatically detect and take into account com-
plex dependencies and interactions between various factors 
that affect energy consumption. 

Adaptability to change: neural networks can learn from 
historical data and adapt to changes in conditions that can 
affect electricity consumption, such as seasonal changes, 
holidays, changes in consumer behavior, etc. This makes 
them more flexible than some traditional methods.

Big Data Processing: neural networks are capable of pro-
cessing large amounts of data, which can be critical for accu-
rately predicting electricity consumption given many factors 
such as weather, economic factors, demographics, and others.

Better generalizing ability: a well-tuned neural network 
is able to generalize its knowledge and predictions to new 
situations that have not been considered in the historical 

data. This allows more accurate forecasting of electricity 
consumption in various scenarios.

Automation: neural networks can be configured to au-
tomatically update and retrain as new data is received. This 
simplifies the process of updating forecasting models and 
allows them to adapt to changing conditions.

It is important to understand that the effectiveness of 
NNs for predicting the consumption of electrical loads can 
depend on many factors, such as the choice of network archi-
tecture, the volume and quality of data, training and valida-
tion processes, and the context of application. All this allows 
us to assert that it is expedient to conduct a study on the 
challenge of accurate short-term electrical load forecasting 
using an RNN-based model. 

3. The aim and objectives of the study

The primary aim of this study is to develop a robust and 
precise electrical load forecasting model using neural net-
works. The expected outcome of the work is a comprehensive 
validation of the NN-based load forecasting approach, show-
casing its ability to provide accurate and reliable predictions 
for short-term load management:

– to design an NN-based architecture suitable for load 
forecasting, and experiment with different configurations to 
find the optimal architecture;

– to evaluate model’s accuracy using appropriate error 
metrics.

4. Materials and methods

4. 1. Object and hypothesis of the study
The object of the study is electrical loads. The main hy-

pothesis of the study is that recurrent neural networks (in 
particular, LSTM) produce fairly accurate predictions and 
are suitable for predicting electrical loads. It is assumed that 
the use of different hyperparameters is necessary because 
the prediction accuracy without their selection for a partic-
ular case may not be high enough. Simplifications have been 
adopted in the work: for the forecasting task, only date, time 
and electrical load are used as initial data, whereas in real 
conditions it is necessary to take into account external fac-
tors, such as weather conditions, holidays and weekends, etc.

4. 2. Methodology
For the task of electrical load forecasting, selecting 

the appropriate type of forecasting model depends on the 
characteristics of the data, the complexity of load patterns, 
and the forecasting horizon. As mentioned earlier, neural 
network-based forecasting models offer several advantages 
over conventional methods. There are many methodologies 
that are being explored in recent years such as [11–15], which 
have shown promise in much better forecasting results as 
compared to traditional methods.

The most commonly used neural network types for 
electrical load forecasting tasks are: Feedforward Neural 
Networks (FNNs), Convolutional Neural Networks (CNNs) 
and Recurrent Neural Networks (RNNs).

Feedforward Neural Networks (FNNs), often referred 
to as Multi-Layer Perceptrons (MLPs), constitute a pivotal 
class of artificial neural networks that occupy a central role 
in contemporary machine learning and deep learning re-
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search. These neural architectures are characterized by their 
sequential and stratified structure, affording them the capac-
ity to elucidate intricate data relationships. FNNs can be ef-
fectively applied to electrical load forecasting tasks [16, 17].

Using Convolutional Neural Networks (CNNs) for elec-
trical load forecasting is an innovative approach that has 
shown promise in capturing spatial and temporal patterns 
within load data. To use CNNs, this data can be converted 
into a two-dimensional grid, where one axis represents time 
and the other axis represents different load zones or features. 
For example, rows could represent hours of the day, while col-
umns represent different regions or load characteristics. To 
capture temporal dependencies explicitly, a variant known as 
Temporal Convolutional Networks (TCNs) can be employed. 
TCNs utilize causal convolutions, ensuring that information 
flows only from past to future, making them particularly 
suited for time-series forecasting tasks [18–20].

Recurrent neural network (convolutional neural net-
work) – a special neural network, the purpose of which is 
to predict the next observation in a series. The idea behind 
RNN is the desire to extract useful information from a series 
of observations to make predictions. Accordingly, earlier 
observations must be remembered. In the RNN model, the 
inner layer serves to store information from previous ob-
servations of the series. The RNN simplified structure is 
presented in Fig. 1.

The main problem is the memorization of a small number 
of previous observations, which is not suitable for long peri-
ods. Given the sequential and temporal nature of load data, 
recurrent neural networks (RNNs) and their advanced vari-
ants are often well-suited for the electrical load forecasting 
task. Among these, the Long Short-Term Memory (LSTM) 
network stands out due to its ability to capture long-range 
dependencies and handle temporal patterns. 

LSTM networks are a type of recurrent neural net-
work (RNN) architecture designed to effectively capture 
and model sequential data, making them well-suited for 
tasks involving time series analysis, natural language pro-
cessing, and various other sequential data applications. 
LSTMs were introduced to address some of the limitations 
of traditional RNNs, particularly their struggle to capture 
long-term dependencies in data. LSTMs offer a robust 
framework for modeling temporal dependencies, non-linear-
ity, and multivariate relationships.

4. 3. Long short-term memory network-based electri-
cal load forecasting 

Long short-term memory networks, a special kind 
of RNN, are much promising having the capabilities to learn 

long-term dependencies. The LSTM model [21] is a powerful 
recurrent neural system specially designed to overcome the 
exploding/vanishing gradient problems that typically arise 
when learning long-term dependencies, even when the mini-
mal time lags are very long [22]. 

LSTM recurrent neural system specially designed to 
overcome the exploding/vanishing gradient problems. Un-
like conventional feed-forward neural networks, LSTM 
networks have feedback. Such networks are capable of 
processing not only individual single data (for example, im-
ages), but also entire sequences of data (for example, audio 
recordings of speech or video recordings). Therefore, LSTM 
networks are capable of solving such problems as handwrit-
ing recognition, speech recognition, anomaly detection in 
large data flows (network traffic, banking transactions).  
LSTM neural networks are well-suited for classifying, process-
ing, and making time-series-based forecasts, where interrelated 
phenomena can occur over an indefinite time span. This time 
lag leads to difficulties in using classical neural networks in 
solving these problems due to gradient decay, while LSTM net-
works are insensitive to the magnitude of the time lag.

Electricity data are in the nature of constantly repeating 
data (for example, a daily schedule), and their shape (peaks) 
changes only under the influence of external factors. Nev-
ertheless, they are quite stationary and the influence of 
external factors (disconnection of consumers, holidays, etc.) 

may well be taken into account when 
building a predictive model. Based 
on this, the LSTM model was chosen 
as the most suitable for solving the 
problem in this case study. An addi-
tional factor for choosing an LSTM 
model, compared, for example, with 
linear regression, is also the specific 
nature of the change in electricity 
consumption in winter and summer 
periods. If in the winter period, we 
can observe 2 peak values during 
the day, then in the summer there is 
only 1 peak value (in the middle of 
the day). 

There are 3 types of layers in an LSTM network:
1. Layer of “forgetting” (Forget gate) – the output is a 

number from 0 to 1, where 1 indicates the need for complete 
memorization, and 0 completely erases from memory.

2. The “Memory gate” layer selects which data to store. 
First of all, values are selected using the sigmoid layer, which 
are then stored.

3. The output layer (Output gate) selects information 
from each “cell” in which the memorization is made.

The LSTM algorithm falls under the realm of supervised 
learning techniques. Within this framework, data is input 
into the Recurrent Neural Network (RNN) consisting of 
factors influencing the prediction of values for preceding 
hourly periods (t–1, t–2 ... t–n). These factors encompass 
temporal information, ambient temperature, and load. Addi-
tionally, a parameter is introduced, which plays a pivotal role 
in the prediction process. LSTMs exhibit the capability to 
selectively retain or remove information from the cell state, 
a process orchestrated by components referred to as filters.

Filters serve as regulatory structures that facilitate the 
filtration of information based on specific conditions. Each 
filter is comprised of a sigmoidal neural network layer cou-
pled with a pointwise multiplication operation. The sigmoid 

Fig.	1.	Compressed	(left)	and	unfolded	(right)	RNN	structure
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layer yields values ranging from zero to one, signifying 
the extent to which individual information blocks should 
progress through the network. A value of zero implies the 
retention of all information, whereas a value of one implies 
the exclusion of all information. Notably, the LSTM archi-
tecture features three such filters, collectively responsible 
for safeguarding and governing the cell state.

LSTMs are trained within the ambit of a supervised 
learning paradigm, wherein the network is trained to predict 
future values or sequences predicated on historical data. The 
iterative adjustment of the network’s weights and biases is 
achieved through Backpropagation Through Time (BPTT).

In our specific context, selecting the right values of hy-
perparameters can significantly influence the performance 
and quality of neural network training. This usually requires 
experimentation and tuning for a specific task and data set. 
For our data set, the following hyperparameters were used:

– optimizer: this is an algorithm used to update the 
weights (and possibly other parameters) of a neural network 
in order to minimize the loss function. Different optimizers 
have different properties and can produce different results 
when training a model. Some of the more popular optimizers 
that are often used in LSTM training include Adam, one of 
the most widely used optimizers, which usually provides a 

good combination of learning speed and stability. Adamax, 
a variant of Adam that slightly modifies the updating of 
weights to account for infinite norms of gradients [23] and 
RMSprop, an optimizer that is also well suited for training 
LSTMs and is specifically adapted to work with recurrent 
neural networks [24, 25];

– number of neurons: this is the number of neurons in 
each layer of the neural network. This parameter determines 
the complexity of the model and its ability to learn complex 
functions;

– batch size: this is the number of samples fed to the mod-
el in one training pass (or step). It affects the learning speed 
and stability of weight updating.

Prior to input into the RNN, all data is subjected to 
a normalization procedure. Subsequently, the dataset is 
partitioned into training and testing subsets in the ratio 
of 70/30. The training subset is harnessed for the training of 
the RNN, while the test subset serves as a means to evalu-
ate the accuracy of the trained model. It is noteworthy that 
owing to the unavailability or limited accessibility of certain 
specific data types, current load forecasting relies solely on 
historical data.

The load forecasting algorithm rooted in LSTM model-
ing is visually presented in Fig. 2.

Fig.	2.	Load	forecasting	algorithm	on	long	short-term	memory	network-based	model
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The selection of weights for this model is an iterative 
process, a portion of the raw data that was previously sep-
arated from the training set is applied to test the accuracy 
of the model during training. In the future, it is necessary 
to perform regular checks on new data, if the accuracy de-
creases it is necessary to perform training again.

4. 4. Data collection and preprocessing
The model’s focus will be on accurate predictions, lever-

aging historical load data from a 110 kV substation. Load 
forecasting was made for the 110 kV substation located in 
the western region of the Republic of Kazakhstan. Testing 
was carried out on the SCADA data archive for the period 
from 01/01/2022 to 01/09/2023.

Data preparation is the process of identifying and 
correcting errors, outliers, and inconsistencies in data in 
order to improve their quality, often classified as an inte-
gral part of data mining. For this task, the main statistical 
methods are used, such as correlation analysis and linear 
regression. The calibrated data is a data normalization of 
the range of values of independent variables or features 
of the data, which allows to adequately train the neural 
network.

Data archives were pre-processed, inconsistencies, 
errors, outliers and distortions in SCADA data were iden-
tified. At this point, it is important to check for missing 
data for each hour. The data processing algorithm allows 
you to replace zero or Not a Number (NaN) values with 
adjacent data. By filtering the data, errors were removed. 
Model training should gen-
erate data for the next 24, 48 
and 96 hours based on his-
torical and current data from 
the SCADA system (collec-
tion of information from pow-
er system objects).

5. Results of model 
configuration and training 

5. 1. Model training, con-
figuration and performance 
validation

The quality of the algo-
rithms is checked by methods 
known in machine learning: 
MSE, RMSE, R2. To check 
the adequacy of the model, 
the mean square error (MSE) 
is calculated, all individu-
al regression residuals are 
squared, summed, the sum is 
divided by the total number 
of errors:

( )2

21
ˆ

.
n

ii
y y

MSE
n

=
−

= ∑   (1)

The square root of this 
value is also calculated, de-
noted as RMSE (Root Mean 
Square Error) to check dis-
continuous data in the event 

that zeros appear in the data, it shows an adequate esti-
mate:
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R2 is a measure of the goodness of fit of a model [24]. 
In regression, the R2 coefficient of determination is a 
statistical measure of how well the regression predictions 
approximate the real data points. An R2 of 1 indicates that 
the regression predictions perfectly fit the data:
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The result of the simulation is the day ahead hourly 
outgoing electrical load of the 110 kV substation. Following 
data preparation and normalization, we explored 81 distinct 
configurations of LSTM models, varying in initial dataset, 
number of neurons in the hidden layer, batch size, and opti-
mization algorithm. Tables 1–3 present the results of testing 
these configurations using data from the preceding period of 
24, 48, and 96 hours.

From the obtained tables we can conclude that the most 
accurate prediction is observed when using the Adam opti-
mizer with the number of neurons equal to 15 and batch size 
equal to 16.

Table	1

Results	of	experiments	using	data	from	the	preceding	24-hour	period

Preceding time Number of neurons Batch size Optimizer MSE, MW2 RMSE, MW R2

24 5 16 ADAMAX 6.641 2.201 0.966

24 5 32 ADAMAX 7.651 2.397 0.963

24 5 64 ADAMAX 9.127 2.673 0.939

24 10 16 ADAMAX 5.865 2.028 0.980

24 10 32 ADAMAX 7.402 2.418 0.967

24 10 64 ADAMAX 7.671 2.449 0.949

24 15 16 ADAMAX 6.341 2.087 0.979

24 15 32 ADAMAX 7.061 2.282 0.970

24 15 64 ADAMAX 9.096 2.693 0.883

24 5 16 ADAM 5.863 1.987 0.985

24 5 32 ADAM 7.375 2.283 0.981

24 5 64 ADAM 8.183 2.484 0.957

24 10 16 ADAM 5.661 1.904 0.989

24 10 32 ADAM 6.265 2.068 0.974

24 10 64 ADAM 7.166 2.263 0.962

24 15 16 ADAM 5.584 1.936 0.990

24 15 32 ADAM 6.397 2.078 0.970

24 15 64 ADAM 10.335 2.914 0.947

24 5 16 RMSprop 6.492 2.181 0.980

24 5 32 RMSprop 8.078 2.384 0.966

24 5 64 RMSprop 7.937 2.493 0.929

24 10 16 RMSprop 6.410 2.104 0.983

24 10 32 RMSprop 6.045 2.039 0.982

24 10 64 RMSprop 6.506 2.138 0.969

24 15 16 RMSprop 5.899 1.995 0.986

24 15 32 RMSprop 6.078 2.020 0.973

24 15 64 RMSprop 6.036 2.046 0.976
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Table	2

Results	of	experiments	using	data	from	the	preceding	48-hour	period

Preceding time Number of neurons Batch size Optimizer MSE, MW2 RMSE, MW R2

48 5 16 ADAMAX 6.905 2.145 0.983
48 5 32 ADAMAX 8.262 2.459 0.962
48 5 64 ADAMAX 10.497 2.787 0.940
48 10 16 ADAMAX 6.428 2.090 0.984
48 10 32 ADAMAX 7.011 2.239 0.971
48 10 64 ADAMAX 9.894 2.777 0.906
48 15 16 ADAMAX 6.305 2.065 0.982
48 15 32 ADAMAX 7.942 2.440 0.964
48 15 64 ADAMAX 9.924 2.847 0.930
48 5 16 ADAM 6.929 2.176 0.979
48 5 32 ADAM 6.523 2.124 0.976
48 5 64 ADAM 9.007 2.567 0.951
48 10 16 ADAM 6.751 2.189 0.977
48 10 32 ADAM 6.873 2.205 0.973
48 10 64 ADAM 11.256 3.062 0.870
48 15 16 ADAM 5.881 2.002 0.979
48 15 32 ADAM 6.059 2.041 0.981
48 15 64 ADAM 7.392 2.305 0.976
48 5 16 RMSprop 6.907 2.175 0.975
48 5 32 RMSprop 9.009 2.577 0.956
48 5 64 RMSprop 8.137 2.461 0.964
48 10 16 RMSprop 7.044 2.191 0.983
48 10 32 RMSprop 6.089 2.059 0.982
48 10 64 RMSprop 7.271 2.293 0.975
48 15 16 RMSprop 6.360 2.128 0.968
48 15 32 RMSprop 6.138 2.038 0.981
48 15 64 RMSprop 7.363 2.300 0.960

Table	3

Results	of	experiments	using	data	from	the	preceding	96-hour	period

Preceding time Number of neurons Batch size Optimizer MSE, MW2 RMSE, MW R2

96 5 16 ADAMAX 9.161 2.562 0.961
96 5 32 ADAMAX 10.995 2.899 0.937
96 5 64 ADAMAX 15.998 3.643 0.839
96 10 16 ADAMAX 7.359 2.231 0.977
96 10 32 ADAMAX 8.171 2.425 0.967
96 10 64 ADAMAX 9.477 2.670 0.953
96 15 16 ADAMAX 8.085 2.355 0.974
96 15 32 ADAMAX 8.461 2.497 0.939
96 15 64 ADAMAX 9.852 2.779 0.924
96 5 16 ADAM 7.959 2.353 0.984
96 5 32 ADAM 7.772 2.310 0.983
96 5 64 ADAM 14.175 3.487 0.921
96 10 16 ADAM 7.203 2.210 0.987
96 10 32 ADAM 8.484 2.424 0.970
96 10 64 ADAM 9.562 2.594 0.946
96 15 16 ADAM 7.301 2.187 0.984
96 15 32 ADAM 9.586 2.671 0.976
96 15 64 ADAM 12.706 3.097 0.957
96 5 16 RMSprop 8.042 2.340 0.973
96 5 32 RMSprop 9.216 2.555 0.957
96 5 64 RMSprop 9.435 2.660 0.958
96 10 16 RMSprop 7.527 2.290 0.979
96 10 32 RMSprop 8.401 2.488 0.956
96 10 64 RMSprop 9.331 2.567 0.950
96 15 16 RMSprop 9.115 2.543 0.963
96 15 32 RMSprop 7.458 2.234 0.983
96 15 64 RMSprop 8.758 2.532 0.965
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5. 2. Models accuracy validation
By employing the suggested model featuring the three 

most optimal hyperparameter configurations, predictive out-
comes were achieved. The results were compared with the real 
electrical load data for the same day, as illustrated in Fig. 3. 

Due to the presence of slight deviation from the actual 
load data, the MAE error parameter was calculated, MAE 
stands for Mean Absolute Error, which is a commonly used 
metric for evaluating the accuracy of forecasts or predictive 
models. It measures the average absolute difference between 
the predicted values and the actual observed values. In order 
to show the dynamics of the training process of the LSTM 
model, Fig. 4 illustrates a graph of MAE for each of 3 predic-
tions depending on the number of epochs, where epoch is one 
complete pass through the entire training dataset.

During each epoch, the model is trained on the entire 
dataset, and the weights of the model are updated based on the 
error or loss calculated from the training data. As the model is 
exposed to more data or undergoes more training iterations, it 
learns from the discrepancies between its predictions and the 
actual outcomes. It adjusts its internal parameters (weights 

and biases in the case of neural networks) to minimize these 
discrepancies and make more accurate predictions. The train-
ing process is terminated when there is no further significant 
reduction in loss. Too many epochs can lead to model overfit-
ting, in which case forecasts on new data are highly inaccurate.

6. Discussion of the results of the constructed long short-
term memory-based model 

Initially, 81 different LSTM model configurations were 
investigated, the model was categorized into three groups 
with a preceding time of 24, 48 and 96 hours, document-
ed in Tables 1–3. This classification was undertaken to 
facilitate the management of a substantial array of setting 

parameters. The most accurate prediction was 
made by a model with a lag of 24 hours, hid-
den number of neurons equal to 15, batch 
size equal to 16 and the “Adam” optimization 
algorithm, with MSE, RMSE and R2 values 
of 5.584 MW2, 1.936 MW and 0.99 respec-
tively. This exceptional level of accuracy high-
lights the significant potential and robustness 
of LSTM models in electrical load forecasting. 

The ability of LSTM networks to capture 
intricate patterns and dependencies within 
electrical load data is crucial for achieving 
such high levels of accuracy. This precision in 
forecasting is particularly valuable in applica-
tions where even minor deviations can have 
significant consequences, such as energy grid 
management and cost optimization. 

In [26], the LSTM-based model also 
demonstrated good results with the best 
predicted week having an error of 1.65 %. 
Compared to existing methods, the proposed 
LSTM-based approach demonstrates superior 
predictive capabilities. While traditional fore-
casting techniques may struggle to capture 
nonlinear relationships and dynamic patterns 
in electrical load data, LSTM models excel in 
this regard. The study provides a robust vali-
dation of the effectiveness of LSTM networks 
in electrical load forecasting, offering action-
able insights for real-world decision-making. 

A decrease in the values of mean squared 
error (1) and root mean squared error (2) in-
dicates superior model performance, reflecting 
smaller discrepancies between predicted and 
actual values. R-squared (3) represents the pro-
portion of the variance in the dependent vari-
able that is explained by the independent vari-
ables (features) in the model, R-squared values 
range from 0 to 1, with 1 indicating a perfect fit 
and 0 indicating no relationship between the 
independent and dependent variables.

Despite its accuracy, the LSTM-based ap-
proach has certain limitations, such as the 

model focusing on short-term electrical load forecasting, 
limiting the generalizability of the results to longer fore-
casting horizons. Moreover, the accuracy of the forecasts is 
contingent upon the availability and quality of input data, 
including historical load data and relevant external factors 
such as temperature and humidity. 

Fig.	3.	Actual	and	forecasted	electrical	load	values	for	110	kV	substation
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Fig.	4.	Dependence	of	mean	absolute	error	on	the	number	of	model	epochs
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Future research can focus on addressing the following 
challenges and advancing the field of tuning hyperparam-
eters and exploring hybrid forecasting techniques can fur-
ther enhance the accuracy and robustness of LSTM-based 
forecasts. Integrating supplementary data sources, such 
as weather forecasts and socioeconomic indicators, can 
improve the model’s predictive capabilities. Advancements 
in methodology, including ensemble techniques and model 
interpretability, can contribute to the continued progress of 
electrical load forecasting research.

7. Conclusions

1. The recurrent neural network-based model was 
trained using various optimizers, and its performance was 
validated on the test set. Experimentation was conducted 
on various configurations to design a neural network-based 
architecture suitable for load forecasting, employing a basic 
LSTM (Long Short-Term Memory) model preceded by 
an initial selection process for model parameters. 81 dis-
tinct configurations of LSTM models, varying in initial 
dataset, number of neurons in hidden layer, batch size, and 
optimization algorithm were explored. For the available 
input data, the most appropriate amount of input data is 24 
and 48 hours. The best results were obtained with 24 hours 
as input data, number of neurons in the hidden layer equal 
to 15, batch size equal to 16 and applying ADAM optimiza-
tion algorithm. It should be realized that depending on the 
input data, the optimal hyperparameters of the model will 
be different, so a separate selection of these parameters must 
be made for each substation. Also, the optimal hyperparam-
eters will change over time, so if the accuracy of the model 
decreases, they must be re-selected. 

2. The model’s accuracy was evaluated on a test set, 
which was not used during training, using MSE, RMSE 

and R2 metrics. The best-performing configuration among 
the 81 considered parameter cases demonstrated promising 
results with an MSE of 5.584 MW2, RMSE of 1.936 MW 
and an R2 value of 0.99.
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