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The object of research in this work is ensem-
ble classifiers with stacking, intended for the 
classification of objects in images with the pres-
ence of small sets of labeled data for training. 
To improve the quality of classification at the 
first stage of such a classifier, it is necessary to 
place more primary classifiers that differ in het-
erogeneous structured processing. However, the 
number of known neural networks with appro-
priate characteristics is limited. One approach 
to solving this problem is to build analogs of 
known neural networks that make classifica-
tion errors on other images compared to the base 
network. The disadvantage of the known meth-
ods for constructing such analogs is the need to 
perform additional floating-point operations. 
The current paper proposes and investigates a 
new method to form analogs through random 
cyclic shifts of rows or columns of input images. 
This has made it possible to completely eliminate 
additional floating-point operations. The effec-
tiveness of using this method is explained by the 
structured processing of input images in basic 
neural networks. The use of analogs obtained by 
the proposed method does not impose additional 
restrictions in practice. This is because the het-
erogeneity of structured processing in basic neu-
ral networks is a typical requirement for them in 
an ensemble classifier with stacking.

The simulation for the CIFAR-10 data set 
demonstrated that the proposed technique for 
constructing analogs allows for a comparative 
quality of classification by the ensemble clas-
sifier. Using MLP-Mixer analogs provided an 
improvement of 4.6 %, and CCT analogs – 5.9 %
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1. Introduction

Neural networks for categorizing objects in images are 
becoming increasingly widespread. However, new applica-
tion areas are characterized primarily by a small amount 
of initial labeled data for training neural networks. For 
example, the BloodMNIST microscope image set of blood 
samples [1] contains a total of 17,092 images. A similar 
dataset for blood testing for malaria parasites [2] contains 
27,588 images. The set of CT images for training neural 
networks to classify COVID-19 contains 6752 images of 
the lungs of 4154 patients [3, 4]. At the same time, the main 
trend in the development of neural networks for classifying 
objects in images is the construction of very large networks 
with tens and hundreds of millions of weight coefficients, 
which are trained on very large data sets. For example, a 
neural network with the ViT-Huge (VisionTransformer) ar-
chitecture [5] contains more than 632 million customizable 
weighting coefficients and was trained on the JFT-300M 

dataset (internal Google dataset) [6], containing 303 mil-
lion images.

Even if such a neural network is retrained within the 
framework of transfer learning on a small data set, it will 
not show high performance with a very large volume  of cal-
culations to perform classification. Therefore, for small data 
sets, special neural networks are designed with a relatively 
small amount of computation, acceptable in practice. Such 
networks must be fully trained from initial conditions to 
steady state on these small data sets. When designing such 
neural networks, various approaches are used that can be 
combined and complement each other. One of the most effec-
tive techniques for combining seems to be the construction 
of ensemble classifiers with stacking [7].

Such classifiers have two stages. At the first stage, sev-
eral classifiers work in parallel; the output signals of these 
classifiers are combined by an additional neural network at 
the second stage. This ensures a high degree of parallelizabil-
ity of calculations. In addition, classifiers of the first stage 
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can be trained separately, and then used to train the second 
stage. The basis for the effectiveness of ensemble classifiers 
with stacking is the use of heterogeneous neural networks 
with structured processing at the first stage. With approxi-
mately the same classification quality, such neural networks 
make errors on different images. However, at present, the 
number of neural networks suitable for the first stage is 
limited [8]. This places a limit on the resulting improvement 
in classification quality of the entire ensemble classifier. To 
increase the number of neural networks at the first stage, it is 
necessary either to develop neural networks with a new pro-
cessing architecture, or to build analogs of already known 
networks [9].

Such analogs should have the same processing structure 
as the basic neural networks but make errors on different sets 
of images. Work [9] describes one of the methods for con-
structing analogs by rotating the original images. Due to the 
structured nature of image processing in the original neural 
network, the analog makes classification errors on another 
set of images. However, rotating images requires performing 
four floating-point multiplications and two floating-point 
addition operations, plus an integer operation for each pixel 
in the image. Therefore, it seems relevant to devise methods 
for obtaining analogs that require less computation.

2. Literature review and problem statement

The main types of neural network architectures for 
object recognition in images are convolutional neural net-
works (CNN), transformer-based architectures, and multi-
layer perceptron (MLP)-based architectures. Convolutional 
neural networks show good results [10, 11], but their pro-
cessing is not structured; the entire image is processed at 
once. Therefore, constructing analogs based on them for use 
in the first stage of an ensemble classifier does not lead to an 
improvement in the quality of classification [9]. Transform-
er-based architectures were developed later than convolu-
tional neural networks, are characterized by a high degree of 
structure and show better results [5]. However, most of these 
architectures are designed to be implemented on supercom-
puters and are trained on very large data sets. A study of 
the effectiveness of the classical architecture based on a 
transformer [5] showed that on small data sets it provides 
high quality classification of objects in images. However, the 
volume of calculations for such a transformer is many times 
greater than the volume of calculations for an ensemble clas-
sifier that has the same classification quality [8]. Therefore, 
to ensure a high ratio between the quality of classification 
and the volume of calculations, special modifications of 
transformers are built. The main idea of such modifications 
is not to process the entire image at once but to do it in parts 
and use one or another mechanism for mixing the processed 
fragments. Processing in parts provides structure to the 
architecture and reduces the amount of computation. Shuf-
fling image fragments makes it possible to take into account 
the relationships between all image fragments.

In [12], it was proposed to use convolution and self-at-
tention in simplified modifications of the transformer. That 
made it possible to take into account both local and global 
dependences between fragments of the input image with a 
relatively small volume of computation. In work [13] (CCT – 
Compact Convolutional Transformer), the main modifica-
tion of the transformer consisted of additional processing of 

each fragment of the input image by a convolutional neural 
network. That made it possible to radically reduce the vol-
ume of calculations while maintaining high classification 
quality. Additional processing of image fragments using 
CNN provides significant convenience when working with 
new data sets, allowing one to achieve high quality classifi-
cation [14]. The disadvantage of the architectures proposed 
in [12–14] is the reduction in the structure of processing due 
to the use of CNNs. This makes it difficult to obtain effective 
analogs. In work [15] (EANet – external attention MLP), 
by analogy with a transformer, modification was carried out 
by replacing standard attention modules that require a large 
volume of computation with external attention modules and 
the use of additional MLP modules. Simplification of the 
transformer architecture and the introduction of the Fourier 
transform into it for mixing image fragments also made it 
possible to significantly improve the ratio of the quality of 
classification of objects in images and the volume of calcu-
lations (Fnet – Transformer encoder with a standard un-
parameterized Fourier Transform) [16]. However, building 
a large number of analogs based on this approach does not 
seem promising. In work [17] (SwinTr – Hierarchical Vi-
sion Transformer using Shifted Windows), the transformer 
architecture was simplified by calculating self-attention not 
over the entire image but only inside the windows. Shuffling 
is achieved due to the fact that these windows partially 
overlap. In principle, based on this approach, it is possible 
to build a number of analogs using different combinations of 
windows, but this requires separate research.

The classifier architecture was radically simplified and 
structured in [18], in which MLP-Mixer (MLP Architecture 
for Vision) was proposed. The input image is divided into a 
lattice of fragments. The architecture involves a sequential 
connection of modules, each of which contains two groups 
of single-layer perceptrons. The first group processes each of 
the columns of the fragment lattice separately. The second 
group processes the results of the first group for each of 
the rows separately. A complete lattice of processed image 
fragments is transmitted between modules. At the output 
of the classifier, as in all architectures, there is a multilayer 
perceptron that generates the resulting output signals of the 
classifier. Work [19] proposed the gMLP (MLP with gating) 
architecture, which uses a similar approach, but instead of 
columns and rows, channel projections and spatial projec-
tions with multiplicative gating are used. The disadvantage 
of the architectures proposed in [18, 19] is the minimalism 
of construction, which does not imply internal variations 
that would allow the construction of their analogs. To 
improve the mechanism for mixing image fragments used 
in MLP-Mixer, work [20] introduced axis shift modules, 
which shift fragments vertically and horizontally inside 
fragment modules. As processing moves closer from the 
source image to the output vector, the size of the fragment 
modules decreases. This allows for better handling of local 
dependences. This approach to building an architecture 
potentially makes it possible to obtain different variations 
in block sizes and types of shifts for constructing analogs. 
However, it requires additional research. In works [18–20], 
classifier architectures use static mechanisms for mixing 
image fragments, which does not take into account the 
contents of these fragments. In [21], the DynaMixer archi-
tecture (Vision MLP Architecture with Dynamic Mixing) 
with dynamic integration of information using the dynamic 
formation of mixing matrices is proposed. However, de-
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quality. However, rotating images requires a significant 
volume of floating-point operations. It seems promising to 
study the possibility to design analogs by using only shifts, 
which do not require floating point operations at all.

3. The aim and objectives of the study

The goal of our work is to devise a technique for con-
structing analogs of neural networks applying shift opera-
tions for use at the first stage of an ensemble classifier with 
stacking in the task of classifying objects in images. This will 
make it possible to design analogs of basic neural networks 
without additional floating-point operations. Adding such 
analogs at the first stage will improve the resulting classifi-
cation quality of the ensemble classifier.

To achieve the goal, the following tasks were set:
– to determine the number of matching errors between 

analogs and the basic neural network using the example of 
MLP-Mixer and CCT;

– to study the dependence of the resulting classification 
quality of an ensemble classifier with stacking on the number 
of neural network analogs using the example of MLP-Mixer, 
CCT and the CIFAR-10 data set for different shift parameters;

– to investigate the effectiveness of using analogs ob-
tained using image shifts at the first stage of the ensemble 
classifier, in comparison with analogs obtained using image 
rotations.

4. The study materials and methods

The object of research in this work is ensemble classifiers 
with stacking, designed to classify objects in images in the 
presence of small sets of labeled data for training. The sub-
ject of research is analogs of basic neural networks of the first 
stage of an ensemble classifier. The CIFAR-10 dataset [27], 
containing 50,000 color images for training and 10,000 for 
testing, was taken as a data set. Image size is 32x32 pixels. 
The images belong to 10 classes: airplanes, cars, birds, cats, 
deer, dogs, frogs, horses, ships, trucks. Examples of images 
are shown in Fig. 1 [28].

The generalized architecture of the ensemble classifier 
is shown in Fig. 2 [9]. It consists of two stages. At the first 
stage, the input image is processed in parallel by M basic 
neural networks and L their analogs. Analogs differ from ba-
sic neural networks only in the presence of transformations 
q1, …, qL at their input. The output of each neural network is 
a support vector for all k classes of objects that may be in the 
input image x:

( ) ( ) ( ) ( )( )1 2, ,..., ,i i i ikP x p x p x p x=  		  (1)

where i is the classifier number,
pij(x) – support by the i-th classifier that the object in the 

image x belongs to the j-th class.
At the second stage, each of the support vectors is normal-

ized separately and fed to the multilayer perceptron (MLP):

( ) ( ){ }max ,i ijj
a x p x= 		   (2)

( ) ( ) ( )/ ,n
ij ij ip x p x a x=  	 (3)

where i is the classifier number, i=1,…,M+L.

spite the additional reduction in dimensions, the formation of 
mixing matrices increases the overall volume of calculations. 
Dynamic accounting of information contained in input images 
is also implemented in the DSM (Dynamic Spectrum Mixer 
for Visual Recognition) architecture [22]. The input image is 
converted into the frequency domain using a two-dimensional 
cosine transform. Only powerful components are retained 
for further processing, the rest are discarded. This provides a 
significant reduction in the volume of computation. Weighting 
coefficients are formed by a special dynamic generator, which 
takes into account which frequency components are left for the 
processed image. It should be noted that architectures with 
dynamic formation of the processing area make it difficult to 
build analogs of such classifiers since there is no fixed process-
ing structure. In [23], the MDMLP (multi-dimensional MLP) 
architecture was proposed, where a number of modifications of 
MLP-Mixer were suggested. First, the original image is split 
into overlapping fragments. Secondly, in addition to mixing 
by height and width, mixing by channels has been introduced. 
Thirdly, an attention module built on the basis of MLP was 
introduced into the architecture. All that made it possible to 
increase the quality of classification on small data sets com-
pared to MLP-Mixer. At the same time, additional mechanisms 
for mixing and overlapping fragments reduce the structure of 
processing, which makes these architectures less efficient when 
used as the first stage of an ensemble classifier with stacking. 
In [24], the column and row processing structure used in 
MLP-Mixer is replaced with processing of helical structures 
with different helix sizes. That made it possible to increase 
the quality of categorization. However, this method of mixing 
image fragments reduces the structure of processing, which 
makes it difficult to build effective analogs that make errors 
on images other than the same ones as the underlying network. 
Combining the idea of orthogonalizing convolutional layers by 
transferring processing to the frequency domain with mixing 
fragments vertically and horizontally in MLP-Mixer [18] made 
it possible to design an effective SplitMixer architecture (a 
simple and lightweight isotropic MLP-like architecture) [25]. 
It has a high ratio of classification accuracy to the required 
volume of calculations. However, the use of convolutional lay-
ers reduces the structure of the architecture and complicates 
the construction of analogs for the first stage of the ensemble 
classifier. The simplest technique for mixing image fragments 
is proposed in the Spatial-Shift MLP architecture [26]. Frag-
ments are combined into groups. The groups are superimposed 
on each other in a layered structure and then in this structure 
the layers are shifted along two axes relative to each other. 
Potentially, the construction of analogs of such an architecture 
is possible due to various options for constructing groups and 
options for shifts. However, communication between groups re-
quires additional floating-point operations. Providing a variety 
of classification results with analogs will lead to an increase in 
the volume of calculations.

Most of the considered approaches to constructing 
new architectures involve performing a certain volume of 
floating-point operations, which will lead not to a decrease 
but to an increase in the volume of calculations when de-
signing analogs of neural networks. The simplest and most 
studied solution was proposed in [9]. Analogs are obtained 
by rotating the input images at different angles. Due to the 
structured processing in basic neural networks, analogs 
make errors in other images. Joint processing of the results of 
the first-stage classifiers at the second stage of the ensemble 
classifier allows one to increase the resulting classification 
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Multilayer perceptron (MLP) [29] contains three layers:
– input layer of dimensionally k×(M+L);
– hidden layer of dimensionally 

(k–1)×(M+L), activation function Relu;
– output layer of dimensionality k, soft-

max activation function.
The class of the object in the current 

image x is determined by the channel num-
ber at the MLP output with the maximum 
value:

( ) ( )( ){ }arg max ,jj
class x z x= 	 (4)

where zj(x) is the signal at the j-th output of 
MLP for the input image x, j=1,…,k.

Transformations q are cyclic shifts of rows 
or columns of pixels in the input image in ac-
cordance with the shift vectors:

( )1 2 32, ,..., ,r r r re e e e=  		  (5)

where ers are integers in the range from 0 to D, 
generated by a random number generator with 
a uniform distribution.

Each row (or column) of the input image is 
cyclically shifted by ers positions. If ers=0, then 
the line is not shifted. For each of the analogs, 
its own shift vector is formed, which remains 
unchanged during training and testing.

The dependence of the efficiency of using 
analogs depending on the value of D, as well as 
the differences when shifting along rows and 
columns, is subject to research.

In addition, the efficiency of using sparse 
shift vectors with D=1 was studied:

( )1 2 32, ,..., ,f f f fe e e e=  	 (6)

where the elements of this vector are calculat-
ed using two independent vectors 1

re  and 2
re  

by logical multiplication of the corresponding 
components:

1 2

2

  if 1,

0   if 0.
ri ri

fi
ri

e e
e

e

 ==  =

 
	 (7)

The number of unities in the vector ef is a 
random variable. The corresponding distribu-
tion obtained over 10,000 implementations is 
shown in Fig. 3.

For comparability with the results of 
work [9], the same neural networks were taken 
as basic first-stage classifiers. These are net-
works based on MLP architecture: MLP-Mix-
er [18], EANet [15], and gMLP [19]. As well 
as networks based on transformers: CCT [13], 
Fnet [16], and SwinTr [17]. The programs of 
these networks and their detailed descriptions 
are given in [30]. They are written in py-
thon using the Keras, TensorFlow, and Addons 
libraries. The initial values for the weight-
ing coefficients were set randomly according  
to Xavier’s initialization [31]. Training was 
performed on the training data for 50 epochs. 
The results are given in Table 1 [8].

To investigate the effectiveness of using analogs built 
using shifts, analogs were built for MLP-Mixer and CCT.  

 

 
 

  
Fig. 1. Sample images from the CIFAR-10 set

 

 
  

Fig. 2. A generalized architecture of an ensemble classifier with staking

 

 
  

Fig. 3. Distribution of the number of unities in a sparse shift vector
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They were trained in the same way as basic neural  
networks.

Table 1

Parameters of classifiers of the first stage after training

Neural network Quality of classification Number of weights

CCT 0.8021 408139

EANet 0.6788 355530

FNet 0.7572 582410

SwinTr 0.7128 151386

MLP-Mixer 0.7674 219658

gMLP 0.7405 862218

MLP training was carried out using already trained 
first-stage classifiers for 10 epochs. 100 implementations 
were performed, and the best result was selected from them.

Classification quality was defined as the ratio of correct-
ly recognized objects in test images to the total number of 
test images equal to 10,000.

All calculations were performed on the Colab platform 
using the A-100 GPU [32].

5. Results of investigating the effectiveness of a 
technique for constructing analogs of neural networks 

using shift operations

5. 1. Examining the number of matching errors be-
tween analogs and the basic neural network

Table 2 gives the number of matching errors for the 
basic neural network MLP-Mixer (designation 0_1) and 
ten implementations of its analog, differing in their random 
shift vector along the rows, with D=1. The first digit in the 
designation is the D value, the second is the implementation 
number. Data in Tables 2–4 are obtained from the results of 
classification of data from the training data set (50,000 im-
ages) after 50 epochs of training on the same data set.

Along the diagonal in the Table 2 is the number of errors 
made by the neural network itself and its analogs. Off the 
diagonal, the number of identical errors made by the neural 
network/analogs, indicated vertically and horizontally, is in-
dicated. Table 2 shows that the number of errors made by an-
alogs is comparable to the number of errors of the base neural 
network and may even be lower. The number of matching 
errors made by different networks is 57–65 % of the number 
of errors of the basic neural network.

Table 3 gives the number of matching errors made by 
the basic neural network MLP-Mixer (0_1) and a group of 
its analogs. Table 4 – CCT (0_1) and a group of its analogs.

Table 3

Number of matching errors in the neural network group 	
for MLP-Mixer

Neural  
network group

0_1
0_1 
1_1

0_1 
1_1 
1_2

0_1 
1_1 
1_2 
1_3

0_1 
1_1 
1_2 
1_3 
1_4

0_1 
1_1 
1_2 
1_3 
1_4 
1_5

0_1 
1_1 
1_2 
1_3 
1_4 
1_5 
1_6

0_1 
1_1 
1_2 
1_3 
1_4 
1_5 
1_6 
1_7

Number of 
matching errors 

made by all 
networks in  
the group

8785 5229 892 140 25 2 1 0

Table 4

Number of matching errors in the neural network group 	
for CCT

Neural network group 0_1
0_1 
1_1

0_1 
1_1 
1_2

0_1 
1_1 
1_2 
1_3

0_1 
1_1 
1_2 
1_3 
1_4

0_1 
1_1 
1_2 
1_3 
1_4 
1_5

Number of matching  
errors made by all  

networks in the group
7023 3541 558 69 8 0

Tables 3, 4 demonstrate that analogs make a significant 
number of their mistakes on different images. In a group con-
sisting of the base MLP-Mixer neural network and seven ana-
logs, there are no matching errors that all eight neural networks 
make. And for CCT, such a group contains only 6 networks.

5. 2. Investigating dependence of the resulting clas-
sification quality on the number of analogs of the neural 
network

This study was conducted on a complete ensemble clas-
sifier architecture. The base neural network and its analogs 
were pre-trained for 50 epochs on a training data set. Then 
their weighting coefficients remained constant and MLP was 

trained for 10 epochs also on the training 
data set. The MLP training was repeated 
100 times, and the best set of weights was 
selected. After this, all weighting coefficients 
of the ensemble classifier remained constant 
and the quality of classification by the ensem-
ble classifier of objects was checked on images 
from the test dataset (10,000 images).

Table 5 gives the quality of classifica-
tion by the ensemble classifier of objects 
on images from the test data set for various 
values of the D range for the formation of 
shift vectors. At the first stage of the en-
semble classifier, the basic neural network 
MLP-Mixer and N of its analogs were used. 
The cyclic shift of the input images was 
carried out line by line.

Table 2

Number of matching errors

Neural  
network 

0_1 1_1 1_2 1_3 1_4 1_5 1_6 1_7 1_8 1_9 1_10

0_1 8785 5229 5392 5117 5311 5292 5161 5433 5365 4967 5172
1_1 5229 8722 5425 5224 5257 5323 5407 5445 5429 5020 5381
1_2 5392 5425 8865 5133 5377 5327 5293 5539 5368 5097 5318
1_3 5117 5224 5133 8295 5179 5211 5123 5405 5317 4970 5285
1_4 5311 5257 5377 5179 8758 5435 5227 5699 5442 5177 5349
1_5 5292 5323 5327 5211 5435 8656 5277 5521 5327 5064 5315
1_6 5161 5407 5293 5123 5227 5277 8598 5546 5416 5031 5347
1_7 5433 5445 5539 5405 5699 5521 5546 9154 5742 5327 5612
1_8 5365 5429 5368 5317 5442 5327 5416 5742 9587 5172 5571
1_9 4967 5020 5097 4970 5177 5064 5031 5327 5172 7958 5074

1_10 5172 5381 5318 5285 5349 5315 5347 5612 5571 5074 8942
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Table 5 demonstrates that increasing the range of shifts 
leads to a significant deterioration in the quality of clas-
sification. For the range D=1, the quality of classification 
increases with the number of analogs used up to N=9. When 
N=10, the same value is obtained. At the same time, the in-
crease in classification quality increased from 0.7674 (with-
out analogs, Table 1) to 0.7965 (for 9 analogs) or by 3.8 %. 
This corresponds to a reduction in the number of classifica-
tion errors by 291 or 12.5 %.

Table 5

Dependence of classification quality on the number of analogs 
and on the range of shifts in the formation of shift vectors

No. D=1 D=2 D=3 D=4 D=5 D=6

1 0.7828 0.7790 0.7818 0.7783 0.7755 0.7766

2 0.7856 0.7829 0.7829 0.7805 0.7794 0.7765

3 0.7910 0.7896 0.7840 0.7816 0.7823 0.7776

4 0.7920 0.7917 0.7863 0.7845 0.7833 0.7803

5 0.7936 0.7905 0.7852 0.7835 0.7841 0.7772

6 0.7953 0.7907 0.7842 0.7851 0.7824 0.7773

7 0.7957 0.7915 0.7859 0.7850 0.7840 0.7775

8 0.7954 0.7902 0.7861 0.7865 0.7838 0.7772

9 0.7965 0.7913 0.7860 0.7868 0.7841 0.7775

10 0.7965 0.7918 0.7873 0.7867 0.7835 0.7778

Similar data are given in Table 6, which compares row 
and column shifts for the range D=1 and the use of sparse 
shift vectors (DP – column shift, DL – row shift).

The data in Table 6 show that the use of sparse shift vec-
tors and row shifts provides some advantage in classification 
quality and allows us to obtain a quality of 0.8029 when 
using 12 analogs. This represents a 4.6 % improvement in 
quality or a 15 % reduction in classification errors.

Table 6

Dependence of classification quality on the number of 
analogs for MLP-Mixer

No.
D=1  

Line shift
D=1  

Column shift
DР  

Column shift
DL  

Line shift

1 0.7828 0.7870 0.7828 0.7792

2 0.7856 0.7900 0.7902 0.7881

3 0.7910 0.7936 0.7943 0.7912

4 0.7920 0.7942 0.7949 0.7931

5 0.7936 0.7951 0.7969 0.7972

6 0.7953 0.7956 0.7987 0.8000

7 0.7957 0.7985 0.7995 0.8006

8 0.7954 0.7989 0.8004 0.8002

9 0.7965 0.7985 0.8012 0.8019

10 0.7965 0.7992 0.8015 0.8010

11 0.7975 0.7981 0.8011 0.8023

12 0.7972 0.7982 0.8007 0.8029

Table 7 gives similar data for the CCT basic classifier. 
A single classifier has a classification quality on the test 

data set of 0.8021 or 1979 errors (Table 1). The data in Ta-
ble 7 show that by increasing the number of analogs used to 
11, it is possible to increase the quality of classification to 
0.8492 (an increase of 5.9 %) and, accordingly, reduce the 
number of errors to 1508 (a decrease of 23.8 %). The data in 
Table 7 also demonstrate the advantage of using sparse shift 
vectors and row shifts.

Table 7

Dependence of classification quality on the number of 
analogs for CCT

No.
D=1  

Line shift
D=1  

Column shift
DР  

Column shift
DL  

Line shift

1 0.8242 0.8254 0.8223 0.8201

2 0.8295 0.8292 0.8286 0.8289

3 0.8340 0.8330 0.8342 0.8346

4 0.8372 0.8335 0.8352 0.8363

5 0.8381 0.8369 0.8377 0.8395

6 0.8400 0.8384 0.8413 0.8407

7 0.8414 0.8381 0.8424 0.8444

8 0.8420 0.8393 0.8417 0.8470

9 0.8428 0.8407 0.8446 0.8474

10 0.8425 0.8403 0.8439 0.8483

11 0.8434 0.8403 0.8435 0.8492

12 0.8422 0.8409 0.8449 0.8491

5. 3. Investigating the effectiveness of using analogs 
obtained using image shifts and rotations

Training was carried out on a set of training images. 
The resulting classification quality was checked on a test 
set of images with constant weight coefficients of the entire 
ensemble classifier.

The results of comparing the effectiveness of using 
analogs obtained using image rotations and shifts are 
given in Table 8. For comparability of results, the basic 
classifiers and data on analogs with rotation are taken 
from [9]. For shifts, only sparse shift vectors and row 
shifts were used. The selection of the best shift vectors 
was not carried out; once-generated vectors with random 
values were used. The change in the number of errors 
was calculated for ensemble classifiers with analogs at 
the first stage compared to analog classifiers with the 
same set of basic neural networks at the first stage, but 
without analogs.

The data in Table 8 show that adding MLP-Mixer 
analogs obtained by rotating images always led to some 
improvement in the classification quality of the entire en-
semble classifier. In contrast, the use of MLP-Mixer analogs 
obtained by the shift method for some sets of base classifiers 
gave better results (–12 % errors) than rotation (–11 %), and 
for others – worse results (+0.7 % errors).

Table 8

Quality of classification of the ensemble classifier

First stage classifiers Quality of classification Number of errors Change in the number of errors

1 2 3 4

CCT+EANet 0.8184 1816 0 %

CCT+EANet+2 analogs MLT-Mixer with rotation 0.8390 1610 –11 %

CCT+EANet+2 analogs MLT-Mixer with rotation 0.8402 1598 –12 %
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The use of CCT analogs always provided an improve-
ment in classification quality, both compared to the situ-
ation without the use of analogs and compared to the use 
of MLP-Mixer analogs obtained by rotation and shift. 
The range of error reduction resulting from the addition of 
sheared CCT analogs was from 3.1 % to 13 %.

6. Discussion of results of investigating the use of analogs 
of basic classifiers in ensemble classifiers

A distinctive feature of the proposed method, in contrast 
to well-known works, is the complete absence of additional 
floating point arithmetic operations for constructing ana-
logs of basic neural networks. Analogs are obtained only by 
cyclically shifting some rows or columns of the input image.

Increasing the number of neural networks with struc-
tured processing of input images at the first stage of the 
ensemble classifier is possible in two ways. The first is the 
development of new architectures that differ from the known 
ones. Thus, in works [12–17], the architecture of transform-
ers was taken as a basis and modifications were made to 
improve the ratio of classification quality to the volume of 
computation on small data sets. In [18], a new architecture 
based on MLP with a very high degree of structured pro-
cessing was proposed. Its further modifications are reported 
in [18–26]. The disadvantage of this approach is that the 
number of known architectures that can be used at the first 
stage of the ensemble classifier is currently limited. New 
architectures are developed quite rarely, and their number 
will not increase significantly in the near future. The second 
approach, which complements the first, is the development of 
methods for constructing analogs of basic neural networks 

that would have the properties of basic ones but would make 
classification errors on other input images. The only known 
work in this area is [9], in which the use of rotations of input 
images at different fixed angles was proposed to construct 
analogs. The disadvantages of this method are the need to 
perform a significant volume of floating-point operations to 
rotate images and the limited number of angles by which it is 
advisable to rotate images. Our paper proposes a method that 
eliminates both of these disadvantages. To obtain analogs, it 
is proposed to use cyclic shifts of columns or rows of input im-
ages, that is, the need for additional floating-point operations 
has disappeared. The number of vectors specifying shifts is 
practically unlimited, that is, the number of generated ana-
logs can be very large. The comparison (Table 8) showed that 
with the indicated advantages, the proposed method provides 
comparable and even better classification quality compared to 
using rotations of input images to form analogs.

Our study showed that shifting the columns and rows of 
input images makes it possible to obtain analogs of the basic 
neural networks of an ensemble classifier, the use of which at 
the first stage improves the quality of classification. This is 
explained by the fact that to use the first stage of an ensem-
ble classifier with stacking, neural networks with structured 
processing of input signals are required. The structured 
processing leads to the fact that the cyclic shift of rows and 
columns changes the errors that the neural network makes. 
Combining the results of neural networks that make errors 
on different sets of images makes it possible to improve the 
resulting classification quality at the second stage.

As follows from Table 2, a large number of analogs ob-
tained using shifts allows the selection of analogs with the 
best classification quality. This is an additional advantage of 
the proposed method for forming analogs.

1 2 3 4

CCT+EANet+2 analogs CCT with rotation 0.8429 1571 –13 %

CCT+EANet+MLT-Mixer 0.8401 1599 0 %

CCT+EANet+MLT-Mixer+2 analogs MLT-Mixer  
with rotation

0.8425 1575 –1.5 %

CCT+EANet+MLT-Mixer+2 analogs MLT-Mixer  
with rotation

0.8436 1564 –2.2 %

CCT+EANet+MLT-Mixer+2 analogs CCT with rotation 0.8482 1518 –5 %

CCT+EANet+MLT-Mixer+FNet 0.8445 1555 0 %

CCT+EANet+MLT-Mixer+FNet+2 analogs MLT-Mixer 
with rotation

0.8458 1542 –0.8 %

CCT+EANet+MLT-Mixer+FNet+2 analogs MLT-Mixer 
with shift

0.8458 1542 –0.8 %

CCT+EANet+MLT-Mixer+FNet+2 analogs CCT with shift 0.8496 1504 –3.3 %

CCT+EANet+MLT-Mixer+FNet+gMLP 0.8457 1543 0 %

CCT+EANet+MLT-Mixer+FNet+gMLP+2 analogs 
MLT-Mixer with rotation

0.8471 1529 –1 %

CCT+EANet+MLT-Mixer+FNet+gMLP+2 analogs 
MLT-Mixer with shift

0.8457 1543 0 %

CCT+EANet+MLT-Mixer+FNet+gMLP+2 analogs CCT 
with shift

0.8514 1486 –3.7 %

CCT+EANet+MLT-Mixer+FNet+gMLP+SwinTr 0.8468 1 532 0 %

CCT+EANet+MLT-Mixer+FNet+gMLP+SwinTr +2 analogs 
MLT-Mixer with rotation

0.8482 1518 –1 %

CCT+EANet+MLT-Mixer+FNet+gMLP+SwinTr+2 analogs 
MLT-Mixer with shift

0.8457 1543 +0.7 %

CCT+EANet+MLT-Mixer+FNet+gMLP+SwinTr+2 analogs 
CCT with shift

0.8515 1485 –3.1 %

Continuation of Table 8
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As follows from Tables 5–7, the best results are provided 
by sparse shift vectors with a shift range of D=1. On aver-
age, such shift vectors require only 8 cyclic shifts of rows or 
columns per position (Fig. 3).

A comparison of the analogs of the neural networks 
MLP-Mixer and CCT showed that their analogs are sig-
nificantly different. This suggests that in the practical 
implementation of ensemble classifiers with stacking, it is 
necessary to select analogs that provide the highest result-
ing classification quality. Comparison of Tables 3, 4 reveals 
that CCT analogs are highly diverse. The group of CCT 
and five analogs no longer has the same errors that all first-
stage classifiers make. For MLP-Mixer, such a group should 
already contain 7 analogs. From Tables 6, 7, it is clear that 
increasing the number of MLP-Mixer analogs at the first 
stage to 12 allows increasing the resulting classification 
quality by 4.6 %. At the same time, for CCT this increase 
is 5.9 %. Adding two CCT analogs to different numbers of 
basic first-stage classifiers (Table 8) provided higher quality 
by 1–3.7 % compared to two MLP-Mixer analogs.

The limitations of the proposed approach that we can 
note are the need for additional research to select analogs of 
base classifiers that provide the greatest increase in the re-
sulting classification quality of the entire ensemble classifier.

The disadvantage of the proposed approach is that with 
an increase in the number of analogs at the first stage, the 
increase in the resulting classification quality decreases 
and almost completely stops in the example under consid-
eration when the number of analogs is 11–12 (Tables 6, 7). 
Overcoming this shortcoming requires additional research 
and the construction of new neural networks with struc-
tured processing. One of the options for developing this 
approach is to introduce dynamic cyclic shifts directly into 
the architecture of basic neural networks. This direction 
seems promising for finer adjustment of analogs during the 
learning process in order to improve the resulting quality of 
classification by an ensemble classifier.

7. Conclusions 

1. Using the example of the basic neural networks 
MLP-Mixer, CCT, and the CIFAR-10 data set, it has been 
shown that the proposed method for generating analogs 
provides significantly different sets of images in which the 
basic neural network and its analogs make errors. This leads 
to an increase in the resulting classification quality of the 

ensemble classifier with stacking when adding analogs to 
the first stage.

2. When using MLP-Mixer analogs built according 
to the proposed method at the first stage of the ensem-
ble classifier, increasing the number of analogs from 0 
to 12 ensured an increase in the classification quality 
of the ensemble classifier from 0.7674 to 0.8029, that is, 
by 4.6 %. Accordingly, the number of errors decreased 
from 2326 to 1971, or by 15 %. For CCT analogs, the in-
crease in classification quality was from 0.8021 to 0.8492, 
or 5.9 %. The number of errors decreased from 1979 to 
1508, or by 23.8 %.

3. Comparison with analogs built by the image rota-
tion method showed that analogs of MLP-Mixer, built by 
the proposed method, give a better resulting classification 
quality by 1–0.7 % only with a small number of base neural 
networks at the first stage. At the same time, CCT analogs 
built using shifts provided an advantage over MLP-Mixer 
analogs (with rotation) for all studied combinations of basic 
neural networks by 2–3.5 %.
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