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1. Introduction

Disks of variable thickness are one of the most important 
structural elements of turbines for various purposes, engines, 
and other high-speed machines and mechanisms, in partic-
ular in aircraft and rocket engineering [1–13]. Of practical 
importance are special-purpose disks in which radial vibra-
tions are deliberately excited for technological purposes. In 
addition, disks can be used as active acoustic elements in 
transducers that are made of piezoceramic or magnetostric-
tive materials. Ensuring the strength of disks during their 
operation is related to the analysis of the vibrations that 
occur in them. The appearance of high-intensity fluctuations 
may be the cause of destructive stresses.

One of the approaches to the search for enabling an 
increased resource of oscillating disks is to operate them 
under special operating conditions [5, 6], or to introduce 
certain heterogeneity into the characteristics of the ma-

terial from which the disk is made (anisotropy of the ma-
terial, variable coefficient of elasticity, variable density). 
In particular, in order to solve the problem of reducing 
critical stresses, in some works it is proposed to consider 
disk models made of orthotropic material [7, 8] or when the 
disks have a radially stepped shape [9]. In the case when the 
disk profile is determined by an arbitrary law of thickness 
change, the corresponding problem of oscillations cannot 
be solved analytically at present. This applies to all three 
types of disk oscillation. The relevance of this scientific 
area relates to the fact that in order to analyze the intrinsic 
radial vibrations of a disk of variable thickness, it is nec-
essary to have an analytical solution to the corresponding 
boundary value problem. This requirement is due to the 
fact that in order to ensure the required operational re-
source of the structure with disks, it is necessary to have 
information about the distribution of radial movements and 
stresses in the disk.
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An analytical solution is obtained for the problem of 
radial vibrations of disks of variable thickness. A disk 
is considered that is rigidly fixed along the inner cir-
cular contour (ρ=0.2) and free on the outer contour 
(ρ=1). The thickness of the disk varies according to the 
law H=H0(ρν+μ+Cρν-μ)2, where H0, C, μ are arbitrary 
constants; ν is the Poisson’s ratio. The exact solution 
of the problem is known only for H=const and H=1/ρ3. 
However, these solutions are not sufficient to study the 
vibrations of disks of other configurations. The proposed 
law of thickness variation H(ρ) allows us to obtain exact 
solutions to the problem at any value of the constant coef-
ficients H0, C, μ, ν. By varying the values of these coeffi-
cients within a single given function, it is possible to set 
the disk profile of the desired appearance. The methods 
used to obtain these solutions are based on appropriate 
mathematical transformations of the original equation.

The problem of disk oscillations is solved for four vari-
ants of thickness change. The natural frequencies for the 
first three forms of vibration are calculated. Comparison 
of the natural frequencies found for the three cases of the 
disk profile gently sloping indicates an increase in their 
values with an increase in the bending of the disk thick-
ness. Based on the obtained eigenfunctions, the stresses 
were calculated and the nature of their distribution along 
the radial coordinate of the disk was determined. 

The strength of the disks under resonant radial vibra-
tions was evaluated using a special criterion. It is found 
that the most limiting, i.e., destructive principal stress 
σ1=σr at the first (main) form of vibration should be cho-
sen from the ratio σr≈0.79 [σ-1], where [σ-1] is the endur-
ance limit of the disk material under uniform loading. 
The results obtained can be used to predict the stress-
strain state of disks of variable profile under their radi-
al vibrations
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2. Literature review and problem statement

The results of analytical studies on disks of variable 
thickness under the mode of radial vibrations are limited 
because of known difficulties of a mathematical nature that 
arise when trying to solve the differential equation of the 
problem. Our review of current literature [2–13] revealed 
that the solutions to the problems of oscillations of disks of 
variable thickness are extremely necessary for specialists 
in the field of mechanics and applied acoustics. This is con-
firmed by the presence of a significant number of various 
practical applications of disks as structural elements of 
machines.

In work [2], a survey analysis of disk vibrations in tur-
bomachines of different designs under conditions of different 
environments was carried out. The causes of possible vibra-
tions, which include high rotation speed, cavitation, and 
resonant oscillations, have been studied. It is noted that the 
presence of these factors can cause structural wear, damage 
to machine components, and the appearance of cracks on 
the surface. However, the work does not clearly separate the 
types of oscillations.

In [3], the object of research is a rotating disk of variable 
thickness. In the introductory part of the work, examples of 
the practical application of such disks in various fields are 
given. The distribution of shear stresses and deformations 
was evaluated, various functions of the disk thickness were 
determined, and a comparison of stresses depending on the 
type of thickness was given. It is noted that extreme tangen-
tial stresses can be the cause of disk destruction. The deter-
mination of natural frequencies and displacements for disks 
whose thickness varies according to hyperbolic, exponential, 
and parabolic laws is carried out numerically. But the ana-
lytical solution to this problem is not given.

Work [4] reports the study of damage in the disks of 
GTE compressors, which are used in military fighters and 
training aircraft. It is noted that damage in such elements 
is associated with the presence of highly deformed low-cycle 
fatigue. That is, we are talking about the study of low-cycle 
fatigue cracks in the places of bolt holes of GTE disks. How-
ever, the work does not indicate which type of oscillations 
are caused by fatigue damage. To clarify this question, it is 
necessary to have the results of the appropriate mathemati-
cal analysis.

In [5], the magnetoelastic problem for a rotating disk of 
variable thickness is considered. The operation of the disk 
is considered under special conditions (magnetic field, high 
temperature), and thermal stresses are determined using a 
numerical method. This work cannot be an aid to solving the 
problem in relation to the analytical solution to the problem.

As in the previous work, in paper [6], a disk of variable 
thickness was considered under special operating condi-
tions, that is, at temperature and density. In particular, the 
analysis of the distribution of radial stresses was carried 
out and special approaches to the solution of the differential 
equation of radial vibrations were determined. At the same 
time, the disk itself is defined by a hyperbolic profile and 
is made of a rubber-like material. The available calculation 
method (based on the Seth transformation theory) cannot 
be effectively used for the research tasks.

In work [7], in order to achieve higher working speeds 
of disk rotation, an orthotropy of reinforcement is proposed. 
This approach, according to the authors, makes it possible 

to influence the stress distribution and in this way, it is 
possible to increase the service life of the rotating disks. The 
criterion of disk destruction based on the Tsai-Wu hypoth-
esis was considered and the possible values of disk rupture 
velocities were investigated on its basis. This reinforced disk 
is designed on the basis of numerical calculations. Disk os-
cillations are not considered in the paper but reinforcement 
is useful because even in the case of oscillations it will act as 
a strengthening factor.

An anisotropic disk of constant thickness is considered 
in [9]. The phenomenon of anisotropy implemented in this 
disk makes it possible to reduce radial stresses. In the study, 
disks made of isotropic material are considered. Therefore, 
the calculation methods given are not appropriate for the 
case study.

In theoretical paper [10], a disk with a hyperbolic profile 
was considered and the maximum rotational speeds were cal-
culated. Two methods of analytical approximation were used 
for calculations. The estimated distributions of stresses and 
radial displacements of the disk are given. Disk oscillations 
are not considered in the work, however, in the case of radial 
vibrations, the stress distribution may have a similar form.

In [13], the rotor system of a steam turbine with a system 
of disks of variable thickness was modeled. This simulation 
is performed using the finite element method. The finite ele-
ment method, as an alternative to analytical methods, is not 
considered in the paper.

Thus, radial vibrations of disks are not considered in the 
aforementioned and other works. It is known, among other 
things, that the analytical solution to this type of problem in 
Bessel functions is found only when the thickness of the disk 
is constant or determined by a hyperbolic dependence [14]. 
For all other cases of variable thickness, the solution to the 
differential equation of the problem is not found. Hence the 
statement of the problem. Due to the noted circumstances 
regarding the difficulties of the analytical solution of the 
problem, researchers are forced to use approximate numeri-
cal methods. Violating the above-mentioned permanent idea 
about the peculiar uniqueness of the dependence is possible 
only by the real development of methods or approaches that 
allow obtaining accurate analytical solutions to this problem 
in cases that differ from the variant of hyperbolic depen-
dence. It is desirable that the new solutions have a simple 
form and also be valid for significantly different thickness 
profiles of the disks. If the general solution of the differential 
equation, as a mathematical model of oscillations of a given 
type, is found, then it is possible to find the frequencies 
without difficulty and construct the forms of the natural 
oscillations, as well as study the stress distribution.

3. The aim and objectives of the study

The purpose of our study is a closed analytical solution 
to the problem of radial vibrations of disks of variable thick-
ness. The thickness of the disk changes according to a spe-
cially chosen law. This will make it possible to find out the 
nature of the distribution of shapes, frequencies, and stresses 
during free oscillations of real disks.

To achieve the goal, the following tasks were set:
– using the factorization method, transform the original 

differential equation into a form that makes it possible to de-
compose it into a system of two equations of the first order;
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– by extracting the first derivative, convert the equation 
to a form that has known solutions;

– to find the solution to the original equation by the 
method of symmetries;

– to consider the problem of radial vibrations of a disk 
of selected profiles, which is rigidly fixed along the inner 
contour.

4. The study materials and methods

The object of our study is a disk of variable thickness. The 
mathematical model of the research is the differential equa-
tion of small oscillations of a disk of variable thickness. The 
problem is stated within the framework of the Kirchhoff-La-
grange hypothesis, subject to the following assumptions. It is 
assumed that the disk is a body of revolution and that there is 
a plane of symmetry that is perpendicular to the central axis 
of the disk. It is accepted that the inclination of the side sur-
faces of the disk to this plane can be neglected. The thickness 
of the disk is small and is no more than 1/5 of its diameter. It is 
assumed that any point of this plane of symmetry oscillates in 
the same plane. In addition, any point of this plane moves only 
along the corresponding radius and at the same time there 
are no movements, both in the tangential direction and in the 
direction perpendicular to this plane of the disk.

Appropriate disk profile configurations are chosen to 
provide for an accurate analytical solution.

The method of successive trial calculations was used to 
solve the frequency equations.

The research results are intended for structural materials 
that comply with Hooke’s law.

5. Results of investigating the problem of radial 
vibrations of the disk

5. 1. Scheme of the factorization method for solving 
equations

The equation of the eigenforms of the radial vibrations of 
a disk of variable thickness takes the form [14]:

( ) ( )( )
( ) ( )( ) ( )( )2 2

/ 1/

/ 1/ 0,

R R H H

R H H

′′ ′ ′+ + ρ +

′+ ν ρ − ρ +λ =  	  (1)

where R=R(ρ) – radial movements;
ρ=r/a – relative radial coordinate;
r – variable radius;
a – disk radius;
H=H(ρ) – thickness of the disk;
ν – Poisson’s ratio;

( )( ) ( )2 2 2 21 / ;a gEλ = ω γ −ν 		  (2)

ω=2πf – circular frequency;
f – natural frequency;
γ – specific gravity;
g – acceleration of gravity;
E is the modulus of elasticity.
The solution to equation (1) must satisfy the boundary 

conditions of the problem. If the disk is rigidly fixed along 
the inner contour (ρ<1), then there should be no movements 
on this contour. This corresponds to the condition R(ρ0)=0. 

If the outer contour of the disk ρ=1 (r=a) is not fixed, then 
there are no radial stresses σr on it. This condition should be 
written in the form (R’+ν(R/ρ))ρ=1=0, that is R’(1)+νR(1)=0. 
After substituting the general solution into these conditions 
in the standard way, the eigenvalues λ are found and the 
eigenfrequencies are calculated according to formula (2) 
and the forms of eigenoscillations are constructed. It is ap-
propriate to recall that only one case of variable thickness is 
widely known, namely, the hyperbolic dependence H=H0/ρn, 
in which equation (1) has an exact analytical solution in 
Bessel functions [14]. At the same time, for these boundary 
conditions, when the disk is fixed along the contour ρ0<1, 
the function H(ρ) can only have an indicator of practical val-
ue n≥0. Since the mentioned dependence H=H0/ρn signifi-
cantly limits the possibilities for optimal design of geometric 
profiles of disks, in accordance with the stated purpose of the 
research, we present the following results.

The equation can be rewritten in the form:

( )
( )( ) ( ) ( )( )( )2 2

2 /

2 / / 1 / 0,

R D D R

R D D

′′ ′ ′+ +

′+ ν ρ − +ν ρ +λ = 	 (3)

where 

( ) ( ) ( )2 / / 1/ ;D D H H′ ′= + ρ  

2 ;D F H= = ρ  2 / .H D= ρ 		  (4)

For some D(ρ), equation (3) can be rewritten as:

( )( ) ( )2 2
/ 0.d d S R i Rρ+ ρ − λ = 		   (5)

In this case, the general solution to equation (3) can be 
represented as the sum of solutions R1 and R2 to the follow-
ing two first-order equations:

1 1 1 0;R SR i R′ + + λ =  2 2 2 0.R SR i R′ + − λ =  	 (6)

After opening expression (5) and comparing it with 
equation (3), S=D’/D; S ’+S2=(2ν/ρ)(D’/D)–((1+ν)/ρ) is ob-
tained. Hence, we have the equation for determining D(ρ):

( )2 2 1 0,D D D′′ ′ρ − νρ + +ν =  		  (7)

and also, according to (6), the solutions R1 and R2 and their 
sum:

( )( )1/ sin cos .R D A B= λρ+ λρ  		  (8)

The solution to equation (7) is not difficult, as it resem-
bles Euler’s equation:

( )( )
( )
( )

2
1

2
2

sin 3 / 4 4 ln
1 2 / 2 .

cos 3 / 4 4 ln

C
D

C

 − ν ρ+ = + ν
 + − ν ρ 

 	 (9)

As can be seen from these results, the factorization meth-
od made it possible to obtain the solution R(ρ) in elementary 
functions for D(ρ), the structure of which includes two inde-
pendent constants C1 and C2. These circumstances confirm 
the simplicity and effectiveness of the method since within 
one simple solution there are disk thicknesses of different 
profiles found, which depend on C1 and C2.
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5. 2. Scheme of the derivative extraction method for 
solving equations

After taking into account in equation (3) R=W(ρ)/D, a 
new equation is obtained:

( ) ( )( )
( ) ( )( )2 2

/ 2 / /
0.

1 /

D D D D
W W

′′ ′ − + ν ρ −
 ′′ + =
 − + ν ρ +λ 

 	 (10)

At:

( ) ( )( ) ( ) ( )
( )( ) ( )

2

2 2

/ 2 / / 1 /

1 / ,

D D D D

p p q

′′ ′− + ν ρ − +ν ρ =

= − − ρ −  	 (11)

then, instead of equation (10), we get:

( )( )( )( )2 2 21 / 0,W W q p p p′′ + λ − − − =  		  (12)

where q2, p are arbitrary constants.
The solution to this equation is known [15, 16] and there-

fore it can be rewritten in the form:

( ) ( )2 2 2 2
1/2 1/2 .p pW AJ q BY q− −

 = ρ λ − ρ + λ − ρ  
	 (13)

Condition (11) is an equation for determining the func-
tion D(ρ) and the presence or absence of the coefficient q in 
this equation predetermines its type. When q=0, you need to 
consider the Euler equation in the form:

( ) ( ) ( )( )2 21 3/4 1 3/40.5 1 2
1 2 .p p p pD C Cν + − − − ν + − −+ ν= ρ ρ + ρ 	 (14)

If p=0 or p=1, then, in this case, solutions (14) and (9) 
coincide. For all other values of p, the solution (14) remains 
unchanged. If q2≠0 is set in equation (11), then its solution 
can be found in the Bessel functions [16]:

( ) ( ) ( )0.5 1 2
1 2 ,D C I q C K q+ ν

µ µ = ρ ρ + ρ  	 (15)

where μ=(ν2+p(p–1)–3/4)1/2 – order of Bessel functions.
The results (14) and (15) for the functions D(ρ), which 

determine the variable configuration of the disk thick-
ness H(ρ)=D2/ρ, are more informative, compared to result (9), 
which is obtained by the factorization method. Thus, re-
sult (14) for D(ρ) has three independent constants (C1, C2, p) 
in its structure, and (15) has four (C1, C2, p, q). This made 
it possible to manage both the thickness of the disk and its 
movements R(ρ) more flexibly duriюng oscillations. In the 
solutions for R(ρ)=W/D and D(ρ), which are expressed in 
terms of Bessel functions, they are replaced by elementary 
ones, selecting the necessary value of the coefficient p for 
such replacement. It is known, for example, that Bessel func-
tions with half-integer index based on tabular relations can 
be expressed in terms of trigonometric and hyperbolic func-
tions. For solution (13), after taking p1=(0;1); p2=(–1; 2); 
p3=(–2; 3), we obtained:

( )

1 0

2 2
2 0 0

2 2
3 0 02

sin cos ,

; / ;

1
3 3 .

W W A k B k

k q W W W

W k W W


= = ρ+ ρ
′= λ − = − ρ 


′  = − ρ − ρ  ρ 

 		 (16)

It is well known that operations with elementary func-
tions are more convenient for calculations, therefore, if nec-
essary, the solution (15) for D(ρ) can be expressed in terms 
of such functions. For this, μ=n/2 (n=1; 3; 5; …)  is set and the 
value of p is determined. If the disk is solid, then in this case, 
for the thickness H(ρ)=D/ρ, it is necessary to set H(0)≠0 
and H(0)≠±∞. To construct H(ρ), the function D(ρ) in the 
form (14) is set, and when p=–1/2 or p=3/2, H=(C1ρ2ν+C2)2 

is obtained. For movements according to (13), the expres-
sion R=W/D=( J±1(λρ)+BY±1(λρ))/(C1ρ2ν+C2) is obtained.

5. 3. Scheme of the method of symmetries for solving 
equations

Equation (1) with parameters H(ρ) and R(ρ) can be 
transformed into its symmetry, that is, into a new equation 
with parameters H1(ρ) and R1(ρ). It acquired this form 
due to the fact that equation (1) at ρH=F=D2 is written in 
the form R’’+(F ’/F)R’+R((ν/ρ)(F ’/F)–(1+ν)/ρ2)+λ2)=0. Its 
symmetry:

21 1
1 1 1 2

1 1

1
0

F F
R R R

F F

′ ′ ν + ν″ ′  + + − +λ =
 ρ ρ 

was found by fulfilling the following dependences:

1 / ;R R V=  2
1 ;F FV= 2 2 2

1 ;mλ = λ +  2
1 1 1 .H F Dρ = =  	 (17)

In this case, V(ρ) is determined from the Bessel equa-
tion [16]:

( ) ( )2 2 2/ 0,V F F V m V− ν − ν′  ′′ ′+ ρ ρ − =  
  

 		  (18)

where m2 – arbitrary constant. 
At m=0, we obtained from (18):

( ) 2
1 21/ d .V C F Cν= ρ ρ+∫  		  (19)

The solution to the equation for R(ρ), as stated above, is 
known for F=ρn and is written in the form:

( ) ( ) ( )( )1 /2 ,nR AJ BY−
ψ ψ= ρ λρ + λρ  		 (20)

where 

( ) ( )

( ) ( )

2

2

0.5 1 4 1

0.5 1 4 1 4.

n n

n n

ψ = − − ν − −ν =

= − + ν − +

The results of the analytical construction of func-
tions D1(ρ) and R1(ρ) through the targeted transformation 
of equation (1) by the three given methods indicate that 
this research has achieved its goal. So, in particular, the 
dependences for D1(ρ) were obtained, which have more 
than one independent constant in their structure, which 
increases the possibilities for optimal selection of variable 
thickness of the disk. At the same time, the solutions to the 
problem about the oscillations of the disk R1(ρ) can be ob-
tained in a closed form. Moreover, due to additional inde-
pendent constants, it becomes possible to represent D1(ρ) 
or R1(ρ) in elementary functions in cases where these 
expressions are expressed in special functions, for example, 
in Bessel functions.
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5. 4. Applied implementation of theoretical results
The problem of radial vibrations of a disk, which is rig-

idly fixed on a shaft along its inner diameter, has been con-
sidered (Fig. 1). The relative dimensions of the disk are the 
outer radius ρ=1 and the fixing radius ρ0. The thickness of the 
disk H(ρ) is chosen based on the functions D(ρ) found above 
according to the ratio H=D2/ρ. In order to ensure reliability 
and simplify calculations from the calculation expressions 
obtained above for D(ρ), R(ρ), W(ρ), only those expressed 
through elementary functions, Bessel functions of zero, in-
teger or fractional-integer order were selected. Fig. 2 shows 
the normalized plots of functions H(ρ), which are construct-
ed when ρ0=0.2 and η=H(ρ0)/H(ρ=1)=5; ν=1/3. To con-
struct the H(ρ) curves, relation (15) was used, and therefore 
the function H=H0ρ2ν(ρμ+Cρ-μ)2, where 2

0 1 ;H C=  C=C2/C1; 
μ=(ν2+p(p–1)–3/4)1/2, is valid for the disk thickness. The solu-
tions to equation (1) for these H(ρ) according to expression (13) 
will take the form R=(AJp-0.5(λρ)+BYp-0.5(λρ))/(ρν(ρμ+Cρ-μ)). 
Depending on the values of the numerical parameter p, the val-
ue of μ changes, and the functions H(ρ) and R(ρ) also change 
along with it. In each of the individual cases, the constant C 
is selected from given initial conditions, for example, from the 
requirement to ensure the necessary ratio η=H(ρ0)/H(ρ=1). 
For example, with a value of η=5, the values of numerical and 
functional quantities are obtained (Fig. 2):

1)  1/ 2;p = 21 ;iµ = −ν 0.265;C = −

( ) ( )( )( )2
2 2 2

1 0 sin 1 ln cos 1 ln ;H H Cν= ρ −ν ρ + −ν ρ

( ) ( )( )0 0 / .R AJ BY H= λρ + λρ

2)  0p =  or 1;p =  

23 / 4 ;iµ = −ν 0.271;C = −

( )
( )( )

2
2

2
2 0

2

sin 3 / 4 ln
;

cos 3 / 4 ln
H H

C

ν

 −ν ρ + 
= ρ  

 + −ν ρ
 

( ) ( )( )sin cos / .R A B H= λρ + λρ

3)  3 / 2;p =  

;µ = ν

1.532;C = −

( )22
3 0 ;H H Cν= ρ +  ( ) ( )( )1 1 / .R AJ BY H= λρ + λρ

4) 2;p =

2 5 / 4;µ = ν +  1.352;C =

( )22
4 0 ;H H Cν µ −µ= ρ ρ + ρ

( ) ( )( )0 0/ ;С ν+µ ν−µ= − ρ − η ρ − η

2 5 / 4;µ = ν +

( ) ( )( )3/2 3/2 / .R AJ BY H= λρ + λρ

As a result, the following was found:

( ) ( )

( ) ( )( )

2 2

2 2

3/2 5/4 3/2 5/4

3/2 5/4 3/2 5/4

sin cos cos sin

sin cos / cos sin
.

A B
R

C

B A
A

C

+ν+ ν + +ν− ν +

+ν+ ν + +ν− ν +

λρ−λρ λρ + λρ+λρ λρ
= =

ρ + ρ

 λρ−λρ λρ + λρ+λρ λρ
=  

 ρ + ρ 
 (21)

5)  3
5 0 / ;H H= ρ  ( ) ( )( )3/2

2 2 .R AJ BY= ρ λρ + λρ

From the given disk thicknesses H(ρ) in the form of 
curves 1÷4, for which simple and accurate solutions R(ρ) 
of the main equation are obtained, one can choose those 
that are necessary based on relevant technological consid-
erations. Comparing the trajectory of these curves with 
a typical profile (Fig. 1), it was concluded that the most 
suitable for practical modeling or application are profiles 
based on curves 3, 4. It is noted that the thickness H5, 
which corresponds to plot 5, is given for comparison, and 
that has proven unsuitability of such a profile for practical 
implementation. It is at H=1/ρ3 and ν=1/4 that a solution 
can be found through the Bessel functions of the whole or-
der ( J2, Y2), which is given in [14]. In that work, the authors 
tried to use the function H=1/ρ3 and they found that due to 
its rapid decrease with increasing ρ, it cannot be the basis 
for practical implementation in calculations and design. 
That is why the authors decided to apply a rather cumber-
some approximate method for determining the frequencies 
and forms of oscillations of a disk whose profile is similar 
to curves 3 or 4.

For the final solution to the disk oscillation problem, it is 
necessary that the solution R(ρ) of equation (1) satisfies the 
boundary conditions that were given above, i.e.:

( )0 0;R′ ρ =  ( )( )
1

/ 0.R R
ρ=

′ + ν ρ =  	 (22)

In this case, according to (21) solution R(ρ):

( )

( )
( )

sin cos
/ ,

cos sin
m mR A CB

A

+µ −µ

 λρ−λρ λρ +
 = ρ + ρ + λρ+λρ λρ 
 

where

m=3/2+ν.

After entering R and R’ into conditions (22), two equa-
tions with unknowns A and B are obtained

( ) ( )
( ) ( )( )

( )
( )

0 0 0

0 0 0

2

2

sin cos

cos sin 0;

sin cos

cos sin 0,

A

B

A

B

 λρ −λρ λρ +  
 + λρ +λρ λρ =  
 λ +β λ −λβ λ +  


  + λ +β λ +λβ λ =  

 		  (23)

where 

( )

( ) ( )
1

3 / 2 3 / 2
.

1

m C m

C
C

C

+µ+ −µ
β = ν − =

+
µ− − µ+

=
+
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This system of equations will have a solution if its de-
terminant is taken equal to zero. This requirement, which 
is expressed by the frequency equation, led to the following 
expression – an equation with an unknown frequency pa-
rameter λ:

 

( )
( ) ( )

0

2 2 2
0 0 0

tg 1

1 / 1 .

 λ −ρ = 
   = λ β −ρ −λ ρ β +λ ρ +λ     	 (24)

Given (ρ0, ν, η), the coefficients C and β are determined, and 
then the unknown eigen(frequency) numbers λ1, λ2, … can be 
found from equation (24). With known frequency numbers λ, 
one or the other of the equations of system (23) can be used to 
construct the functions of the eigenforms of oscillations. For 
example, from the second equation of system (23) we find:

( ) ( )2 2sin cos
/ / .

cos sin
B A

   λ +β λ − λ +β λ +
   = −
   −λβ λ +λβ λ   

 	 (25)

After introducing the B/A ratio into the general solu-
tion R(ρ), a function is obtained to construct its own form 
for the given frequency parameter λ. From the frequency 
equation (24), several first roots λi (i=1, 2, …) were found for 
three different bending characteristics η=H(ρ0)/H(1) while 
maintaining other dimensions of the disk:

a) η=5; ρ0=0.2; ν=1/3. After calculations, C=1.352 was 
determined; β=–1.325, hence λ1=2.62419047; λ2=6.4531778; 
λ3=10.2228777;

b) η=3; ρ0=0.2; ν=1/3. As a result of the calculation, the 
value C=0.785 was determined; β=–1.641. Hence the roots 

of the frequency equation (24) λ1=2.4190727; λ2=6.3935865; 
λ3=10,1851395 were obtained;

c) η=1; ρ0=0,2; ν=1/3. After calculations, C=0.322 was 
obtained; β=–2.098. Then the frequency parameters for this 
disk bend will be equal to λ1=2.04143306; λ2=6.306195; 
λ3=10.1301076.

For comparison, the case for a disk of constant thickness 
is considered. When H(ρ)=const, the solution to equa-
tion (1) is found in the form [16] R=AJ1(λρ)+BY1(λρ)= 
=A( J1(λρ)+γY1(λρ)), where γ=B/A. From the boundary con-
ditions (22), the frequency equation:

( ) ( ) ( ) ( )

( )( ) ( ) ( )
( ) ( )

1 0 0 1 0 0

1 0 1

1 0 1

–

– 1– / 0
–

J Y Y J

J Y

Y J

λρ λ λρ λ

λ

−

 −
 
  

ρ λ
ν λ =

λρ λ

is obtained. When ρ0=0,2; and ν=1/3, the 
roots of this equation will be λ1=2.2249572; 
λ2=6.100853; λ3=9.9657101. The forms of 
the disk oscillations R(ρ) are plotted at 
γ=–J1(0.2λ)/Y1(0.2λ).

Comparisons of λi, which were found for 
three cases of disk profile flatness, indicate 
an increase in the values of the natural (res-
onant) frequencies (the frequency indicator is 
the number λi) with an increase in the curva-
ture η. Using (25), the form of natural oscilla-
tions can be constructed and, if necessary, the 
magnitude and nature of the stress distribu-
tion in the disk during its radial movements 
can be estimated. The normal stresses in the 

disk during its radial vibrations are calculated according to 
the formulas from [14]:

( ) ( )( ) ( )( )21
/ 1 / ;r E R R

a
′σ = −ν + ν ρ  

( ) ( )( ) ( )( )21
/ 1 1/ ,E R R

aθ ′σ = −ν ν + ρ  

where σr are radial stresses directed along the disk radius; 
σθ – tangential stresses directed in the perpendicular direc-
tion; a is the disk radius. After introducing the eigenfunc-
tions R(ρ) and R’(ρ) into the stress formulas, which have an 
arbitrary amplitude coefficient A (21), the corresponding 
stress distribution σr(ρ) and σθ(ρ) were constructed. From 
these plots, the most vulnerable zones of disks during their 
resonances are determined. The expression EA/a(1–ν2) 
is taken to be equal to one, and if A has the dimension of 
length, then this expression will have the dimension of the 
modulus of elasticity E.

Taking into account the fact that the resonance oscilla-
tions on the basic form at the frequency number λ1 acquire a 
special practical significance during operational loads of tur-
bine disks, for the sake of saving space, the oscillations and 
the stressed state of the disks are considered only at the basic 
frequencies. Fig. 3 shows the normalized first forms of disk 
oscillations corresponding to the characteristics of η=5; 3; 
1 and also shows the basic form of oscillations of a disk of 
constant thickness. Amplitude coefficients A are chosen 
according to η with values of A=0.853; 0.729; 0.739; 1,805. 
Fig. 4, 5 show, respectively, plots of stresses σr(ρ) and σθ(ρ) 
in disks during resonant radial vibrations at the main fre-

Fig. 1. Disk profile sketch

0
H

Fig. 2. Graphical interpretation of normalized plots of functions H(ρ) at η=5
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quencies, that is, at λ1. During oscillations on the basic form, 
the main tension-compression stresses σ1=σr and σ2=σθ acted 
in phase at each point (infinitesimal element) of the disk, 
except for the free edge at ρ=1. Strength assessment for this 
type of resonant oscillations, when biaxial tension-compres-
sion occurred, can be performed on the basis of appropriate 
strength hypotheses.

Owing to these hypotheses, the strength under com-
plex (plane or volumetric) stress can be estimated, based 
only on the strength data under simple uniaxial loading. 
The form of implementation of the mentioned hypotheses in 
calculation practice is determined by the corresponding de-
pendences between the main stresses σ1 and the equivalent 
stress σeq, which to one degree or another should be equal 
to the stress σ0 under uniaxial loading. For disks oscillating 
under the resonance mode, the limit stress is assumed to 
depend on:

( ) ( )2 2
1 1 2 1 2 1 2/ ,eq −σ = σ = σ +σ −σ σ σ −νσ  		  (26)

where σ-1 is the endurance limit for uniform tension-com-
pression.

This dependence was used in the analysis of the results 
of fatigue tests on round plates made of a number of metallic 
materials under bending vibrations.

The results showed a fairly satisfactory agreement be-
tween the experimental and calculated data. In addition, in 
one paper [17], one of the satisfactory tests of relation (26) 
for a titanium alloy with a titanium nitride coating is given. 
If (σr, σθ) is entered instead of (σ1, σ2) in (26), bearing in 
mind that σ1≥σ2, then with σr=R’+(ν/ρ)R; σθ=νR’+(R/ρ), the 
dependence will be obtained:

( ) ( ) ( )( )( )
( ) ( ) ( )( )

2 2 2

2

1 /
/ ,

4 1 /
eq

R R

RR

 ′ν −ν + + ρ + σ = ∆  ′+ ν −ν − ⋅ ρ 

where

( )
( )

2
0 1

2
1

1 when ;

1 when 1;

R

R

 ′−ν ρ = ρ ÷ρ


∆ = 
−ν ρ = ρ ÷

ρ  

ρ1 is the coordinate at which σr=σθ, which corre-
sponds to the point of intersection of the curves σr 
and σθ according to Fig. 4, 5.

The values of ρ1 depending on η are as fol-
lows: ρ1=0.7338; 0.6977; 0.6084, if η=5; 3; 1, re-
spectively. ρ1=0.5491 at H=const was also found. 
The σeq curves are shown in Fig. 6. It can be seen 
that dangerous from the point of view of cyclic 
(fatigue) strength maximum stresses σeq for the 

cases η=5; 3; 1 are distributed at some distance ρmax from the 
fastening at ρ0=0.2. It is confirmed that the increase in the 
thickness of the disk in the zone of its fixation achieved its 
goal compared to the case of H=const, in which the σeq maxi-
mum coincided with the place of fixation. Radial coordinates 
ρmax, where σequmax, namely ρmax=0.5243; 0.4862; 0.3936 for 
η=5; 3; 1, can find practical value. Based on these data, the 
location (at ρmax) of possible disk failure due to fatigue can 
be determined. A further comparison of σeqmax for differ-
ent values of η allowed us to conclude that the probability 
of the threat of fatigue failure of disks with different η is 
higher where the stresses of σeqmax are the greatest. It was 
found that at η=5; 3; 1 σeqmax=2.36631; 2.86093; 3.16445. 
As can be seen, an increase in the thickness at the attach-
ment point ρ0 can lead to a decrease in the value of σeqmax. 
If the stress ratio m=σ2/σ1 in the dangerous zone at ρ=ρ0 is 
known, then the limit values of σ1 or σ2 can be determined 
at the place of probable destruction, if the limit value of σeq 
=σ1 is determined. We calculated or found from Fig. 4, 5, for 
example, the values of m depending on η=5; 3; 1, respectively, 
m=0.807; 0.809; 0.802. From the criterion dependence (26) 
one can obtain for the critical values σr: 

( ) ( )2
1 1 1 / 1 .m m m−σ = σ −ν + −  

After entering here the values of m for η=5; 3; 1, the 
limit values of dangerous stresses in disks of this config-
uration can be obtained σ1η=5=σ-1(0.795)=79.5 % σ-1; 

Fig. 3. The first form of natural oscillations of the disk R(ρ) with 
different types of disk bending η

Fig. 4. Radial stresses σr for different values of disk 
curvature η and for the disk at H=const

Fig. 5. Tangential stresses σθ for different values of disk 
curvature η and for the disk at H=const
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σ1η=3=σ-1(0.7942)=79.42 % σ-1; σ1η=1=σ-1(0.7987)=79.87 % σ-1. 
These data showed that the limit values of principal stresses 
σ1 are smaller compared to the limits of endurance σ-1. Endur-
ance limits are either known for the disk material, or they can 
be determined experimentally during cyclic stretching-com-
pression on rod samples by known methods.

It follows from this that when designing such disks, the 
margin of cyclic strength must be determined based not on 
σ-1 but on the values of σ1, which are smaller than σ-1.

6. Discussion of results of investigating the problem of 
radial vibrations of the disk

For the second-order differential equation (1), known 
solutions were found only for H=const and for H=1/ρn (H is 
the thickness of the disk; n is an integer). These solutions 
are expressed in terms of Bessel functions. However, for 
variable thickness H=1/ρn, the disk configuration turned 
out to be quite steep, which cannot be of practical impor-
tance. Fig. 2 showed that the thickness of this type, name-
ly H=1 ρ3, is unsuitable for practical implementation in the 
interval ρ=(0.2...1).

The factorization method has made it possible 
to obtain the solution (8) in elementary functions with 
D(ρ)=(H(ρ)·ρ)1/2 (9), the structure of which included two 
independent constants. By changing the values of these 
constants, the desired disk configuration can be achieved.

Results (14) and (15), which were obtained for functions 
D(ρ) based on the derivative extraction method, turned 
out to be more informative compared to result (9). Thus, 
in result (14), three independent constants are introduced 
for D(ρ), and in result (15) – four. This result can be used for 
more flexible control over both the thickness of the disk and 
its movements during oscillations.

Using the method of symmetry, equation (1) with param-
eters H(ρ) and R(ρ) was transformed into a new equation 
with parameters H1(ρ) and R1(ρ), which does not differ 
in form from equation (1). The method of extracting the 
derivative and the method of symmetries in this case led 
to the same results. It is easy to make sure of this if in the 
corresponding expressions for D(ρ) and R(ρ) the coeffi-
cients (p, μ) are mutually replaced by (ψ, α), simultaneously 
setting ψ=p–(1/2); μ=α. The equivalence of the methods, by 
the way, is additionally confirmed by their reliability. The 
factorization method turned out to be a special case of two 
more general methods.

From a number of possible profiles (Fig. 2), curves 3 and 
4 were chosen for practical implementation because they 

most correspond to the typical profile of the disk from Fig. 1. 
Due to the selected configurations and geometric parame-
ters, the calculations were easily performed on the basis of 
the theoretical solutions obtained above.

According to the boundary conditions, the natural fre-
quencies, shapes, and stresses for the disks of the selected 

configurations were found (Fig. 3–5). The compar-
isons of λi, which were found for three cases of disk 
profile flatness, testified to an increase in the values 
of natural frequencies (the frequency indicator is 
the number of λi) with an increase in the curva-
ture η=H(ρ0)/H(ρ=1). 

In contrast to the limited result [14] associated 
with the law H=1/ρn, the number of cases of the 
exact solution to the given problem is expanded in 
the current work. This is due to the flexible choice 
of thickness configurations and solutions in the 
form of trigonometric functions. The results have 
made it relatively easy not only to determine the 
frequency indicators of the oscillating system but 
also to estimate the stressed state of the disks. This 

became possible owing to the obtained analytical relations, 
which had a final form convenient for practical use.

Our solutions partially solved the problem of analytical 
closed-loop solution to the problem of radial vibrations of a 
disk of variable thickness. Due to this, the possibilities for 
choosing the necessary structural configurations of disks 
with predetermined estimated frequency characteristics 
and strength characteristics have been expanded. Through 
the expedient variation of arbitrary coefficients that were 
included in the structure of the disk thickness function, the 
possibilities of obtaining new profiles have been expanded. 
At the same time, the analytical solution to the problem 
remained closed.

An obvious limitation in the practical application of the 
obtained theoretical results was the direct connection of the 
exact analytical solution to the problem with a well-defined 
disk configuration.

Some inconvenience in the practical application of the 
obtained theoretical results may be cases when the calculated 
relations for D(ρ) and R(ρ) were expressed in terms of Bessel 
functions with an arbitrary index, which, as a rule, are not 
tabulated. In these cases, the calculation is necessary and 
can probably be performed after representing these functions 
in the form of their series. The stress analysis could not be 
considered rigorous because it had to be based on one of the 
numerous strength hypotheses. It can be mentioned that 
in cases where the results of previous experiments were not 
available, energy criteria of the Mises type were used, as a 
rule. Such an approach can be considered forced, despite its 
lack of reliability. It should be noted that in any case, the 
practical implementation of the criteria (strength hypothesis) 
for the operational control over disks may be associated with 
technical difficulties. These difficulties are due to the possible 
lack of means and methods of experimental control and reg-
istration of resonant radial vibrations and their frequencies.

A partial disadvantage of the proposed disk thickness 
function H(ρ) is that at ρ=0, that is, in the center of the disk, 
the thickness is undefined (tends to infinity). And therefore, 
as in the case of the known function 1/ρn (n is an integer), 
the proposed options do not always allow considering a solid 
disk, but only with a hole in the center.

Further development of our study may be associated 
with an increase in significant independent constants in the 

Fig. 6. Stress distribution σeq for different values of disk curvature η
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function that determines the thickness of the disk. This will 
allow expanding the set of new disk profiles, while maintain-
ing the exact analytical solution. Variants with increasing 
constants are given in results (14) and (15). It is in the 
direction of practical analysis of these solutions that further 
research of the stated problem may lie.

7. Conclusions 

1. The differential equation of the second order with 
variable coefficients describing the oscillations of disks of 
variable thickness was solved by the factorization method. 
This made it possible to find disk configurations for which 
the solutions have a closed form. The factorization method 
made it possible to obtain a solution to the problem in ele-
mentary functions for the thickness function, which includes 
two independent variable constants.

2. By extracting the derivative, the original differential 
equation is transformed into a form that has known solu-
tions. At the same time, the functions for the thickness for 
which these solutions are valid contain arbitrary constants 
in their structure, varying with which the disk profiles 
change. The results for D(ρ)=(H(ρ)·ρ)1/2 can have three or 
four independent constants. The final solutions also cover 
the results obtained by the factorization method.

3. The dependences established for D1(ρ)=(H1(ρ)·ρ)1/2 
have more than one independent constant in their compo-
sition, which increases the possibilities for optimal selection 
of disk configuration. At the same time, the solutions to the 
problem are obtained in a closed form. Moreover, due to 
additional independent constants, it is possible to represent 
D1(ρ) in elementary functions in cases where these expres-
sions were obtained in special functions.

4. The solutions to the corresponding equations for a 
number of disks of variable thickness H(ρ) and for H=const  
are presented. From the profiles of disks of variable thick-
ness, those were selected for which the characteristic ratio 
η=H(ρ0)/H(ρ=1) has a value of 1, 3.5, where ρ0 is the inner 
radius of fastening; ρ=1 is the outer relative radius. For disks, 
which are chosen as an example of the practical implementa-
tion of new methods, the solution to equations in elementary 
functions is also provided. Four problems about the radial vi-
brations of disks at η=1, 3, 5 and H=const, which are rigidly 

fixed on a shaft with a radius of ρ0 and free at ρ=1, have been 
solved to the end. At the same time, the frequency equations 
were built, the natural frequencies of oscillations λi were 
calculated (for serial numbers i=1, 2, 3), the corresponding 
expressions for the forms of oscillations and their graphic im-
ages are given. The comparison of λi found for the three cases 
of flatness of the disk profile η=1, 3, 5 indicates an increase 
in the values of the natural (resonant) frequencies (the fre-
quency indicator is the number of λi) with an increase in the 
curvature η.

The relationship for calculating the normal radial σr and 
tangential σθ stresses is derived. To illustrate the nature of 
the distribution of these stresses in the disks of this profile, 
the corresponding dependences σr(ρ) and σθ(ρ) were con-
structed for the basic shapes. An assessment of the strength 
of the disks during resonant radial vibrations was carried 
out. In this case, the most destructive principal stress σ1=σr 
should be selected from the ratio σr≈0.79[σ-1], [σ-1] is the 
endurance limit of the disk material under uniaxial ten-
sion-compression.
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