
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/2 ( 128 ) 2024

20

by T1, it can become active. Similarly, firm PR1 (customer 
class), supplying products and occupying the fourth place in 
the queue, can also become active.

Fig. 1 shows the interaction scheme of client classes with 
resources of the resource class. Let at time t1 Class-client1 
called Method1 of class-resource, which uses Attribute1 and 
Attribute2. Next, at time t2>t1, Client Class 2 called Meth-
od 2 of the resource class, which modifies Attribute 1. After 
that, at time t3>t2, Client Class 1 called Method 3, which 
uses Attribute 1 and Attribute 3. As you can see, when try-
ing to use Attribute 1, a conflict (error) occurs, because the 
value of this attribute was changed by Client Class 2, which 
was not known to Client Class 1.

The resource approach is a management method in which 
decisions about the type and features of the system are 
made on the basis of available resources [6]. When defining 
a queue, the resource approach considers a class-resource, 
which contains an informational part (information about 
its attributes and the state of the object) and a functional 
part (the possibility of providing methods at the disposal 
of the class-client). customers are not decided. First of all, 
one needs to clarify the concept of “getting the resource at 
the disposal of the client”. Secondly, the concept of “client” 
needs to be clarified, since different clients may need differ-
ent resources.

It follows from the above that there is an actual task of 
implementing class aggregation, both from the point of view 
of determining the capabilities of the class-resource, and 
from the point of view of determining the necessary resourc-
es and the conditions for obtaining them by the class-client.

IMPLEMENTATION OF 
CLASS INTERACTION 

UNDER AGGREGATION 
CONDITIONS

O l e k s i i  K u n g u r t s e v
PhD, Professor

Department of Software Engineering
Odesа Polytechnic National University

Shevchenko ave.,1, Odessa, Ukraine, 65044
N a t a l i i a  K o m l e v a

Corresponding author
PhD, Associate Professor

Department of Software Engineering
Odesа Polytechnic National University

Shevchenko ave.,1, Odessa, Ukraine, 65044
E-mail: komleva@op.edu.ua

The object of research is the implementation of relations between 
software classes. It is shown that when implementing the aggregation 
relationship between classes, errors may occur if more than one client 
class is found. Class interaction errors can be caused by management 
of resource class attributes by one of the client classes in a way that 
is unacceptable to another client class due to invalid attribute values, 
state changes, method blocking, etc. To solve the problem, a special 
organization of the queue for client classes is proposed. A feature of the 
queue is the use of models of client classes and resource class. The model 
of a resource class provides an idea about its resources (attributes and 
methods) and how they are used. The client class model shows how 
much of these resources will be used by the client and how this will 
be done. This organization of the queue makes it possible to provide 
resources to the next client class only after checking its compatibility 
with active client classes. In general, client classes have different types, 
and this complicates the organization of the queue. Therefore, it is 
proposed to make them derived from the base class, which defines the 
interface for the queue. Similarly, the problem of the interaction of the 
class-resource with the queue is solved. The proposed base class for the 
resource class also provides the necessary queue interface.

Software was developed that automates the process of converting 
classes: analysis of a resource class, determination of resource needs 
from client classes, construction of base classes. After the conversion 
is completed, the queue functions are supported. The study results 
verification showed a reduction in the time for converting classes by 
about three times, and the waiting time for access to resources during 
the work of the queue – at least two times

Keywords: aggregation relationship, class-client, class-resource, 
mathematical model, queue of class objects, class conversion, software

UDC 004.415

DOI: 10.15587/1729-4061.2024.301011

How to Cite: Kungurtsev, O., Komleva, N. (2024). Implementation of class interaction under aggregation 

conditions. Eastern-European Journal of Enterprise Technologies, 2 (2 (128)), 20–30.  

https://doi.org/10.15587/1729-4061.2024.301011

Received date 16.01.2024

Accepted date 25.03.2024

Published date 30.04.2024

Copyright © 2024, Authors. This is an open access article under the Creative Commons CC BY license

1. Introduction

The object-oriented approach to the construction of 
software (SW) offers the implementation of SW in the form 
of a set of interacting classes [1, 2]. Interaction of classes is 
implemented owing to connections, the main of which are 
inheritance, aggregation, and composition. Aggregation and 
composition in programming involves the use in some class 
of attributes of the type of another class [3]. When introduc-
ing the concept of the main class and the resource class, the 
composition assumes that the main class creates the resource 
class and fully controls it, while in the case of aggregation, 
the object of the resource class is not necessarily created by 
the main class. The main class can receive a reference to the 
object of the resource class [4] and, therefore, there is no 
full control over its attributes. In this case, there is a need 
to share resources, that is, a transition to the task of mass 
service [5] and the need to organize a queue for the main 
classes, which, according to their new role, can be termed 
client classes.

For a better idea of the possible situation as a resource 
class, consider a cruise ship that arrived at an intermediate 
port. Excursions are provided for passengers. Let the travel 
company T1 (client class) be the first in line. T1 organizes 
tours to the city’s museums. Then T1 selects all willing 
cruise ship passengers. Another tourist company T2 (also a 
client class) organizes tours around the city. If T2 is second 
in line, it cannot become active until T1 is disabled. Let the 
company TP1 (class-client) supply fuel to the ship and stand 
third in line. Since TP1 is not using the vessel resources used 



Information technology

21

Study [11] examines the contribution and application of 
mass service theory in the applied field of health care man-
agement. This review proposes a system of classification of 
health care areas for which mass service models are being 
built. The authors describe major trends in the application 
of mass service theory and models available to health care 
decision makers, but the references end in 2011 and should 
not be considered definitive.

Paper [12] shows that mass service models are an attrac-
tive and highly efficient alternative for quantifying the effi-
ciency of traffic flows compared to simulation. The authors 
reported in-depth studies on the analysis of non-stationary 
queues with non-stationary application receipt processes 
using an approximation approach. However, a limitation of 
the study is that traffic flows have their own unique charac-
teristics, and the study cannot be projected onto an arbitrary 
subject area.

In works [13, 14], a classic model of a mass service system 
with one server is considered. It independently handles in-
coming requests, which does not make it possible to achieve 
the efficiency of providing services of a clinical hospital. This 
leads to patients waiting too long in the queue for medical 
care and potentially many irreversible problems. Parallel 
processing of requests by several servers would make it 
possible to distribute the load more evenly and speed up cus-
tomer service. However, in the case of interaction of classes, 
it should be taken into account that not all operations can 
be performed in parallel (for example, initial diagnosis and 
discharge of patients). At the same time, operations that are 
not related to changing attributes can be parallelized.

Consider the possibility of using known types of queues 
to implement aggregation. Paper [15] emphasizes the impor-
tance of analyzing several related processes, including queue 

2. Literature review and problem statement

Work [4] deals with the issue of identification and anal-
ysis of the effectiveness of class attributes. However, the 
research is only concerned with attributes whose selection is 
consistent with the purpose of creating the class, while with 
“re-use” the purpose of applying the class may be slightly 
altered.

Paper [7] revealed the problem of unbalanced use of 
classes when implementing aggregation. However, a similar 
problem occurs not only at the level of aggregated classes but 
also at the level of attributes and methods of the same class.

Work [8] shows the comparative effectiveness of aggre-
gation when during development there is a need to add data 
and functions to the class that do not correspond to its initial 
concept. The considered problem to a greater extent con-
cerns the choice of the resource class, and not the interaction 
of classes during the implementation of aggregation.

Paper [9] outlines the benefits of aggregation and demon-
strates that poor design of aggregation as part of develop-
ment leads to significant problems in the design process of 
the entire software. However, the authors do not consider the 
problem of class-resource sharing.

A well-known approach to creating and improving the 
efficiency of a mass service system is to determine the impact 
of queues on various aspects of the organization in which 
they are implemented.

Paper [10] examines the role of mass service theory in the 
banking sector and the probability of the influence of queues 
on various types of banking activity. The authors conducted 
a number of studies with congested queues in some selected 
banks but did not make specific recommendations for solving 
the problem and announced the continuation of the study.

 

 
  

Fig. 1. Resource sharing conflicts



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/2 ( 128 ) 2024

22

entry, waiting in a queue (in effect, a storage process) and 
service by a server (or servers) at the beginning of the queue. 
However, the authors consider only the same type of queue 
elements, while the served customers can be completely dif-
ferent in nature and structure.

In addition to the classic FIFO (First-In-First-Out) 
model, a queue with priorities is often used. In this type of 
queue, each item is assigned a specific priority, and items 
are processed in order of decreasing priority. This allows 
for more important requests or customers with the highest 
priority to be served first. In [16] it is proposed to manage 
the arrival of client requests based on the superposition of 
two processes: independent and correlated, but the authors 
do not consider the features of the resources used by clients.

The authors of [17] developed an optimized version of 
the priority queue customer service algorithm by combining 
parallel operations, which significantly increases perfor-
mance. However, the study is limited to only client requests 
that are a priori ready to be served. At the same time, in the 
problem considered in this paper, it is necessary to check this 
readiness.

Paper [18] presents a practical approach to estimating 
the waiting time for the service of several classes in a queue 
with priorities. The disadvantage of the study is that the 
proposed approach can be applied only to certain types of 
emergency departments when serving patients with different 
levels of severity of the problem.

Selective Service Queue allows the system to select cer-
tain requests for service depending on their characteristics 
or priority. In paper [19], the authors proposed a mechanism 
for servicing only requests of a certain type. However, the 
subject area of research is limited to industrial control sys-
tems and has no recommendations for other areas. But if, 
for the problem being studied, the resources needed for the 
client class are considered as an informational component of 
the request, then the model of a queue with selective service 
can be considered as a prototype of the solution to the prob-
lem of class interaction.

A limited-capacity queue makes it possible to limit the 
number of elements that can be contained in it. When the 
queue reaches its maximum capacity, new items can be re-
jected or processed in a special way. Paper [20] shows that 
bounded queues are used to manage the load and prevent 
overflow in systems where resources are limited. An area 
with a fixed maximum number of waiting customers is usual-
ly easier to control than one where customers are allowed to 
come and join a line of arbitrary length. However, the paper 
does not address the issue of the possibility of preliminary 
assessment of the successful service of a potential client, 
provided that the current filling of the queue and the service 
time of active customers in it are known.

The authors of paper [21] showed that a queue can in-
clude several links with different throughput. However, the 
question of the nature of the capacity of the queue has not 
been investigated. Within the framework of the problem 
under study, the throughput of the queue may depend on the 
degree of communication of client classes and the resources 
they require.

To increase system reliability and ensure uninterrupted 
service, one can use a queue with backup channels (Backup 
Queue). In such queues, requests may be routed to a backup 
channel or otherwise handled if the primary channel is un-
available or congested. In paper [22], it is proposed to use a 
backup server in the case of absence (due to staff vacations, 

technical breakdowns, or other reasons) of the main server. 
However, the authors do not evaluate the cost of implement-
ing a backup server and the feasibility of its use.

In work [23], it is proposed to distribute customers to the 
main and reserve service channels in order to maximize the 
overall performance indicator. However, the work does not 
provide specific recommendations regarding the number and 
possible loads of backup channels when serving customers.

The authors of work [24] proposed an approach to re-
source sharing using the example of virtualization of net-
work functions and a shared protection mechanism, which 
allows several functions to share backup resources. However, 
the paper did not sufficiently consider the potential risks 
and limitations of the proposed approach, as well as ways to 
minimize or overcome them.

Depending on the type and characteristics of queues, 
various risks may arise that affect the quality of service and 
customer satisfaction. In [25, 26], the emphasis is on the 
risks associated with connecting to long queues of customers 
sensitive to delays, as well as on the uneven distribution of 
the load in such queues. However, in these works there is no 
formalization of the conditions for the occurrence of risks, 
which creates gaps in providing a full-fledged analysis of po-
tential dangers and limitations that may arise when working 
with queues.

Our analysis of known solutions revealed that the inter-
action of classes under the conditions of aggregation has not 
been sufficiently studied. The queue type, as a means of orga-
nizing such interaction, should be largely determined by the 
resource class that provides the means for sharing. However, 
the client class also needs a special definition from the point 
of view of the nomenclature and the nature of resource use.

3. The aim and objectives of the study

The purpose of our study is to build a mechanism for 
the interaction of client classes with a resource class, which 
could reduce the time of waiting in a queue and the time 
of conversion of classes to implement the aggregation re-
lationship.

To achieve the goal, the following tasks are to be solved:
– to determine the features of the queue for the imple-

mentation of aggregation;
– tobuild a class-resource model;
– toconstruct a model of the class-client;
– to devise a method for providing services to client 

classes under conditions of aggregation;
– to develop software for the implementation of the 

method for providing services to client classes.

4. The study materials and methods

The object of research is the implementation of relations 
between software classes. The subject of our study is the 
model and method for implementing the aggregation rela-
tionship between software classes. The main hypothesis of 
the study assumes that when two or more customer classes 
interact with one resource class, conflicts may arise, to elim-
inate which it is necessary to define compatible customer 
classes. Research methods in the work are:

– the basics of the theory of mass service for determining 
the properties of the queue of client classes;



Information technology

23

– methods of object-oriented and syntactic analysis to 
determine the elements of classes and their interaction;

– provisions of set theory for building resource class and 
client class models.

To implement the method for providing services to class-
es-clients, the Class Aggregation Facilitator software system 
was developed in the Python programming language. At the 
same time, the PyCharm 2022.3.2 integrated development 
environment from the JetBrains company and a modern ba-
sic computer that supports PyCharm were used.

5. Research results on the construction of a mechanism 
for the interaction of client classes with a resource class 

in the context of aggregation

5. 1. Organization of the queue
Queue requirements are determined by the fact that both 

the client and the resource are classes and must interact ac-
cording to the rules of use and interaction of classes. Based 
on this provision, the following properties of the queue are 
formulated:

– access to work with the object is guaranteed to the 
client who occupies the first position. Queuing clients can 
access the object if their activity does not interfere with 
previously connected clients;

– the client can leave the queue at his/her discretion;
– for the possible automation of processes, customers can 

be allowed to order the time of working with the resource 
(moment of connection, minimum and/or maximum time 
of use, maximum waiting time for starting work with the 
resource, etc.).

The peculiarities of the queue for the implementation 
of aggregation are considered. Table 1 gives in a formalized 
form the main actions of the person who makes the decision 
to organize the queue according to certain requirements for 
providing services to customer classes and potential risks.

Fig. 2 offers a working scheme of the Queue class. The 
Client communicates with the Resource through the Queue. 
In order to connect to the Queue, the Client must transfer 
his/her model to it. The presence of the Customer model 
indicates that the Customer is in the Queue.

The queue can transfer the Client to the “active” state. 
Then the Client methods that use the Resource start working.

The following options are possible to terminate the Cli-
ent’s work with the Resource:

– The client transmits a message about disconnection 
from the Queue;

– the tr time ordered by the Client has expired (setting 
tr is optional);

– the maximum trMax time allotted for work with one 
Client has expired (setting trMax is also optional).

Table 1 

Managing queue features to implement aggregation

Requirement Action Risk

Setting the queue type
setType (queue, type), type={FIFO, 
SelectiveServiceQueue, Queuewith-

MarkingofUrgentRequests, …}

if <queue type is incorrect> then <long service waiting times> 
and/or <data loss> and/or <complexity of reengineering client 

classes and resources>

Setting the queue size setMaxLen (queue, maxLength) if <peak load> then <client class denied service>

Organization of the reserve 
queue

setReserve (queue, reserveQueue) if <peak load> then <service start time unknown to client class>

Setting a threshold value for 
waiting time in the queue

setMaxWaiting (queue,  
maxTimeWaiting)

if <maxTimeWaiting is too large> then <the system reacts late 
to load changes>

if <maxTimeWaiting is too small> then <generation of false 
positives of abnormal load messages>

Setting a threshold value for 
the duration of ownership of a 
resource for all or some client 

classes

setMaxHolding (queue,  
maxTimeHolding)

setMaxClassHolding (queue, class,  
maxClassTimeHolding)

if <maxTimeHolding/maxClassTimeHolding is too large>then 
<system performance decreases>

if <maxTimeHolding/maxClassTimeHolding is too small> then 
<class-client is not fully served>

Setting a threshold value for 
the length of stay for all or 

some customer classes in the 
queue

setMaxLifetime (queue,  
maxTimeHolding)

setMaxClassLifetime (queue, class, 
maxClassTimeHolding)

if <maxTimeHolding/maxClassTimeHolding is too large>then 
<queue overflow> and/or <data obsolescence>

if <maxTimeHolding/ maxClassTimeHolding is too small>

then <client-class data loss>

Management of priorities setClassPriority(queue, class, priority)

if <priority too low> then <long service waiting time>

if <priority for N classes is too large and N is large>  
then <queue overload and service slowdown>

Configuring redirect strategies
setRedirectionClass (queueFrom, 

queueTo, class)

if <high-priority client-class requests are forwarded to low-prior-
ity queue> then <client-class data loss>

if <client class requests are often redirected from one queue to 
another without real need> then <queue/queue performance 

degradation>



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/2 ( 128 ) 2024

24

5. 2. Class-resource model
A class is usually represented by a name, attributes, and 

methods. From a modeling perspective, there are no special 
name requirements for the class used for aggregation. As for 
attributes, it is not enough to know their name, type, and 
purpose. When using attributes together, they must be as-
signed to the following groups:

– attributes that do not change their value after the cre�-
ation of the object (stable attributes);

– attributes whose values cannot block the execution of 
methods (non-controlling attribute);

– other attributes (other attributes).
Representing class methods also requires additional 

classification:
– methods that do not change attribute values;
– methods that change attribute values, which, in turn, 

can block the execution of class methods;
– other methods.
Based on the above requirements, the resource class is 

represented by a tuple:

, , ,c cHead mMeth mAttr= 		   (1)

where 𝑐𝐻𝑒𝑎𝑑 – class header, 
mMeth – the set of functions (methods) of the class,
mAttr – the set of attributes of a class.
The class header is also represented as a tuple:

, ,cHead cName cBaseName= 		  (2)

where cName – class name;
cBaseName – the name of the parent class for cName(can 

be empty).
Each attribute from the mAttr set is represented as:

, , ,Attr attrName attrType attrCateg= 		  (3)

where attrName – attribute identifier;
attrType – attribute type;
attrCateg – attribute category.
An attribute category can take the following values:
– attrStable – an attribute that does not change its value 

after the object is created;
– attrNonControl – an attribute whose values cannot 

block the execution of class methods;
– attrOther – other attribute.

The set of methods is represented by a tuple:

, , ,mMeth mFunc mConstr destr= 	  (4)

where mFunc – a set of ordinary class methods;
mConstr – the set of class constructors;
destr – class destructor (usage depends on the program-

ming language).
Any element from mFunc looks like this:

=

= , , , , ,
i

i i i i

mMeth

fName mArgs retType mOperator methCategor (5)

where fName – method name;
mArgs – the set of arguments of the method;
retype – the type of return value (empty for constructors 

and destructor);
mOperator – the set of method operators;
methCategor – the category of the method. 
The method category can take the following values:
– methNChange – a method that does not change the 

value of attributes;
– methChange – a method that changes the values of 

attributes;
– methSetX is a method that sets the value of a single 

attribute x;
– methOther – other methods.

5. 3. Client class model
A client class is any class that uses an attribute class ob-

ject. The model is needed to determine which attribute class 
resources will be used by a particular client class. Model Cl 
is represented by a tuple:

, , , ,
,

, ,

clName cName objName mClAttr
Cl

mClMeth clPriority clActive
= 		  (6)

where clName – the name of the client (can be his/her num-
ber in the queue);

cName – the name of the class that represents the client 
class;

objName – the name of the object with which the client 
works (within the queue – one object for all clients);

mClAttr is the set of attributes of the resource class that 
the client uses. 

Each attribute is represented by a tuple:

 

 
  

Cu
sto

m
er

s' 
qu

eu
e

Fig. 2. Scheme of operation of the queue class



Information technology

25

( )

( )

,� � �,

,

,
� �,

�

,

immutability mValideValue

lowerLimit upperLimit

mInvalidValue
attr

AnyValue mClMeth

clPriority clChangePriority

clActive clDefaultActive

∨
∨

∨ ∨
=

∨ ∨ ∨
∨ ∨

∨
	

	 (7)

where immutability – the requirement not to change the val-
ue of the attribute by another client (whether true or false):

mValideValue – the set of valid attribute values from the 
client’s point of view;

lowerLimit, upperLimit – lower and upper bounds of at-
tribute values;

mInvalidValue – the set of values that are unacceptable 
from the client’s point of view;

anyValue – the client is satisfied with any value;
mClMeth – the set of methods of the cName class that the 

client wants to use;
clPriority – the priority of the client when sharing  the 

cName class is set automatically when the client is added to 
the queue;

clChangePriority – checkbox for the possibility of chang-
ing the client’s priority by an expert (one can change it – 
true, one can’t change it – false);

clActive – checkbox of the client’s activity (uses services – 
true, does not use – false);

clDefaultActive is the initial value of the client activity 
checkbox.

5. 4. The method for providing services to the client 
class

The cName client class can be in two states – working 
and waiting. A client is in working state if it can perform all 
actions according to its model and use all attributes with val-
ues acceptable to it. Otherwise, the client is in a waiting state:

Stage 1. Implementation of models of client classes and 
resource class.

The list of client classes and the resource class should be 
defined in advance. Then the resource class model is formed. 
Based on the resource class model, client class models are 
formed, and client classes are transformed. The resource 
class model is included in the queue class.

Stage 2. Initial formation of the queue of customers.
For queue management, the number of customers in the 

queue cn and the number of active customers in the queue ca 
are entered. Initially, cn=0 and ca=0.

When a cNamei client registers in a queue, the following 
actions are performed:

1,сn cn= +

= .iclName cn 		   (8)

Stage 3. Providing services to the client.
We considered the case when the client is the first in 

line – clNamei=1. Here, two options are possible:
a) the object of the resource class has not yet been created. 

A class object is created. The values of the attributes included 
in the mClAttri set are set according to the requirements for 
them (7). The client is transferred to the “active” state:

,iclActive true=

ca=1;				   (9)

b) the object of the resource class was created earlier. 
The attribute values of the resource class are compared with 
the corresponding requirements for the client (7). If the 
value of the attributes of the resource class does not meet 
the requirement, then the attribute is adjusted by calling the 
methSetX() method. The client is transferred to the “active” 
state (9).

We considered the case when the client is not the first 
in line – clNamei=n>1. The following options are provided 
here:

a) a set of attributes used by the client is analyzed. If the 
anyValue property is set for all attributes from the mClAttri 
set (any value can be used) and all mClMethi methods belong 
to the methNChange category (do not change attribute val-
ues), then the client is transferred to the “active” state:

,iclActive true=

ca:=ca+1;				    (10)

b) a set of attributes used by active clients is formed:

1,

.
j ca

j
j

mAttr mClAttr
=

∑ = ∪ 				    (11)

If mAttrΣ∩mClAttri=Ø, then the client is transferred to 
the “active” state and actions (10) are performed;

c) if mAttrΣ∩mClAttri≠Ø, then cNamei client attributes 
used by active clients are determined:

imClAttr mAttr mClAttr= ∑∩′ 		   (12)

and checks are performed:
c1) if the cNamei client for all attributes from mClAttr’ 

allows any values, has not set the immutability requirement 
and its mClMethi’ ϵ mClMethi methods, which use attributes 
from the mClAttr’ set, belong to the methNChange category, 
then it becomes “active” (10);

c2) if all the conditions of point B1) are met for the 
cNamei client, except for the requirement of immutability 
for some mClAttr’’ (mClAttr’’ ϵ mClAttr’) attributes, but for 
the same attributes there is an immutability requirement for 
active clients, then it becomes “active” (10);

c3) if a change of mClAttr’’ (mClAttr’’ ϵ mClAttr’) at-
tributes is provided for the cNamei client, but there is no 
immutability requirement for the same attributes and the 
anyValue requirement is set, then it becomes “active” (10);

c4) if all checks for the cNamei client failed to make it 
“active”, and there is another client in the queue for connect-
ing to resources, then the actions of stage 2 are repeated for 
this client.

Stage 4. Exit of the client from the queue.
The decision to remove the client from the queue can be 

made in one of the following ways:
– by the client himself/herself, and then s/he must form 

a request set(clActivei)=false;
– by thequeue if the client has exceeded the set time limit 

for using resources timeUsed(Cli)>timeLimit(Cli).
At the same time, two cases are possible – an active client 

leaves the queue, and an inactive client leaves the queue.
Let the client’s number be n. Then, in the first case, the 

following actions are performed:



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/2 ( 128 ) 2024

26

1,ca ca= − 1,сn cn= − 			   (13)

that is, for all customers with numbers greater than n, the 
number is reduced by 1, and for the first inactive customer 
in the queue, the actions of stage 3 (providing services to the 
customer) are performed.

In the second case, the following actions are performed:

1,сn cn= − 		  (14)

that is, for all customers with numbers greater than n, the  
number is reduced by 1.

5. 5. Development of software for the implementation 
of the method for providing services to client classes

When developing software for conducting experimental 
research, the following circumstances were taken into account:

– elements of the customer queue class are objects of 
different classes;

– objects of client classes interact with the queue through 
a limited set of messages that solve the same tasks;

– the implementation of the queue depends on the re�-
source class; however, the same tasks are solved here, regard-
less of the specific class.

Our analysis of these factors led to the decision to imple-
ment the class structure shown in Fig. 3.

The BasicClient base class contains virtual methods for 
interacting with the queue. The registration(…) method is 
used to register a client in a queue, which involves creating 
a client model and fixing its position in the queue. The set-
Access(…) method is intended to grant a client access to a 
resource based on the created client module and the current 
state of the resource. The shutdown(…) method is responsi-
ble for exiting the client from the queue.

In real client classes Client1, Client2, etc. a reference to 
inheritance is made. In these classes, virtual methods registra-
tion(...), setAccess(...), and shutdown(...) are specified.

A queue is also represented by a class hierarchy. The 
BasicQueue base class defines virtual methods for inter-
acting with clients and the resource. Methods are specified 
in generated classes for a specific resource object and client 
object.

The proposed class structure makes it possible:
– to formally create a queue for elements of the same type of 

the basic class BasicClient;
– to define in advance the set and partly the algorithm of 

the necessary methods for the client and queue classes.
Fig. 4 shows the service provision technology for the 

ClientsCollection client class collection.
The operation of forming a client involves creating a 

descendant class Client[i] from the input class located in the 
ClientCollection and the basic class BasicClient.

 

 
  

BasicClient

basicQueue

registration(…)
setAccess(…)
shutdown(…)

BasicQueue

client

clientRegistration(…)
clientAccess(…)
clientDeleting(…)
resourceRegistration(…)

Queue

clientInfo
resource

clientRegistration’(…)
clientAccess’(…)
clientDeleting’(…)
resourceRegistration’(…)

Client1

Queue
………….

registration’(…)
setAccess’(…)
shutdown’(…)

Client2

Queue
………….

registration’’(…)
setAccess’’(…)
shutdown’’(…)

Resource

Fig. 3. Structure of program classes for software implementation



Information technology

27

Analysis of the resource class makes it possible to iden-
tify its attributes and methods. For each client class, the 
necessary attributes, methods, and conditions of their use 
are defined. The received information is passed to the client 
class and the queue.

The Class Aggregation Facilitator software system was 
developed, which implements the proposed technology.

The software form for loading client classes is an inter-
face that makes it possible to select a programming language 
and client classes from the list (Fig. 5). One can view the 
code for the selected class. The “Class parsing” option is in-
tended for highlighting attributes and methods. The “Load 
new client class” option makes it possible to load new client 
classes into the system.

In Fig. 6 the program form for working with the resource 
class is given. The form contains a list of resource classes 
present in the system, from which the user can choose the 
desired one. The results of parsing attributes and methods 
are displayed for the selected class. The user can select the 
required methods and attributes, as well as specify require-
ments for the characteristics of the attributes.

In the course of working with the Class Aggregation Fa-
cilitator system, 17 potential customer classes and 6 potential 
resource classes were downloaded. Experiments were con-
ducted to prepare 10 of these classes for the implementation 
of aggregation under “manual mode” and automated using 

the developed software. The time required to transform a 
resource class and build a queue largely depends on the com-
plexity of the resource class, which in turn depends on the 
number of attributes. Small classes with 7–10 attributes were 
used for the experiments. For such classes, the preparation 
time under the manual mode was an average of 4.8 hours, and 
under the automated mode – 1.8 hours. Thus, the use of Class 
Aggregation Facilitator reduced the time compared to the 
manual mode by 2.7 times. When using more complex classes, 
one should expect much better results.

Experiments have been conducted on sharing 4 client 
classes for a common resource class. No errors were detected 
in the operation of Class Aggregation Facilitator.

To evaluate the effectiveness of the developed meth-
od, we shall evaluate the access time to resources for two 
modes of operation: when the aggregation is organized 
in a traditional way (a simple queue) and when using the 
proposed queue.

Let there be n customers who need time t1, t2,…, tn for 
work. Then, in the case of using a normal queue, the wait-
ing time for access to the resource for the n-client will be 

1
0

1

.
n

iT t
−

= ∑  In the case of using the proposed queue, the resource 
can be accessed by K clients at the same time. If we assume that 
the average number of clients using the resource at the same 
time is Ks, then the waiting time for an n-client is T1=T0/Ks.

 

 
  

BasicClient

Loading

Client Collection Resource class

Definition of 
attributes and 

methods

Definition of 
attributes and 
methods for

Client[i]

Information for 
Client[i]

Client formation 
operation

Client[i]

BasicQueue

Formation of a 
queue for a 

resource

Queue

Fig. 4. Technology of preparing classes for the use of aggregation



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/2 ( 128 ) 2024

28

Without a specific resource class and client classes, it is 
impossible to give an accurate estimate of Ks. But even with 
the simultaneous operation of two client classes, the resource 
waiting time is halved.

6. Discussion of results of investigating the mechanism of 
interaction of classes under the conditions of aggregation

The proposed organization of the queue (Fig. 2) takes 
into account the peculiarities of the aggregation relation-

ship between software classes. A peculiarity of the queue, in 
contrast to known solutions [4, 7–9], is the use of the model 
of the resource class and customer classes. This makes it 
possible to manage the provision of services to client classes 
in the absence of conflicts.

The proposed model of the resource class (1) makes it 
possible to determine its capabilities from the point of view 
of the expected needs of client classes. A feature of the model, 
in contrast to known solutions [2], is the introduction of the 
classification of attributes and methods from the point of 
view of their interaction when performing a certain func-

 

 
  Fig. 5. A software form for uploading client classes 

 
  Fig. 6. A software form for working with a resource class



Information technology

29

tionality. The model is the basis for the compatible use of 
class resources.

The client-class model (6) makes it possible to determine 
what part of the resources and under what conditions the 
client-class is going to use. The peculiarity of this model, 
in contrast to known solutions [3], is the formulation of 
the conditions for using resources of another class. Having 
a class-client model, the queue has the ability to define 
the conditions for providing services to the client without 
disrupting the work of already active clients. This makes it 
possible to provide resources to clients “over the head” of 
clients who were earlier in the queue, which can significantly 
increase the efficiency of using the resource class.

The method of providing services to the client class of-
fers a comprehensive sequence of actions for preparing and 
implementing class aggregation. The method determines the 
state of the client class (11), conditions for client activation, 
organizes the client’s exit from the queue. Unlike known 
solutions for queue management [20, 21, 24], the method 
involves not only management but also preliminary trans-
formation of classes.

The developed software solves two problems. First, it 
makes it possible to automate the process of building class 
models and transforming classes. Fig. 3 shows the proposed 
class structure, and Fig. 4 – technology of their transforma-
tion Here you can estimate a certain gain in time compared 
to “manual” operations.

Second, the software implements the queue. Here, the 
gain in time completely depends on the specific class-re-
source and classes-clients. But this gain will be in any case 
when there are two or more compatible client classes.

This study did not focus on any specific object-oriented 
programming language. The used principles of encapsula-
tion, imitation, and polymorphism are inherent in all devel-
oped languages of this type.

The limitations of the study include the lack of a class 
transformation mechanism under conditions where the re-
source class or the client class is generated by a class, and the 
programming language does not allow multiple inheritance. 
This problem is planned to be solved in the future.

The work does not define the conditions and circum-
stances of creating an instance of the resource class. Various 
procedures are possible here, which are planned to be devel-
oped in the future.

The work did not consider the execution time of the 
class-client order. Further research is expected to provide a 
clearer picture of the performance of class-resource methods, 
as well as the possibility of their parallel execution.

7. Conclusions 

1. It was established that a queue of client class objects 
under aggregation conditions can provide services to several 
classes at the same time. To eliminate conflicts between 
clients, models of the resource class and client classes are 
included in the queue. Each time before providing services to 
a client class, its compatibility with active classes is checked. 

This makes it possible to reduce the waiting time of the re-
source by half, even with the simultaneous operation of two 
client classes.

2. A class-resource model has been developed, which, 
unlike existing class models, provides detailed information 
about attributes and methods from the point of view of the 
possibility of their use by other classes. The model makes it 
possible to define the ability of a resource class to provide 
services to a certain client class within the queue.

3. A model of the client class has been built, which, 
unlike existing class models, shows what services this class 
needs from the resource class (the methods, attributes, and 
their values involved). The model makes it possible to de-
termine, within the framework of the queue, whether the 
resource class has the ability to provide services to a certain 
client class.

4. A method for providing services to classes-clients un�-
der conditions of aggregation has been devised. The method 
provides a complete sequence of actions for the organization 
and use of the queue, starting with the formation of models 
of the resource class, client classes, and the queue to the 
execution of client registration operations, connecting it to 
the resource, and removing the client from the queue. Unlike 
existing technologies, the method allows automating the 
processes of class conversion and queue management.

5. The Class Aggregation Facilitator software has been 
developed, which makes it possible to automate the analysis 
of the resource class, determine the desired services of client 
classes, create a queue, and carry out the transformation of 
the resource class and client classes. The use of the developed 
software showed a 2.7-fold reduction in class conversion 
time, and a 2.7-fold reduction in waiting time for access to 
resources during queue operation, compared to existing 
technologies.

Conflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial, 
personal, authorship, or any other, that could affect the study 
and the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

All data are available in the main text of the manuscript.

Use of artificial intelligence

The authors confirm that they did not use artificial intel-
ligence technologies when creating the current work.

References

1.	 Bontchev, B., Milanova, E. (2020). On the Usability of Object-Oriented Design Patterns for a Better Software Quality. Cybernetics 

and Information Technologies, 20 (4), 36–54. https://doi.org/10.2478/cait-2020-0046 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 2/2 ( 128 ) 2024

30

2.	 Kungurtsev, O., Novikova, N., Reshetnyak, M., Cherepinina, Y., Gromaszek, K., Jarykbassov, D. (2019). Method for defining 

conceptual classes in the description of use cases. Photonics Applications in Astronomy, Communications, Industry, and High-

Energy Physics Experiments 2019. https://doi.org/10.1117/12.2537070 

3.	 Kungurtsev, O. B., Novikova, N. O. (2020). Identification of class models imperfection. Herald of Advanced Information Technology, 

3 (2), 13–22. https://doi.org/10.15276/hait.02.2020.1 

4.	 Rashidi, H., Parand, F. A. (2019). On Attributes of Objects in Object-Oriented Software Analysis. International Journal of Industrial 

Engineering & Production Research, 30 (3), 341–352. https://doi.org/10.22068/ijiepr.30.3.341

5.	 Ürler, Ü., Berk, E. (2016). Queueing Theory. Decision Sciences, 287–348. https://doi.org/10.1201/9781315183176-7 

6.	 Komleva, N., Liubchenko, V., Zinovatna, S. (2020). Improvement of teaching quality in the view of a resource-based approach. 

CEUR Workshop Proceedings, 2740, 262–277. Available at: http://ceur-ws.org/Vol-2740/20200262.pdf

7.	 Pang, X., Wang, Z., He, Z., Sun, P., Luo, M., Ren, J., Ren, K. (2023). Towards Class-Balanced Privacy Preserving Heterogeneous 

Model Aggregation. IEEE Transactions on Dependable and Secure Computing, 20 (3), 2421–2432. https://doi.org/10.1109/

tdsc.2022.3183170 

8.	 Otu, G. A., Usman, S. A., Ugbe, R. U., Iheagwara, S. E., Okafor, A. C., Okonkwo, F. I. et al. (2023). Comparative analysis of 

aggregation and inheritance strategies in incremental program development. Fudma Journal Of Sciences, 7 (2), 57–64. https:// 

doi.org/10.33003/fjs-2023-0702-1710 

9.	 Zhang, S. G. (2021). An In-Depth Understanding of Aggregation in Domain-Driven Design. Available at: https://www.alibabacloud.

com/blog/an-in-depth-understanding-of-aggregation-in-domain-driven-design_598034

10.	 Afolalu, S. A., Babaremu, K. O., Ongbali, S. O., Abioye, A. A., Abdulkareem, A., Adejuyigbe, S. B. (2019). Overview Impact Of 

Application Of Queuing Theory Model On Productivity Performance In A Banking Sector. Journal of Physics: Conference Series, 

1378 (3), 032033. https://doi.org/10.1088/1742-6596/1378/3/032033 

11.	 Lakshmi, C., Appa Iyer, S. (2013). Application of queueing theory in health care: A literature review. Operations Research for Health 

Care, 2 (1-2), 25–39. https://doi.org/10.1016/j.orhc.2013.03.002 

12.	 Wang, N., Roongnat, C., Rosenberger, J. M., Menon, P. K., Subbarao, K., Sengupta, P., Tandale, M. D. (2018). Study of time-

dependent queuing models of the national airspace system. Computers & Industrial Engineering, 117, 108–120. https://doi.org/ 

10.1016/j.cie.2018.01.014 

13.	 Adeniran, Dr. A., Sani Burodo, M., Suleiman, Dr. S. (2022). Application of Queuing Theory and Management of Waiting Time 

Using Multiple Server Model: Empirical Evidence From Ahmadu Bello University Teaching Hospital, Zaria, Kaduna State, Nigeria. 

International Journal of Scientific and Management Research, 05 (04), 159–174. https://doi.org/10.37502/ijsmr.2022.5412 

14.	 Nor, A. H. A., Binti, N. S. H. (2018). Application of Queuing Theory Model and Simulation to Patient Flow at the Outpatient 

Department. Proceedings of the International Conference on Industrial Engineering and Operations Management Bandung, 

3016–3028. Available at: https://ieomsociety.org/ieom2018/papers/694.pdf

15.	 Kumar, R. (2020). Queueing system. Chap. 4. Modeling and Simulation Concepts. Available at: https://www.researchgate.net/

publication/346721926_Book_Chapter_-_queueing_system

16.	 De Clercq, S., Walraevens, J. (2020). Delay analysis of a two-class priority queue with external arrivals and correlated arrivals from 

another node. Annals of Operations Research, 293 (1), 57–72. https://doi.org/10.1007/s10479-020-03548-1 

17.	 Walulya, I., Chatterjee, B., Datta, A. K., Niyolia, R., Tsigas, P. (2018). Concurrent Lock-Free Unbounded Priority Queue with Mutable 

Priorities. Stabilization, Safety, and Security of Distributed Systems, 365–380. https://doi.org/10.1007/978-3-030-03232-6_24 

18.	 Hou, J., Zhao, X. (2019). Using a priority queuing approach to improve emergency department performance. Journal of Management 

Analytics, 7 (1), 28–43. https://doi.org/10.1080/23270012.2019.1691945 

19.	 Ferrari, P., Sisinni, E., Saifullah, A., Machado, R. C. S., De Sa, A. O., Felser, M. (2020). Work-in-Progress: Compromising Security of 

Real-time Ethernet Devices by means of Selective Queue Saturation Attack. 2020 16th IEEE International Conference on Factory 

Communication Systems (WFCS). https://doi.org/10.1109/wfcs47810.2020.9114505 

20.	 Hernandez-Gonzalez, S., Hernandez Ripalda, M. (2018). Systems With Limited Capacity. IGI Global, 172–211. https://doi.org/ 

10.4018/978-1-5225-5264-2.ch006 

21.	 Larrain, H., Muñoz, J. C. (2020). The danger zone of express services: When increasing frequencies can deteriorate the level of 

service. Transportation Research Part C: Emerging Technologies, 113, 213–227. https://doi.org/10.1016/j.trc.2019.05.013 

22.	 Chakravarthy, S. R., Shruti, Kulshrestha, R. (2020). A queueing model with server breakdowns, repairs, vacations, and backup 

server. Operations Research Perspectives, 7, 100131. https://doi.org/10.1016/j.orp.2019.100131 

23.	 Ahmadi-Javid, A., Hoseinpour, P. (2019). Service system design for managing interruption risks: A backup-service risk-mitigation 

strategy. European Journal of Operational Research, 274 (2), 417–431. https://doi.org/10.1016/j.ejor.2018.03.028 

24.	 He, F., Oki, E. (2021). Unavailability-Aware Shared Virtual Backup Allocation for Middleboxes: A Queueing Approach. IEEE 

Transactions on Network and Service Management, 18 (2), 2388–2404. https://doi.org/10.1109/tnsm.2020.3026218 

25.	 Sunar, N., Tu, Y., Ziya, S. (2021). Pooled vs. Dedicated Queues when Customers Are Delay-Sensitive. Management Science, 67 (6), 

3785–3802. https://doi.org/10.1287/mnsc.2020.3663 

26.	 He, B., Li, T. Z. (2021). An Offloading Scheduling Strategy with Minimized Power Overhead for Internet of Vehicles Based on 

Mobile Edge Computing. Journal of Information Processing Systems, 17 (3), 489–504. https://doi.org/10.3745/JIPS.01.0077


