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1. Introduction

The shape of a flexible tape subjected to vertical and hor-
izontal distributed forces is an interesting subject of research 

in various fields of science and technology. For example, this 
form is important for analyzing the stressed-strained state 
of conveyor belts, conveyor systems, electric cables, bridge 
structures, etc. To carry out such research, it is necessary to 
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In theoretical mechanics, the equi-
librium of a flexible, inextensible thread 
is considered, to which the tension force 
of its ends and the distributed force of 
weight along the length of its arc are 
applied. An unsolved problem is finding 
the shape of the thread under the action 
of other distributed forces. This study has 
considered the equilibrium of a complete-
ly flexible thread, to which, in addition to 
this force, a transverse distributed force 
is applied. A sail serves as an example. 
Wind of equal intensity in the plane of the 
orthogonal section of the sail can be con-
sidered a distributed force. The sail can 
be cut into narrow strips with the same 
shape of the curves of the cross-section, 
which are equal to the cross-section of 
the sail as a whole. The theory of flexible 
thread is applied in the current study. The 
task is reduced to finding the curve of the 
cross-section of the sail.

The object of research is the forma-
tion of a cylindrical surface from a flexi-
ble thread under the action of distributed 
forces applied to it.

An important characteristic of the 
shape of a flexible thread is its curva-
ture. Its dependence on the length of the 
arc was found and it was established 
that the found curve is a chain line (cat-
enary). This is the feature of the current 
research and its distinguishing character-
istics. The significance of the results stems 
from the derived analytical dependences, 
according to which the change in the ratio 
between the distributed forces acting on 
the flexible thread deforms it, but it retains 
the shape of the catenary. At the same 
time, the angle of deviation of its axis of 
symmetry from the vertical changes. In 
the absence of a horizontal distributed 
force and the presence of only a distrib-
uted force of weight, the axis of symmetry 
of the chain line is directed vertically – at 
an angle of 90° to the horizontal. If they 
are equal, this angle is 45°. Scope of appli-
cation includes structures with stretched 
supporting wires, conveyor belts, flexible 
suspended ceilings, the shape of which 
can be calculated by using our results
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have a mathematical model of the shape of a completely flex-
ible tape, which depends on the intensity and direction of the 
applied forces. A physical model of the tape with such a load 
is a sail, for which the vertical distributed force is the force of 
gravity, and the horizontal force is the force of the wind. Our 
study assumes that both forces are constant, that is, there is 
a constant intensity of the action of these forces on the tape 
along its entire length, which is also constant.

Scientific research into this area is important as it makes it 
possible to significantly expand existing approaches in solving 
the problem of forming surfaces from flexible material under 
the action of distributed forces. It is needed in practice be-
cause it enables calculation of the shape of the surface, as well 
as the flexible thread, depending on the ratio of the weight of 
the material and the applied forces. The relevance of research 
relates to the fact that the solution to a known problem is ex-
tended to more general cases that can occur in practice.

2. Literature review and problem statement

The task to determine the shape of a flexible tape sub-
jected to distributed forces has many applications in various 
fields of science and technology. Scientists use different 
methods and approaches to solving this problem. One of the 
first to deal with this issue was Euler who in 1744 obtained a 
solution for the form of a flexible tape, which is suspended by 
two ends and deforms under the influence of its own weight. 
It is also necessary to mention the catenary studies by Galil-
eo, Bernoulli, Leibniz, and Huygens. Ultimately, the solution 
was built on the basis of a second-order differential equation 
that describes the curvature of the tape axis.

However, in the initial statement, the problem was solved 
on the basis of a completely natural request: determining the 
deformation of a completely flexible inextensible thread under 
the action of the force of its own weight, that is, a distributed 
vertical force uniformly distributed along its length. Analytical 
studies are aimed at the practical needs for determining the 
shape of a flexible thread under the additional action of other 
distributed forces. That predetermined the purpose of the work.

An alternative method is the variational method, which 
is based on the principles of continuum mechanics and 
the minimum potential energy of the system. This method 
makes it possible to obtain a solution in the form of a series 
for some functions that satisfy the boundary conditions. 
This approach was proposed by Kossel in 1933 and proved 
to be effective in solving the problem of finding the shape of 
a flexible tape with distributed forces.

Most works by modern authors relate to the practical use 
of flexible threads and tapes. For example, in [1], the basics 
of statics, kinematics, and dynamics of threads in relation to 
the textile industry are considered. Study [2] considers the 
stressed-deformed state of a flexible belt of a tubular con-
veyor. However, in those studies, there is no mathematical 
model of the shape of the tape, which could be used in a wide 
range of research.

In [3], a comprehensive review of axially moving flexible 
structures in problems involving distributed contact of the 
structure with a solid body is given. The outlined features 
apply only to axially moving structures based on models 
with simplified support conditions.

The issue of the dynamics of moving contact lines, which 
are much more complicated than the geometric flow, and 
their application in interphase science and technological 

fields is addressed in [4]. The authors emphasize the role of 
the dynamics of moving contact lines in numerous advanced 
technologies and stress the need to focus the attention of 
scientists on a better understanding of the physics of motion.

The theoretical model of a moving contact line built by re-
moving a flat solid body from a liquid was devised in [5]. The 
representation of laminar flow is based on a combination of 
stream functions defined in the molecular domain dominated 
by molecular forces and in the macroscopic domain dominat-
ed by viscous forces. The mathematical model realistically re-
flects the details of the viscous flow near the contact line and 
accurately corresponds to the experimental data, but it can 
only be partially applied to the case of a suspended system.

Oscillations of low-viscosity liquid droplets spreading 
over textured surfaces arise from pinning of the three-phase 
contact line, which in turn is associated with hysteresis in 
the wetting behavior of real surfaces.

In [6, 7], the study of dynamic loads of cargo on a flexible 
suspension is described, using the example of the simulta-
neous movement of the turning and lifting mechanisms of 
a jib crane. However, the mathematical models obtained by 
scientists do not take into account the action of horizontally 
distributed forces.

The movement of the tape along the inner surface of a 
stationary cylinder is considered in [8]. Paper [9] reports 
the construction of mathematical models of the stability of 
the functioning of a mechanical system under the condition 
of its fastening. The resulting models cannot be used for the 
case of a suspended state of the system.

The dynamic model of the three-dimensional angle of the 
contact line is proposed in [10]. It quite completely predicts 
the evolution of the contact angle on surfaces, including 
those that perform oscillatory movements. However, the 
limitation of the approach proposed by the authors is the 
gas-liquid state of the media.

All of the above allows us to state that it is appropriate 
to conduct a study on the construction of a mathematical 
model of the cross-section of an absolutely flexible inexten-
sible tape, which it acquires under the action of vertical and 
horizontal distributed forces.

3. The aim and objectives of the study

The purpose of our study is to determine the shape of the 
cross section of a completely flexible non-stretchable tape, 
which it acquires under the action of vertical and horizontal 
distributed forces. This will make it possible to purposefully 
search for the shape of cylindrical surfaces made of flexible 
material that deform under the action of distributed forces, 
and thus optimize the volume they occupy.

To achieve the goal, the following tasks were set:
– to compile the equilibrium equation of the tape element 

on the coordinate axis and find the parametric equations of 
the curve of its cross section;

– to describe the properties of the found curve depend-
ing on the ratio of vertical and horizontal distributed forces.

4. The study materials and methods

The object of research is the shape formation process of 
a cylindrical surface from a flexible tape under the action of 
distributed forces applied to it.
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It is known from the course of theoretical mechanics that 
a flexible thread under the action of a vertical distributed 
force of weight acquires the form of a chain line, the equation 
of which includes a constant value. It was hypothesized that 
when a horizontal distributed force was applied to the thread, 
its shape would change but it would remain a chain line with 
a different constant value. To confirm it, the apparatus of 
analytical and differential geometry was used. Mathematical 
transformations and integration of the resulting dependenc-
es were carried out using the symbolic mathematics software 
package “Mathematica” (USA). Construction of the curves 
of the cross-section of the tape based on the equations built 
was performed using the software suite “MATLAB” (USA). 
Some graphic illustrations to explain the material of the 
paper were drawn in the “AutoCAD” environment (USA). 
The study assumed that the tape or thread is inextensible 
and adopted simplification that they are perfectly flexible.

5. Research results on determining the shape of the cross-
section of an absolutely flexible non-stretchable tape

5. 1. Construction of differential and parametric equa-
tions of equilibrium of the tape on the coordinate axis

Let a completely flexible thread, which is part of a similar 
tape, is fixed at point A (Fig. 1). Two constant distributed 
forces act on it: the weight of a unit length of tape m verti-
cally downwards and a lateral force q, which can be the force 
of the wind. At each point of the thread, there is a tension 
force T: at point A of the suspension, it has a value of Т0. As 
the point of the curve goes down, the tension force changes 
and at point B it takes a value of Т1.

The equation of thread equilibrium takes the form:

0,x

d dx
T F

ds ds
  + = 
 

				    (1)

0,y

d dy
T F

ds ds
  + = 
 

where Т – thread tension at the current point.

The distributed forces m and q in the projections onto the 
coordinate axis will be written:

Fx=q;						     (2)

Fy=–m;

After substituting (2) into (1):

;
d dx

T q
ds ds

  = − 
 

				    (3)

.
d dy

T m
ds ds

  = 
 

Taking into account that cos ,
dx
ds

= α  sin ,
dy
ds

= α  equa-
tions (3) take the form:

( )cos ;
d

T q
ds

α = − 				    (4)

( )sin .
d

T m
ds

α =

In equations (4), the product in round brackets must be 
differentiated for the variable s – the length of the thread:

cos sin ;
dT d

T q
ds ds

α
α− α = − 			   (5)

sin cos .
dT d

T m
ds ds

α
α+ α =

The angle α (Fig. 1) depends on the length of the tape 

arc s. It is known from differential geometry that ,
d

k
ds
α
=   

where k is the curvature of the curve at the current point. 
Based on this:

.
dT dT d dT

k
ds d ds d

α
= ⋅ =

α α
				    (6)

After substituting (6) into (5), two equations can be 
obtained as a function of one variable α:

cos sin ;
dT

k Tk q
d

α− α = −
α

			   (7)

sin cos .
dT

k Tk m
d

α+ α =
α

Equations (7) include two unknown functions: T=T(α) 
and k=k(α). The solution to the system of equations (7) with  

respect to k and 
dT
dα

 takes the following form:

( )1
cos sin ,k m q

T
= α + α 				   (8)

sin cos
.

cos sin
dT m q

T
d m q

α− α
=

α α+ α
			   (9)

In differential equation (9), the variables can be separat-
ed. After its integration:

0 ,
cos sin

T
T

m q
=

α + α
				    (10)

where Т0 is the thread tension at the starting point (Fig. 1).
Substituting (10) into (8) gives the result:

( )2

0

1
cos sin .k m q

T
= α + α 			   (11)

Fig. 1. Graphic illustration of the shape of a flexible thread, 
which it acquires under the action of vertical m and lateral q 

distributed forces
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Equation (11) determines the dependence of the curva-
ture k of the curve on the angle of inclination α of the tangent 
to it at the current point. In fact, the curve is given, but to 
build it, you need to go to the coordinate record. The transi-
tion from dependence (11) to the parametric equations of the 
curve is known from differential geometry:

cos
d ;x

k
α

= α∫ 					    (12)

sin
d .y

k
α

= α∫

Substituting (11) in (12) yields expressions that can be 
integrated:

( )
( )

0
3 2 2 22 2

0
2 2

2 tan 2
Arctanh

cos sin ;

T m m q
x

m qm q

T q
m q

m q

α −
= −

++

− α + α
+

		  (13)

( )
( )

0
3 2 2 22 2

0
2 2

2 tan 2
Arctanh

cos sin .

T q m q
y

m qm q

T m
m q

m q

α −
= +

++

+ α + α
+

According to equations (13), Fig. 2, a shows the con-
structed curves of the cross-section of the flexible tape at 
Т0=1; m=0,5 and q=1. Curve 1 is constructed when the angle 
α changes within 0…139°, and curve 2 – within 30°…127°. In 
Fig. 2, b, curve 2 is enlarged and combined with curve 1 so 
that their ends coincide. This gives an idea of the shape of the 
cross-section of the sail at different lengths of the cross-sec-
tion curve between the attachment points.

In equations (13), the tension force Т0 can be taken out of 
parentheses, that is, it does not affect the shape of the curve 
but plays the role of a scaling factor.

5. 2. Studying the properties of the found curve de-
pending on the ratio of vertical and horizontal distributed 
forces

If necessary, you can find the length s of the curve be-

tween the attachment points. Based on the fact that ,
d

k
ds
α
=   

taking into account expression k (11):

( )

( )

0
2

0

dd

cos sin

sin
.

cos sin

T
s

k m q

T
m m q

αα
= = =

α+ α

α
=

α+ α

∫ ∫

		  (14)

When substituting in (14) the values of the angle α at 
the points of attachment of the curve, the length of the arc s 
between them can be found. Excluding the angle α in expres-
sions (11) and (14), it is possible to obtain the dependence of 
the curvature k of the curve on the length s of its arc, that is, 
the natural equation of the curve:

( )

2
0

24 2
0

.
T m

k
m s T mqs

=
+ −

			   (15)

When q=0, that is, when there is only a distributed 
force of weight m, we get a known natural equation of the 
chain line:

2 2
,

a
k

s a
=

+
					     (16)

where the expression 0
2

.
T

а
m

=  acts as a constant a.

Algebraic transformation of equation (15) can lead to 
the form:

( )2 2
0

,
a

k
s s a

=
− +

				    (17)

where 0
2 2

,
T

а
m q

=
+

 0
0 3 2

.
T q

s
m mq

=
+

 Thus, equations (16) 

and (17) describe the chain line at different values of the 
constant a. The so value does not affect the shape of the curve 
but only the reference point of the arc on it. At q=0, they 
become identical.

The chain line has an axis of symmetry that is vertical 
at q=0. Analyzing Fig. 2, which is drawn when 0,q ≠  it 
can be assumed that the axis of symmetry is deviated from 
the vertical by a certain angle. It is impossible to find the 
expression of this angle from equation (17) since the natural 
equation does not depend on the rotation of the curve in the 
plane. If the chain line is turned by an angle αо, then its sym-
metry axis is turned by this angle relative to the Оу axis and 
is also tangent at point A in relation to the Ох axis (Fig. 3). 
Point A is the point with the greatest curvature. Parametric 
equations (13) describe the rotated chain line as a function 
of the angle α, which is the angle between the tangent to the 
curve at the current point and the Ох axis. It is required to 
find such a value of the angle α at which the curvature of the 
chain line is maximum. The expression of the curvature as a 
function of the angle α is given in (11). The task boils down 
to determining the extremum of this expression. Equating 
the derivative of expression (11) to zero and solving with 
respect to α, we can obtain:

Fig. 2. The shape of the cross-section of a flexible tape on the 
example of a sail loaded with distributed forces: vertical m=0.5 

and horizontal q=1 at different limits of angle change α: 	
a – curves are drawn at a common scale; b – curve 2 is 

enlarged and combined with curve 1 so that the ends of the 
curves coincide
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0 2 2
arccos .

m

m q
α =

+
				    (18)

At q=0, α0=0, that is, the axis of symmetry is vertical, 
which coincides with the known result. At m=0, α0=90°, i.e., 
the axis of symmetry is horizontal, which corresponds to the 
horizontal distributed force with a weightless sail.

It should be noted that parametric equations (13), in 
addition to being bulky, due to their specificity do not give 
the desired result at m=0 (the second equation becomes 
identical to zero). However, for any ratio 
of the distributed forces m and q, it is very 
simple to construct the corresponding 
curve according to the known parametric 
equations of the chain line as a function of 
the arc length s:

arcsinh ;
s

x a
a

= 		  (19)

2 2 ,y a s= +

which correspond to the natural equa-
tion (16). According to equation (17), the 
constant a is found: 

0
2 2

.
T

а
m q

=
+

 

This curve must be turned at an-
gle αо (18). It should be noted that the 
angle αо (18) depends only on the ratio of the distributed 
forces m and q. If the forces m and q are known, then the 
position of the axis of symmetry of the chain line is known. 
But the shape of the chain line depends on the constant 

0
2 2

,
T

а
m q

=
+

 that is, its shape is affected by the tension  

force Т0, which, as mentioned above, plays the role of the scale 
factor. Taking this into account, it is possible to set a condi-
tion for finding the value of Т0, provided that the curve passes 
through the given two points (fixing points). At the same 
time, it is not necessary to determine the length of the arc 
between the attachment points since it is the variable s itself.

One can set a simpler problem: to find the tension 
force Т0 when the ratio of the distributed forces m and q 
changes, provided that the catenary remains congruent, 
that is, the constant a does not change. Let the new values 
of the forces m, q, and Т0 be denoted with the index 1. By 
equating the constant a with the previous and new values 
and solving the resulting equation with respect to Т01, we 
can obtain:

2 2
1 1

01 0 2 2
.

m q
T T

m q
+

=
+

				    (20)

An important conclusion follows from expres-
sions (18), (20): when changing the values of the distributed 
forces m and q to new m1 and q1, the shape of the catenary 
taken by the flexible tape will not change but the tension at 
the attachment point will change according to (20), as well 
as angle α according to (18) at new values of distributed forc-
es m1 and q1. In the case when the distributed forces grow 
proportionally, that is, they increase by n times, then neither 
the shape of the curve nor the angle of inclination of its axis 
of symmetry changes, but only the tension force increases by 
n2 times, that is, T01=T0n2.

In Fig. 4, congruent curves are constructed according 
to equations (19) with subsequent rotation by the angle αо. 
The initial data are tension force Т0=10 and distributed 
forces m=3 and q=5. According to formula (18), the rotation 
angle αо=1.03 rad or αо=59°. The curve based on these data 
is plotted in Fig. 4, a. Let’s take distributed forces with a 
new ratio: m1=4 and q1=3. From expression (20) we find: 
Т01=7.4, and from expression (18): αо1=0.64 rad or αо=37°. 
The corresponding curve is plotted in Fig. 4, b.

The boundaries of the flexible tape between the at-
tachment points on a vertical line are marked with a thick 
line in the figures. The limits of the variable s are selected 
in such a way that the length of the thickened lines in both 
figures is the same and equal to 1.4 linear units.

6. Discussion of the procedure for finding the shape of 
a flexible tape, which it acquires under the action of 

distributed forces

In contrast to [2], in which a mathematical model of 
a flexible tape under the action of a vertical applied force 
was built, we constructed differential equations of equi-
librium of a flexible tape under the action of vertical and 
horizontal distributed forces. They make it possible to 
derive parametric equations (13) that describe its shape in 
the vertical plane. It follows from these equations that the 
initial tension force Т0 at one of the attachment points is a 
scaling factor and does not affect the shape of the curve. It 

Fig. 3. Graphic illustration for determining the angle α0 of the 
inclination of the chain line

A
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Fig. 4. Congruent curves constructed with different ratios of distributed forces m 
and q: a – Т0=10; m=3; q=5; αо=59°; b – Т01=7,4; m1=4; q1=3; αо1=37°
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is obvious that the tension force Т0 depends on the length 
of the flexible tape between the attachment points. In the 
absence of a horizontal distributed force, a known result 
was obtained, in which the flexible tape takes the form of 
a catenary under the action of only a vertical distributed 
force. In the presence of a horizontal distributed force, 
the curves obtained by equation (13) were similar to the 
arc of a turned catenary (Fig. 2). It was hypothesized that 
the obtained curve is also a catenary, in which the axis of 
symmetry is turned by a certain angle from the vertical 
position. By transformations using known dependences 
of the differential geometry of the curves, the natural 
equation of the curve was built, which confirmed the 
correctness of the hypothesis. In addition, the value of the 
constant was found, which affects the shape of the catena-
ry, as well as the angle of deviation of its axis of symmetry 
from the vertical position. Its value depends only on the 
ratio of vertical and horizontal distributed forces. With 
the same magnitude of these forces, the deflection angle 
is 45°, and with a weightless tape – 90°, that is, under the 
action of only the horizontal distributed force, the axis of 
the catenary is located horizontally. In contrast to [6, 7], 
the transition to the natural equation made it possible to 
study the shape of the chain line with a different ratio of 
distributed forces. According to formula (20), it was es-
tablished that with a proportional increase of both forces 
by n times, the shape of the curve does not change, but the 
tension force at one of the attachment points increases by  
n2 times.

Similarly to [8], the limitations of our approach are that 
the tape is completely flexible and inextensible, that is, it 
does not resist bending and does not lengthen as a result 
of tensile forces.

The disadvantage is the impossibility of finding an ex-
pression for determining the coordinates of the attachment 
points on a vertical line. To that end, numerical methods 
should be used. For example, in Fig. 4, attachment points 
are located on a vertical line at x=–0.6 (Fig. 4, a) or at 
x=–0.3 (Fig. 4, b). Therefore, the equation x=x(α) or  
x=x(s) must be equated to this value and find the value of 
the variable α or s, of which there must be two, since the 
curve at the given value of x has two points. Such an equa-
tion cannot be solved analytically, so numerical methods 
must be used. By substituting the found values of α or s 
into the equation у=у(α) or у=у(s), the numerical values 
of the coordinates at both points are found. The advan-
tages of this research compared to existing ones are that 
when finding the shape of the flexible tape, the natural 
equation of the curve was used, which identifies the curve 
in a fixed coordinate system regardless of its rotation in 
this system. This approach has made it possible to solve 
part of the problem, which eliminated the use of the vari-
ation method and to obtain results based on the natural 
essence of the problem. The essence of using our results 
is that when changing the ratio of distributed forces, it is 
not necessary to look for the shape of a flexible tape every 
time but to find it according to a simplified scheme in 
the form of a catenary and the angle of its deviation from 
the vertical direction. This presents opportunity to solve 
specific research and practical problems. The development 
of the current research may consist in finding the shape 
of a flexible tape under the action of distributed forces of 
variable magnitude.

7. Conclusions

1. The equation of equilibrium of a flexible inextensible 
tape under the action of constant vertical and horizontal 
distributed forces in projections onto the coordinate axis 
has been constructed. As a result of transformations and the 
application of known formulas of the differential geometry 
of curves, two differential dependences were established: 
the curvature and the tension force of the flexible tape de-
pending on the variable α – the angle of inclination of the 
tangent to the curve with the x axis. As a result of further 
transformations, a transition was made to one equation – 
the dependence of curvature of the curve on the angle α. 
Such a dependence, according to the known formulas of 
the differential geometry of curves, allows one to proceed 
to the parametric equations of the curve by integrating the 
expressions, which in this case make it possible to carry out 
the integration and derive the equation in the final form. Ac-
cording to the equations built, the curves of the cross-section 
of the flexible tape for the specified values of the vertical and 
horizontal distributed forces were constructed.

2. A partial case of forming the curve of the cross-section 
of a flexible tape is the absence of a horizontal distributed 
force, i.e., the case when only the vertical distributed force of 
weight acts on it. For this case, known result was obtained, 
according to which the curve is a catenary with a vertical 
axis of symmetry. For the general case, in the presence of 
two distributed forces, the transition to the natural equation 
is made and it is shown that the curve would also be a cat-
enary, the axis of symmetry of which forms a certain angle 
with the vertical direction. The expression of the constant 
was obtained, which is included in the natural equation of 
the catenary, due to the distributed forces. An expression for 
determining the angle of inclination of the axis of symmetry 
of the catenary was also obtained. It has been mathemat-
ically confirmed that with a proportional increase of both 
distributed forces by n times, the shape of the catenary and 
its angle of inclination do not change, but only the tension 
force increases by n2 times.
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