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Specifically, [5] addresses scenarios where a fixed boundary on 
the left and an object with lumped parameters on the right im-
pact the distributed system. Conversely, [6] tackles cases where 
control functions and objects with lumped parameters influence 
the system’s ends, interlinked through the boundary conditions 
of the wave equation. Utilizing the d’Alembert formula, these 
studies conceptualize wave equation solutions as superpositions 
of “forward” and “reverse” waves. Moreover, [7] explores bound-
ary control problems involving oscillations of objects with both 
distributed and lumped parameters, showcasing a diverse range 
of boundary conditions. Meanwhile, [8] delves into damping os-
cillations within systems comprising serially connected objects 
with distributed parameters, with free system boundaries and 
attachment points for objects with lumped parameters. While 
akin systems have been studied since the mid-20th century, their 
practical implementation remains challenged by computational 
complexities in solving boundary value problems and optimizing 
control variables [9–11].

Therefore, the problem of controlling nonlinear oscillato-
ry objects and dynamic processes is of significant practical 
importance. The relevance of research in this direction is 
justified by the need to find and implement numerical solutions 
to the optimal control problem of oscillations in the system 
of objects. Additionally, there is the possibility of observing 
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approximations, associated with the linearity of boundary 
problems describing oscillatory processes, are applied. The 
oscillations of one object are described by a wave equation 
with first-order boundary conditions, while a second-order 
ordinary differential equation models the oscillations of 
the other object. Furthermore, the original and the adjoint 
boundary value problems are solved using direct methods 
at each iteration step. An algorithm for the numerical 
solution of the problem is proposed, and based on this 
algorithm, a software code for implementation is developed. 
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the future, resource planning, prevention of emergencies, or 
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1. Introduction

In the existing control theory, mathematical formalism 
largely suppresses the physical content of the control prob-
lem. In this regard, the fundamental problem of searching for 
general objective laws of control arises, which comes down 
to maximum consideration of the natural properties of an 
object of the corresponding physical nature. 

Oscillatory processes play an extremely important role in 
modern physical, chemical, biological, technical, and economic 
sciences. Suffice it to mention that classical and celestial me-
chanics are, first of all, the sciences of vibrations. If in natural 
processes oscillations are a reflection of the corresponding nat-
ural patterns of interaction between parts of the general system, 
then in technology oscillatory phenomena can act both as the 
main operating modes and turn out to be undesirable and con-
trary to the normal flow of the technological process. 

The optimization of oscillatory processes holds significant 
relevance across various fields, encompassing endeavors such as 
stabilizing ship motions, managing crane booms, and controlling 
gas flows in extensive pipelines or power lines [1–4]. Notably, 
recent studies [5–8] have broached the challenges of damping 
oscillations within systems described by a combination of wave 
equations and second-order ordinary differential equations. 
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intensity. This allows for energy savings through more ef-
ficient utilization of energy systems within buildings. The 
paper investigates various controller parameters, including 
control step, prediction horizon, state-action space, learning 
algorithm, and network architecture for the value function. 
The optimal controllers proposed in the paper are evaluated 
individually, which hinders the identification of optimal 
methods for widespread use in the construction indus-
try. Additionally, the limited scope of application of these 
methods in artificially created environments restricts their 
practical applicability. In energy systems, such as genera-
tors, turbines, and power plants, optimal management can 
improve resource utilization efficiency, reduce equipment wear 
and tear, and minimize environmental impact. In the field of 
building construction, there is a growing need for optimizing 
energy systems, which becomes a key task in the creation of 
modern buildings and industrial facilities. In this context, en-
ergy supply systems are actively evolving to create more intel-
ligent, efficient, and reliable energy supply networks. Modern 
energy generation and distribution systems, such as microgrid 
management, face challenges due to the presence of both linear 
and nonlinear loads, which can lead to distortion of voltage and 
current waveforms. Essentially, heating and cooling systems 
in industrial and residential buildings can be considered as 
sources of harmonic distortions. The paper [16] presents a new 
concept based on geometric algebra (GA) aimed at determining 
the power of multivector distortions represented in the form of 
a bivector. Both bivectors and their relationship with the phase 
angles of distorted voltage are analyzed. However, the paper 
does not describe the drawbacks or limitations of the proposed 
concept, nor does it conduct a comprehensive analysis of its ap-
plicability in various scenarios. Additionally, while numerical 
examples are provided, they may not be sufficiently diverse or 
detailed to fully understand the effectiveness and scope of ap-
plicability of the concept. Optimal control of oscillations plays 
a pivotal role in stabilizing and managing the aerodynamic 
characteristics of aircraft and spacecraft.

In [17], a novel approach to aerodynamic feedback control 
using machine learning is presented, illustrated by a coupled 
oscillatory system with non-stationary feedback. The ob-
tained results demonstrate that this method can effectively 
respond to changing conditions and provide optimal control 
in dynamic scenarios. This automated and versatile feed-
back control approach opens up new prospects for efficiently 
managing various tasks related to fluid flow. However, the 
research findings may only be applicable to a specific type of 
oscillatory systems with non-stationary feedback. It is possi-
ble that the obtained results require further validation on a 
broader set of test data or under different operating conditions 
to ensure their generalizability. This limits the applicability of 
the method in other contexts. In medical technology, optimal 
control can be applied to manage medical devices like insulin 
pumps, artificial hearts, and other medical equipment to en-
sure perfect functionality. In [18], an approach to metabolic 
control is proposed, based on inducing temporal oscillations 
in the levels of specific enzymes. This method represents an 
alternative strategy for enhancing the production of desired 
metabolites. The objective of the study is to maximize the 
overall metabolite production by utilizing temporal changes 
in enzyme concentrations. The results demonstrate that the 
use of temporal oscillations can significantly improve meta-
bolic processes in experimentally feasible synthetic schemes. 
However, achieving optimal results requires an accurate 
kinetic model of central carbon metabolism, which may be 

feedback phenomena in the investigated systems, enabling the 
response to changes in external conditions or internal parame-
ters and adjusting behavior according to specified constraints.

2. Literature review and problem statement

The utilization of mathematical modeling in solving 
optimal control problems of oscillatory processes finds ev-
er-expanding applications across various scientific and engi-
neering domains. For instance, tasks related to oscillations 
and their management may encompass integral efficiency 
criteria. In [12], such instances are examined, particularly 
focusing on signal concentration at breakpoints. To enhance 
precision in defining efficiency and rational utilization of 
numerical methods, functional analysis techniques are em-
ployed, including anisotropic parametrized measures, within 
the context of semidefinite programming. The proposed 
resolution approach advocates for leveraging convex optimi-
zation methods, such as semidefinite relaxations. Despite the 
demonstrated advantages of advanced optimal controllers 
in research and demonstration examples, their practical 
implementation remains limited. One of the primary reasons 
for this limitation is that these novel control algorithms are 
still evaluated individually, hindering the identification of 
best practices for the widespread adoption of optimal control 
strategies. Optimal control enables efficient management of 
motion and vibrations in systems to enhance accuracy, effi-
ciency, and safety. The study [13] aims to address the issue 
of weakly or negatively damped low-frequency oscillations 
caused by the cross-transmission of electric power from large 
wind farms. The study proposes the use of a fast terminal ad-
ditional damping regulator with a sliding mode. To achieve 
this, a rotor magnetic circuit controller is developed, which 
takes into account the relationship between the applied 
voltage and the rotor magnetic circuit. A simulation model 
of the system is created in MATLAB/Simulink for auton-
omous modeling, and a real-time experiment is conducted 
on the modeling of inter-zonal transmission of a large wind 
farm based on a digital system. However, this work does not 
consider all factors influencing low-frequency oscillations in 
wind farms, such as changes in environmental conditions or 
the impact of external disturbances. Oscillations can affect 
the operation of electronic devices, integrated circuits, elec-
trical circuits, and control systems. Optimal management 
helps minimize the impact of noise, reduce energy consump-
tion, and increase operational reliability. In [14], a gas foil 
bearing with active gas (AGFB active gas foil bearing) is 
presented as an author’s configuration. The interaction of 
the gas with the considered structure is modeled using the 
Reynolds equation, and a dynamic system with a unique 
source of nonlinearity is created, where linear feedback 
control using polynomial functions is applied to address 
the stability issue. In our view, the paper lacks a sufficiently 
detailed description of the methodology and modeling or 
control processes, which may hinder the replication and 
reproduction of the research by other scientists or engineers. 
In the construction and design of buildings, bridges, dams, 
and other infrastructure, it is essential to steer vibrations 
and oscillations. Optimization of control can contribute to 
the longevity and safety of such structures. The paper [15] 
examines how optimal controllers can enhance the energy 
efficiency of buildings by considering forecasts and uncer-
tainties such as weather conditions and room occupancy 
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tribution of the displacement. External force p(t)∊C2 [0, T], 
which is chosen as controls, satisfies the matching conditions 
for the initial and boundary conditions:

( ) ( )
( ) ( )
( ) ( )

0 0 ,

0 0 ,

0 0 .

p a

p b

p a

 =
 ′ =
 ′′ ′′=

   (6)

External force p(t) and the lumped object affect, respec-
tively, the left and right ends of the distributed object.

It is required without going beyond the specified range 
0≤pmin≤p(t)≤pmax, where pmin and pmax are values given on 
the basis of technological considerations, to control the exter-
nal force p(t) so that at the moment of time t=T the system is in 
a state that differs little from its state of rest. The functional is: 

( ) ( )
1

2 2

0

, , d ,tF u x T u x T x = + ∫   (7)

that is, we are dealing with the problem of the best calming of 
coupled systems by the time T. In particular, if the minimum of 
the functional (7) is equal to zero, then we can talk about the 
possibility of complete damping of the oscillations of coupled 
systems. The control p(t) that satisfies the above conditions will 
be called an admissible control, and the boundary value prob-
lem (1)–(5) will be called a direct boundary value problem [15].

Note that, as a special case of problem (1)–(7), we can 
formulate the control problem for string vibrations under 
boundary conditions of the first kind, i.e. process control 
problems, which are described by the boundary value prob-
lem (1)–(3), where y(t) acts as a control function, and p(t) 
is a fixed function or equal to zero (in the case when the 
left end of the string is fixed). Problems of this type were 
considered in [6].

If we exclude from (3)–(5) the variable y(t), then, taking 
into account the conditions u(1,0)=y0, ut (1, 0)=y1 it was proved 
in [9] that under conditions (6) and a’’(1)–a’(1)+a(1)=0 every 
function p(t) uniquely defines a unique solution u(x,t) of the 
boundary value problem (1), (2) with the conditions:

( ) ( )0, ,u t p t=  ( ) ( ) ( )1, 1, 1, ,tt xu t u t u t+ =  

( ) 01, ,u t y=  ( ) 11,0 .tu y=

Using the d’Alembert formula, a solution to the direct 
boundary value problem is constructed and, under certain 
additional conditions, an expression is obtained that allows 
us to determine the control variable. Note that when consid-
ering systems with a boundary effect through an object with 
lumped parameters, conditions (3)–(5) should be replaced 
by the conditions:

( )0, 0,u t = ( ) ( )1, ,u t y t= 0 ,t T< ≤  (8)

( ) ( ) ( ) ( )1, ,xy t y t p t u t+ = +  0 ,t T< ≤            (9)

( ) 00 ,y y=  ( ) 10 .y y=   (10)

In this case, the state of the lumped system is represented as:

( ) ( ) ( )

( ) ( )( ) ( )

0 1

0

cos sin

1, sin d ,
t

x

y t y t y t

p u t

= + +

+ τ + τ − τ τ∫

challenging for some systems. Considering all these aspects, 
optimal control problems in oscillatory processes remain rel-
evant and play a significant role in enhancing the efficiency, 
reliability, and stability of various technologies and systems.

All of this suggests that it is advisable to conduct re-
search to obtain a numerical solution to the problem of 
optimal control of oscillations in a system of interconnected 
objects, the processes of which are described by a set of par-
tial and ordinary differential equations. 

3. The aim and objectives of the study

The study aims to discover and apply the numerical solu-
tion of an optimal control problem for oscillations in a cou-
pled objects system. This will make it possible to determine 
optimal control actions on the object.

To achieve this aim, the following objectives are accom-
plished:

– to calculate the gradient of the Lagrange function and 
replace them with their approximating analogues;

– to present a numerical solution to the problem of con-
trolling oscillatory processes in a system of two objects;

– to develop a numerical solution algorithm, implement it in 
the form of program code and obtain specific numerical results.

4. Materials and methods 

The research focuses on oscillatory systems consisting of 
two objects. The oscillations of one object are described by a 
wave equation with first-order boundary conditions, while the 
oscillations of the other object are described by a second-order 
ordinary differential equation. To obtain a numerical solution 
to the problem, the mathematical apparatus of the Pontry-
agin maximum principle was used. The main assumption put 
forward in the study is that the developed solution has the 
potential for practical application. The primary assumption is 
the solvability of the boundary value problem describing the 
oscillatory process in the system of interconnected objects. 
The simplifications adopted in the study include reducing the 
control problem, described by a set of partial and ordinary 
differential equations, to a variational problem.

One of the objects is described by a wave equation with 
boundary conditions of the first kind, while a second-order 
ordinary differential equation characterizes the other object. 
To make the proposed system more realistic and applicable 
to systems with limited excitations, a term that character-
izes an object with distributed parameters was introduced.

Consider the oscillation of the system, described by the 
boundary value problem [9]:

( ) ( ), , ,tt xxu x t u x t=  0 1,x< <  0 ,t T< ≤  (1)

( ) ( ),0 ,u x a x=  ( ) ( ),0 ,xu x b x=  0 1,x≤ ≤  (2)

( ) ( )0, ,u t p t=  ( ) ( )1, ,u t y t= 0 ,t T< ≤  (3)

( ) ( ) ( )1, ,xy t y t u t+ =  0 ,t T< ≤   (4) 

( ) 00 ,y y=  ( ) 10 ,y y=     (5)

where a(x)∊C2[0, 1] is an initial state of an object with 
distributed parameters, b(x)∊C1[0, 1] is an initial speed dis-
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where u(x, t) describes the states of a distributed system, p(t) 
is a control function.

For the solution of the above problem, the gradient 
projection method is used. It is built through the first 
variations and based on the fact that the optimal control 
problem can be formulated as a variational problem where 
it is required to minimize the functional depending on 
the control and the state of the system. Application of 
the gradient projection method includes calculating the 
gradient of the functional concerning the control and then 
optimizing the control in the direction of the anti-gradi-
ent. This method allows us to come to the optimal solution 
gradually, step by step, iteratively finding a more optimal 
control at each step.

Further, the method of successive approximations applies 
in cases where the boundary value problem describing the 
dynamics of the system is linear. This simplifies the process 
of finding the optimal control.

5. Results of the study on finding a numerical solution to 
the problem of optimal control of oscillations in a system 

of coupled objects

5. 1. Calculation of the gradient of the Lagrange 
function

Let us compose the Lagrange function of problem 
(1)–(7):

( )[ ]

( ) ( ) ( ) ( )

1

0 0

0

, d d

1, d ,

T

xx tt

T

x

L F x t u u x t

z t u t y t y t t

= + ψ − +

 + − − 

∫ ∫

∫      (11)

where ψ(x, t), z(t) are Lagrange multipliers. The extrema of 
the functional L and F coincide if the constraint equations 
are satisfied. 

We calculate the first variation of L. The variation of the 
Lagrange function (11) has the form:

( ) ( )

( ) ( )

( )[ ]

( ) ( ) ( ) ( )

1

0

1

0

1

0 0

0

2 , , d

2 , , d

, d d

1, d .

t t

T

xx tt

T

x

L u x T u x T x

u x T u x T x

x t u u x t

z t u t y t y t t

δ = δ +

+ δ +

+ ψ δ − δ +

 + δ − δ − δ 

∫

∫

∫ ∫

∫ 

We transform the double integral using integration by 
parts, taking into account the following conditions:

( )
( )

( ) ( )
( ) ( )
( )
( )

,0 0,

,0 0,

0, ,

1, ,

0 0,

0 0.

t

u x

u x

u t p t

u t y t

y

y

δ =


δ =
δ = δ


δ = δ
δ =
δ = 

    (12) 

After simple transformations, we get:

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1

0 0

1

0

1

0

0

0 0

0

, , ( , )d d

, 2 ( , , d

, 2 , , d

1, d

0, d 0, ) 0, d

1, 1, d

,

T

xx tt

t

t t

T

x

T T

x x

T

x

L x t x t u x t x t

x T u x T u x T x

x T u x T u x T x

z t z t t y t t

t p t t t u t t

t z t u t t

z T y T z T y T

 δ = ψ − ψ δ + 

 + ψ + δ + 

 + −ψ + δ − 

 − + + ψ δ + 

+ ψ δ − ψ δ +

 + ψ + δ − 

− δ + δ

∫ ∫

∫

∫

∫

∫ ∫

∫





 

 

 (13)

further, using the condition of stationarity of the Lagrange 
functions and the randomness in the choice of variations of 
the phase variables, we equate the coefficients of the corre-
sponding variations to zero, that is considering:

( ) ( ), , ,tt xxx t x tψ = ψ 0 1,x< <  0 ,t T≤ <               (14)

( ) ( ), 2 , ,tx T u x Tψ =  ( ) ( ), 2 , ,t x T u x Tψ = −  0 1,x≤ ≤  (15)

( )0, 0,tψ =  ( ) ( )1, ,t z tψ = −  0 ,t T< ≤  (16)

( ) ( ) ( )1, ,xz t z t t+ = −ψ  0 ,t T≤ <     (17)

( ) 0,z T =  ( ) 0,z T =                  (18)

from (13) we have:

( ) ( )
0

0, d .
T

xL t p t tδ = ψ δ∫     (19) 

It follows that for any p(t) the gradient of the functional 
is ψx (0,t). 

So, to calculate the gradient of functional (7) with a 
fixed control p(t) it is necessary, first of all, to integrate two 
boundary value problems with the corresponding boundary 
conditions, that is, initially from the direct problem (1)–(5) we 
define the functions u(x, t), y(t), then put the resulting u(x, t), 
y(t) into the adjoint problem (14)–(18) and find ψ(x, t), z(t), 
and finally calculate ψx(0, t). 

For the numerical solution of these boundary value prob-
lems, in practice, an implicit difference scheme is commonly 
used in combination with a sweep or the method of straight 
lines. However, in some cases, it is also possible to use well-
known analytical solutions. But at the same time, the question 
of the convergence of this method for the problems under 
consideration is far from being investigated. In addition, the 
question of constructing a difference or differential-difference 
scheme is rather difficult, which, in addition to accuracy and 
efficiency, must first of all satisfy the requirement of stability. 

Functional (7) and its gradient ψx(0, t) are replaced by 
their approximating counterparts.

5. 2. Numerical solution of the problem of controlling 
oscillatory processes in a system of two objects

Let us find a solution y(t) to problem (4), (5), which has 
the following form:
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( ) ( ) ( ) ( ) ( )0 1

0

cos sin 1, sin d .
t

xy t y t y t u t= + + τ − τ τ∫  (20)

Taking into account the form of solution (20) and the 
conditions u(1, t)=y(t), write out the boundary condition 
that must be satisfied by u(x, t) at the point x=1: 

( ) ( ) ( ) ( ) ( )0 1

0

1, cos sin 1, sin d .
t

xu t y t y t u t= + + τ − τ τ∫  (21) 

If, however, from conditions (4), (5) we exclude y(t), then 
they can be represented in the form:

( ) ( )0, ,u t p t= ( ) ( ) ( )1, 1, 1, ,tt xu t u t u t+ =   (22)

( ) 01,0 ,u y= ( ) 11,0 .tu y=  (23)

We denote ut(x,t)=v(x,t) and ψx(x,t)=φ(x,t). Then, ex-
cluding y(t) from (4), (5), the boundary value problem (1)–(5) 
and functional (7) can be written in the following form:

( ) ( ), , ,tu x t x t= υ    (24)

( ) ( ), , ,t xxx t u x tυ = 0 1,x< <  0 ,t T< ≤   (25)

( ) ( ),0 ,u x a x=  ( ) ( ),0 ,x b xυ =  0 1,x≤ ≤   (26)
 

( ) ( )0, ,u t p t=  0 ,t T< ≤                          (27)

( ) ( ) ( )1, 1, 1, ,t xt u t u tυ + =  0 ,t T< ≤  (28)

( ) 01,0 ,u y=  ( ) 11,0 ,yυ =   (29)

( ) ( )
1

2 2

0

, , d .F u x T x T x = + υ ∫  (30)

It can be seen from (26) and (29) that the following con-
ditions must be met: a(1)=y0, b(1)=y1. 

Let us find a solution z(t) to problem (17), (18), which 
has the form:

( ) ( ) ( )1, sin d .
T

x
t

z t t= − ψ τ − τ τ∫                   (31)

Taking into account the form of solution (31) and the 
conditions ψ(1,t)=–z(t), write out the boundary condition 
that the function ψ(x, t) must satisfy in the point x=1: 

( ) ( ) ( )1, 1, sin d .
T

x
t

t tψ = ψ τ − τ τ∫   (32)

Excluding from (16)–(18) the variable z(t)  taking into 
account the equalities:

( ) ( ) ( ) ( ) ( )1, 1, cos d 1, sin .
T

t x x
t

t t t t tψ = ψ τ − τ τ − ψ −∫  (33)

(16)–(18) can be represented as:

( ) ( )1, ,t z tψ = −  ( ) ( ) ( )1, 1, 1, ,t xt t tφ + ψ = ψ   (34)

( )1, 0,Tψ = ( )1, 0.Tφ =           (35)

Thus, the system (14)–(18) can be written as:

( ) ( ), , ,t x t x tψ = φ     (36)

( ) ( ), , ,t xxx t x tφ = ψ 0 1,x< < 0 ,t T≤ <          (37)

( ) ( ), 2 , ,x T x Tψ = υ  ( ) ( ), 2 , ,x T u x Tφ = −  0 1,x≤ ≤  (38)

( )0, 0,0 ,t t Tψ = < ≤   (39)

( ) ( ) ( )1, 1, 1, ,t xt t tφ + ψ = ψ 0 ,t T≤ <   (40)

( )1, 0,Tψ =  ( )1, 0.Tφ =    (41)

Now, using the method of straight lines, we construct 
a finite-dimensional approximation of problem (24)–(29). 
Let {xi=ih, i=0, 1, …, n} is a grid with a step h=1/n on the 
segment [0, 1]. We introduce the designations ui (t)=u(xi, t), 
vi(t)=v(xi,t), i=1, 2, …, n. Then, taking into account the con-
ditions u0(t)=p(t), the boundary value problem (24)–(29) 
can be approximated by the system of equations:

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 22

1 12

1

, 1,2,..., ,

1
2 ,

1
2 , 2,3,..., 1,

1
1 ,

i i

i i i i

n n n

u t t i n

t p t u t u t
h

t u t u t u t i n
h

t u t h u t
h

− +

−

 = υ =

  υ = − + 



 υ = − + = −  

  υ = − + −  









  (42)

with initial conditions:

( ) ( ) ( ) ( )
( ) ( )0 1

0 , 0 , 1,2,..., 1,

0 , 0 .

i i i

n n

u a x b x i n

u y y

 = υ = = −


= υ =
          (43)

Thus, the original problem (24)–(30) is reduced to de-
termining the external force p(t)*, without taking it beyond 
the maximum and minimum possible from the minimum sum 
condition under conditions (42), (43):

( ) ( )2 2

1

.
n

i i
i

F h u T T
=

 = + υ ∑      (44)

Taking into account the designations ψi(t)=ψ(xi,t), 
φi(t)=φ(xi,t), i=1, 2, …, n and conditions ψ0(t)=0, the bound-
ary value problem (36)–(41) is also approximated:

( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1 22

1

2
1

1

, 1,2,..., ,

1
2 ,

1
, 2,3,..., 1,

2

1
1 .

i i

i

i

i

i i

n n n

t t i n

t t t
h

t
t i n

h t t

t t h t
h

−

+

−

ψ = φ =

  φ = − ψ + ψ 
  ψ −

φ = = −  − ψ + ψ   

  φ = −ψ + − ψ 









 (45) 

The boundary conditions for (45) and the approximating 
analogue F’(p) have the form: 

( ) ( ) ( ) ( )
( ) ( )

2 , 2 , 1,2,..., 1,

0, 0,
i i i i i

n n

T T T u T i n

T T

ψ = υ φ = − = −


ψ = φ =
 (46)

( ) ( ) ( )( )1 0

1
.F p t t

h
′ = ⋅ ψ − ψ                (47)
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From (44), taking into account the condition ψ0(t)=0, 
we have:

( ) ( )1

1
.F p t

h
′ = ⋅ψ            (48)

Note that the approach based on obtaining formulas for 
calculating the first variation of the functional seems to be 
promising not only for optimizing systems similar to (1), (5), 
but also for more general ones, considered, for example, 
in [13]. In this case, the original distributed system can be 
solved by any numerical method without going over to ordi-
nary differential equations, as it was done in [6, 15]. 

5. 3. Development and implementation of a numerical 
solution algorithm to obtain specific numerical results

For the numerical solution of the problem, two methods 
are used – the gradient projection method and the method of 
successive approximations [7]. In both methods, a sequence 
of controls is constructed, starting from some admissible 
control pk(t). In the first method, the main work is the tran-
sition from controls pk(t) to the next control pk+1(t). Is asso-
ciated with the calculation of the gradient of the functional 
according to formula (48). 

The algorithm for solving the problem consists of the 
following steps:

1. Some admissible control pk(t) is chosen (its choice may 
be based on some physical considerations).

2. According to the initial pk(t) by the Runge-Kutta 
method (subject to the stability condition, it is also possible 
by the Euler method), the system of equations (42), (43) is 
integrated in the “forward direction” and the values of ui(T), 
vi(T), i=1, 2, …, n are found in the time interval 0≤t≤T. 

It is important to note that due to the linearity of the 
system of equations (39), in the process of calculation it is 
possible to store only a table of values of the control function 
p(t) and values ui(T), vi(T), i=1, 2, …, n, for calculating the 
next approximation. There is no need to remember the conju-
gate variables since they are used only when calculating the 
gradient of the functional (44) according to (48). This cal-
culation can be carried out at each integration step of the ad-
joint system (45), (46). Generally speaking, it is possible not 
to store the trajectory ui(T), vi(T), i=1, 2, …, n in memory, 
storing only their final values and then integrating the sys-
tem (45), (46) and simultaneously (42), (43) in the “reverse 
direction”. However, when integrating systems (42), (43) in 
the opposite direction, the amount of calculations increases 
and the counting process, especially for nonlinear systems, 
often becomes unstable.

3. The values of the approximating sum (44) are calculated.
4. Formulas (46) calculate the values ψi(T), φi(T), i=1, 

2, …, n.
5. In the “reverse direction” of time, the system (45), (46) 

is integrated. 
Taking into account the ratios:

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )2

0 0 ,

0 0 ,

2 0 2 0 0 ,

p a

p t a tb

p t a tb t a

 =
 ∆ = + ∆
 ′′∆ = + ∆ + ∆

  (49)

which are approximating analogues of matching condi-
tions (6), the new control pk+1(t) for values tj=jΔt, j=3, 4, …, m, 
m=T/Δt is calculated by the formula:

( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1

min min

max max

min max

, if ,

, if ,

, if .

k

k k

k k

k k k k

p t

p p t p t p

p p t p t p

p t p t p p t p t p

+ =

 − δ <
= − δ >
 − δ ≤ − δ ≤

 (50)

Here:

( ) ( )
( )

1

1

, 0,1,...,
max

k t
p t k

t

ψ
δ = α⋅ =

ψ
   (51)

where Δt is a time step, k is an iteration number, and the param-
eter α>0 is chosen from one of the methods described in [7].

6. The results are printed.
7. Step for calculating new control pk+1(t) is taken, re-

turning to step 2.
When using the method of successive approximations, 

which in the case of linear systems already at the second itera-
tion gives the optimal trajectory for any initial approximation, 
the next control pk+1(t) is selected from the condition for the 
maximum of the Hamilton functions of problem (1)–(5). 

The method of successive approximations is very simple 
from the computational point of view, since at each step it 
requires only solving two Cauchy problems: “from left to 
right” for system (42), (43) and “from right to left” for sys-
tem (45), (46).

The algorithm for solving the problem consists of the 
following steps:

1. An initial admissible control pk(t) is chosen.
2. The Runge-Kutta method integrates the system of 

equations (42), (43) in the “forward direction” and the val-
ues of ui(T), vi(T), i=1, 2,…,n  are in the time interval 0≤t≤T.

3. The values of the approximating sum (44) are calcu-
lated.

4. Formulas (46) calculate the boundary conditions ψi(T), 
φi(T), i=1, 2, …, n for the system of equations (45), (46). 

5. In the “reverse direction” of time, the system (45), (46) 
is integrated.

6. The next control pk+1(t), taking into account the 
conditions (49) is selected from the condition of maximum 
control functions H. 

To implement this task on a computer, programs have been 
compiled according to the algorithm described. The software 
codes that implement the gradient projection method and the 
successive approximation method differ only in a few small 
blocks. Four two-dimensional and several one-dimensional 
arrays were used to store the values of the functions ui(t), vi(t), 
φi(t) and ψi(t) at points tj=jΔt, j=0,0,…,m. In order to trace the 
correctness of the computational process, as the program code 
was compiled, the results of some intermediate calculations were 
checked, including the behavior of the direct problem (42), (43)  
with a fixed control. To trace the correctness of the computa-
tional process, as the program code was compiled, the results 
of some intermediate calculations were checked, including the 
behavior of the direct problem (42), (43) with a fixed control:

( )

1, if 0,

1.01, if 0.01,

1.0199, if 0.02,

2, if 0.03.

t

t
p t

t

t

=
 ==  =
 ≥

        (52) 

The value of the sum (44) is calculated immediately after 
the integration of the direct problem (42), (43). The boundary 
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conditions (46) for the adjoint system (45), (46), the values of the 
functions ψ1(t), etc. were also checked. The system (39), (40),  
and the system of equations (45), (46) were integrated with a 
constant step Δt=0.01, and the output of results was carried 
out with a step Δt=0.05. The segment [0, 1] is divided into five 
equal parts with step h=0.2. Function (52) is taken as the initial 
iteration.

The problem was solved with the following parameter 
values:

T=0.2, 

pmin=1, 

pmax=2,

α=0.1. 

The lower limit of the external force is chosen taking into 
account the conditions pmin=a(0). 

In calculations, as functions of a(x), according to [9], 
we chose the solution of the equation a’’(x)–a’(x)+a(x)=0, 
satisfying, for example, the condition a(0)=1, a’(0)=0. This 
solution will be denoted by a1(x). It is easy to check that it 
has the form:

( ) 2 2
1

3 1 3
cos sin ,

2 23

x x

a x e x e x
   

= −         
         (53)

and satisfies the condition ( ) ( ) ( )1 11 1 1 0,a a a′′ ′− + =  under 
which problem (24)–(29) has a unique solution. Given that:

( ) 2
1

2 3
sin ,

23

x

a x e x
 

′ = −    

 

( ) 2 2
1

3 1 3
cos sin ,

2 23

x x

a x e x e
   

′′ = − −         

conditions a1(1)=y0, and expression ( )1a x′′  we have: 
y0=a1(1)=0.343028, ( )1 0 1.a′′ =

Function b(x) is chosen in the form of b(x)=1–x. In this 
case, y1=b(1)=0.

Hence:

p(0)=a(0)=1,

p(Δt)=a(0)+Δtb(0)=1+0.01⋅1=1.01,

p(2Δt)=a(0)+2Δtb(0)+Δt2a’’(0)=
=1+2⋅0.01⋅1+0.012⋅(–1)=1.0199.

With the indicated data, calculations were carried out. 
Table 1 shows the results of calculations with initial con-
trol (52). In this case, the rate of convergence in terms of the 
functional was as follows.

With a further increase in the number of iterations, 
the value of the functional did not change. Fig. 1 shows 
the approximate optimal controls obtained for some inter-
mediate iterations. It can be seen from the consideration 
of these graphs that the sequence of controls pk(t) with an 
increase in the number of iterations approaches its lower 
bound and is a minimizing sequence of controls for func-
tional (44). 

Table	1

The	results	of	calculations	with	initial	control	(52)

No of iterations F(p) F’(p)

0 3.576072 7.267986

1 3.144007 6.674428

2 2.746374 6.079073

3 2.383292 5.483878

4 2.055035 4.886278

5 1.761755 4.285675

6 1.505650 3.681219

7 1.280975 3.071629

8 1.094079 2.459527

9 0.943718 1.841799

10 0.830831 1.227154

11 0.777536 0.899863

12 0.749283 0.749380

13 0.733279 0.691243

14 0.725399 0.666719

15 0.723609 0.661038

Fig.	1.	Approximately	optimal	controls	in	intermediate	iterations

Note that, taking into account (6), as a(x), we can choose 
another solution of the equation ( ) ( ) ( )1 1 0a x a x a x′′ ′− + =  that 
satisfies the condition a(0)=1, a’(0)=0. We denote this solu-
tion by a2(x). It is easy to check that the solution a2(x) has 
the following form:

( ) 2
2

2 3
sin .

23

x

a x e x
 

=    
  (54)

The solution a2(x) also satisfies the condition  
a’’(1)–a’(1)+a(1)=0, i. e. a1(x)  and a2(x) are linearly inde-
pendent solution of the above equation.

Considering:

( ) 2 2
2

3 1 3
cos sin ,

2 23

x x

a x e x e x
   

′ = +         

( ) 2 2
2

3 1 3
cos sin ,

2 23

x x

a x e x e x
   

′′ = −         

condition a2(1)=y0, and expression ( )2a x′′  we have:

y0=a2(1)=1.450223, ( )2 0 1,a′′ =  pmin=a2(0)=0.

Calculations were also carried out with these data, under 
the assumption that:
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( ) 2 3
sin ,

2

x

b x e x
 

=    

( )1 1.25593.b =

The qualitative picture of the results has not changed: 
with an increase in the number of iterations, the control 
sequence pk(t) approaches the optimal control, and there is 
convergence of the functional. Therefore, we do not present 
them.

We note that by introducing the functions Y(z) and K(z, s) 
defined by the formulas:

( ) ( ) ( ) ( ) ( )1 22 1 1 2 1 1 ,Y z a a z b a z= − + −           (55)

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 1 2

1 2 2 1

( )
, ,

a z a s a z a s
K z s

a s a s a s a s

−
=

′ ′−
          (56)

and carrying out certain calculations, taking into account 
some additional conditions, it is possible to construct a solu-
tion to the boundary value problem (24)–(29), which can be 
represented as:

( ) ( ) ( )1
, ,

2
u x t E x t G x t = + + −    (57)

and a control function according to the formula p(t)=E(t)/2, 
as it was done in [9]. It was also proved there that formula (57) 
is possible if E(t) is determined at 0≤z≤3, and G(z) at –2≤z≤1. 
Functions G(z) and E(z) have the forms:

( ) ( ) ( )

( ) ( )

0

d , 0 1,

2 , 2 0,
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a z b s s z
G z

p z E z z


+ ≤ ≤
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 − − − − ≤ ≤

∫
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( ) ( )
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2

2 1, 1 2 d ,1 3.

z
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a z b s s z

E z Y z G z

K z s G s s z


+ ≤ ≤


= − − +

 ′+ − − − ≤ ≤

∫

∫

In this case, functions Y(z) and K(z, s), taking into ac-
count (53) and (54) have the forms:

( ) ( )
( )

( )

( ) ( )
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1
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2
2 1

1 3
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23

4 3
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Y z a e
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−

  
− −     = + 
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( ) ( )
1

( )
22 3

, sin .
23

z s
K z s e z s

−  
= −   

Fig. 2 presents the results of computing the solution of the 
direct problem (42), (43) with the functions u(x, t), correspond-
ing to the control obtained after 15 iterations. Consideration 
of Fig. 2 shows that over time, the state of a distributed system 
practically does not change and approaches a calm state. 

Fig.	2.	Change	of	functions	u(x,	t)	in	time	for	different	values	
of	phase	coordinates

Fig. 3 shows the dependence of the change in the state of 
a distributed system in terms of spatial coordinate at differ-
ent points in time. It can be seen from the graphs in Fig. 3 
that the states of the distributed system, whose initial po-
sition in the segment -0≤x≤1 is determined by the function 
a1(x), coincide over time. 

Fig.	3.	Change	of	functions	u(x,	t)	along	the	spatial	
coordinate	for	different	moments	of	time	

Fig. 4 shows the results of computing the solution of 
the adjoint problem (45), (46) with the functions ψ(x, t), 
corresponding to the optimal control, obtained after 
15 iterations. 

Fig.	4.	Change	of	functions	ψ(x,	t)	in	time	for	different	values	
of	phase	coordinates
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When using the method of successive approximations, 
which is obtained from the Pontryagin maximum principle, 
the next control pk+1(t), taking into account conditions (49), 
is selected from the condition that the Hamiltonian func-
tions are maximal with respect to the variable p. If the pro-
cess of constructing successive approximations converges, 
then the iterations continue until subsequent approxima-
tions differ from each other within the specified accuracy. 
The resulting solution will satisfy the maximum principle. 

From the linearity of the functions H=ψx(0, t)p(t) with 
respect to the variable p(t), it can be seen that:

( ) ( )( )max min max min sign 0, .
2 2 x

p p p p
p t t

+ −= + ⋅ ψ   (58)

Given that p(t) varies within the interval pmax and pmin 

and the function Н is linear with respect to р, this formula is 
mathematically valid, that is, if we exclude special controls, 
in this problem, the optimal control is formally a piecewise 
constant function. It would seem that the whole solution 
consists of the optimal selecting sequences of control inter-
vals and finding their junction points, that is, the optimal 
control will be a boundary, in particular, this includes dis-
continuous relay controls. When applying the method of suc-
cessive approximations, a boundary control will be obtained 
at each iteration – the approximation to the optimal control 
will be in the class of discontinuous boundary controls.

It should be noted that the formality of writing (55) also 
lies in the fact that the cancellation of the expression under 
the mark of “sign” is possible both at individual points of seg-
ment 0≤t≤T and in its entire sections. In this case, as a rule, 
the maximum principle is not sufficient to determine the 
optimal control; additional research is required to identify 
singular controls [16].

The calculation results show that, indeed, in linear prob-
lems, that is, in problems, which equations contain a control 
of the first degree, the method of successive approximations 
for any initial control already at the second iteration gives 
optimal control.

Calculations made with relay prominent initial control:

( )0

1, if 0,

1.01, if 0.01,

1.0199, if 0.02,

2, if 0.03 0.1,

1, if 0,11 0.15,

2, if 0.16,
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t

t
p t

t

t

t

=
 =
 ==  ≤ ≤
 ≤ ≤


≥

  (59)

show that, the control found in the second approximation 
has the form:

( )1

1, if 0,

1.01, if 0.01,

1.0199, if 0.02,

2, if 0.03,

t

t
p t

t

t

=
 ==  =
 ≥

  (60)

and all subsequent approximations are the same. However, 
we cannot assert that the control (56) found in the second 
step is optimal, since the control found from the maximum 
condition for the Hamilton functions differs significantly 
from the optimal one and does not approach it.

The maximum value of the Hamilton functions and the 
value of the functional in the first and second approximation, 
respectively, turned out to be equal to: 

( )( )0 9.939263,H p t =  ( )( )0 3.756072,F p t =

( )( )1 14.535972,H p t =   ( )( )1 2.120949.F p t =

Thus, the gradient projection method for the considered 
problem gives significantly more accurate results than the 
method of successive approximations, although it requires a 
relatively large number of iterations. It should also be noted 
that the gradient projection method did not show a tendency 
to “blur” and, for any initial control, gave a converging se-
quence of controls.

6. Discussion of the results of solving the problem of 
optimal control of oscillations in a system of coupled objects

In this paper, topical issues related to the numerical solu-
tion of control problems related to the damping of oscillatory 
systems consisting of two objects were considered. It is im-
portant to note that in the works where problems of damp-
ing oscillatory systems are investigated, only theoretical 
results have been obtained, and numerical solutions to these 
problems, which are of practical interest, have not been con-
sidered [9–13]. The use of formulas obtained in these works 
is associated with significant computational difficulties in 
constructing and solving boundary value problems and con-
trol variables. In this regard, this paper addresses relevant 
issues related to obtaining numerical solutions to control 
problems associated with damping oscillatory systems con-
sisting of two objects. One of the objects is described by a 
wave equation with first-kind boundary conditions (2), (3), 
while the other is described by an ordinary second-order 
differential equation (4).

For the efficient numerical solution of this problem, two 
methods were utilized: the gradient projection method, based 
on obtaining formulas (19) for the first variation of the func-
tional (7), and the method of successive approximations due 
to the linearity of the boundary value problems describing 
the oscillatory processes (1)–(5). The proposed algorithm 
for the numerical solution of the problem was implemented 
in software code, enabling practical results to be obtained. 
These results are presented in Table 1 and Fig. 1–4.

The peculiarity of the proposed method lies in trans-
forming control problems, described by a set of partial and 
ordinary differential equations, into a variational problem 
associated with a system of ordinary differential equations, 
and subsequently solving these problems numerically based 
on the Pontryagin maximum principle. This approach en-
sures computational efficiency and allows for rapid and 
accurate results to be obtained.

The main limitation of the approach presented in the 
paper is that in the numerical solution of the considered 
problem it is not possible to vary some initial data in a wide 
range, it is necessary to take into account the conditions for 
matching the initial and boundary conditions (6), which 
narrows the class of admissible controls, for example, the 
lower limit of the external force p(t) is chosen taking into 
account conditions pmin=a(0), the initial state of the distrib-
uted system, that is, the function a(x) must be a solution to 
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the equation as–a’+a=0, the conditions a(1)=y0, b(1)=y1 
must be satisfied.  

The main drawback of the work, which should be paid 
attention to, is the significant computational difficulties in 
constructing and solving boundary value problems and the 
control variable presented in [5–7]. Nevertheless, these for-
mulas have important theoretical significance in the study of 
the control of oscillation processes in coupled systems, con-
sisting of objects with distributed and lumped parameters.

The results of numerical calculations obtained in the 
framework of this work confirm the effectiveness of the pro-
posed algorithm and its applicability for solving the problem 
of controlling oscillatory systems with feedback. The results 
obtained can be useful for practical applications in various 
fields such as engineering, acoustics, and others, where 
vibration control plays an important role. The numerical 
solution to the problem of optimal control of oscillations in 
a system of interconnected objects can be applied, for exam-
ple, in the design of shock absorbers for automobiles, where 
it is necessary to optimize the parameters of the system to 
minimize vibrations and ensure comfortable movement. This 
approach can also be used in the construction of buildings 
and bridges to account for dynamic loads and prevent the 
destruction or deformation of structures under the influence 
of oscillations.

Thus, this study makes an important contribution to the 
field of numerical solution of control problems for oscillatory 
systems and offers effective methods and algorithms for solv-
ing such problems. Further development of the study may 
include refinement of methods, additional experiments, and 
expansion of the scope of this approach.

7. Conclusions

1. The gradient projection method, based on obtaining 
the first variation of the functional, yields a convergent 
minimizing sequence for any initial admissible control. 
This is particularly useful because in real-world problems, 
the initial approximation may not be sufficiently close to 
the optimal solution. This is especially useful, since in real 
problems the initial approximation may not be close enough 
to the optimum.

2. Without requiring a large number of calculations, 
the method of successive approximations, which is obtained 
from the Pontryagin maximum principle, gives solution al-
ready at the second step of iterations. The main advantage 
of this method lies in its relative savings in computational 
resources. 

3. When employing the method of successive approxima-
tions based on the maximum principle, each iteration leads 
to obtaining a boundary control, which implies approxi-
mation to the optimal control within the class of discon-
tinuous (or relay) boundary controls, which is convenient. 
In the case of using gradient methods, the relay control is 
approximated by continuous controls. The application of the 
method of successive approximations is effective when the 
boundary value problem is linearly described with respect 
to the phase variables; in this case, the method provides the 
optimal trajectory already at the second iteration, regardless 
of the initial approximation, since the solution of the adjoint 
system is independent of the control.
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