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Logistic transports link demand generators, 
distributors, and producers in a supply chain net-
work (SCN). The existence of logistic transports is 
critical to ensure whole nodes’ economic sustain-
ability. This study explores the impact of human 
factors on SCN performance through cognitive 
energy expenditure (CEE) tracking. Agent-based 
model (ABM) simulation was used to analyze the 
impact of CEE from truck driver’s electroenceph-
alography (EEG) data to obtain the postsynaptic 
potential values, which were then transformed to 
calorific energy. The fleet agents, retailers and 
distributor models were built based on the East 
Java, Indonesia, logistic transport route around 
Karanglo, Gempol, Bungurasih, and Gubeng. The 
frequency and the peak value of the EEG data, 
postsynaptic potential, and energy data indi-
cate the same information. All data indicate that 
more challenging routes have higher frequency 
and higher peak values. The ABM simulation of 
the fleet agents shows balanced CEE throughout 
entire routes due to the precise rest period and 
eat scheduling. The average delivery success rate 
was 8 out of 30 or 26.7 % in each simulation time 
step. Hence, most goods delivery tasks can be 
completed by fleet agents in a balanced system. 
As a consequence, the SCN performance is also 
balanced due to the fluid inventory shift without 
overstock and stockouts. The rest and eat periods 
of a fleet agent were scheduled after the CEE has 
been peaked. The time lag between rest periods 
and transport operations has to be maintained to 
overcome fleet agents task buildup. Task buildup 
has a potential to decay both transport safety and 
inventory shift rates. Therefore, the upgrade in 
SCN performance is possible through proper fleet 
agents scheduling
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1. Introduction

The performance of a supply chain network (SCN) is 
determined by various multidimensional factors. As a fully 
connected network that consists of many entities, SCN has 
become the most important driver of the global economy [1].  
Manufacturing centers (MC), distributors, stores, and cus-
tomers are connected through logistic transports. Logistic 
transports are the main driver of the SC network, the 
disruption in the SC network could collapse the entire SC 
network [2]. Logistic transport also intersects with various 
supporting factors including the human factor (HF) [3]. 
HF determines the fluidity of transport operations, the occur-
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rence of an accident or another movement inhibition factor 
affects the key performance indicators (KPI) of an SCN. The 
delivery time of a transport operation has to be balanced 
with the tact time of a manufacturing system and inventory 
shift frequency. The common SCN KPI such as the cash-
to-cash (C2C) cycle clearly shows the dependencies on the 
holistic regularity of the SCN. C2C value gets higher as the 
inventory shift frequency increases such as practiced in the 
just-in-time (JIT) inventory control paradigm [4]. 

Human factors determine the success of human-reliant 
tasks such as land logistic transport. Cognition is tied to 
every human-controlled or human-related activity that in-
volves cognition [5]. Cognitive processes consist of conscious  
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and unconscious processes. Conscious processes require vigi-
lance to be performed while unconscious processes do not [6]. 
During cognition, the cognitive load increases. Too much 
cognition causes a cognitive overload situation where the 
amount of information processing is high, which possibly 
causes overwhelms. On the other hand, low information 
processing triggers a cognitive underload situation where 
a person cannot focus on a simple task [7]. The information 
load is directly linked to cognitive energy usage as cognitive 
processes are the result of neuron firing [8]. 

The KPI of an SCN can quantitatively be modeled with 
a simple symbolic mathematics. Computer simulation has 
been a versatile tool that enables real-world object modeling 
and simulation using simple quantitative algorithms [9]. The 
modeling of a complex system was started in the 1940s by John 
Von Neumann, which resulted in a cellular automata theorem, 
which later on developed into self-reproducing automata [10]. 
The further development of Von Neumann’s automata to 
model highly complicated processes was performed by John 
Conway in the 1960s through the development of Conway’s 
game of life [11]. In the 1980s, the invention of object-oriented 
programming (OOP) eases the modeler to replicate the re-
al-world object in a computer program [12]. The major system 
modeling paradigms with computer simulation are system-dy-
namics, discrete event simulation (DES), and agent-based 
simulation. DES and agent-based simulation are fit for quan-
titative system modeling with a high amount of detail. DES 
relies on statistical distribution formed by the process [13]. 
Meanwhile, the agent-based model (ABM) implements OOP 
that allows each agent to have its own logic [14]. Hence, the 
computer simulation provides a control mechanism for an 
SCN model. Therefore, research on the development of an er-
gocentric ABM simulation system integrated with the human- 
brain interface improves the KPI completeness. 

2. Literature review and problem statement

Computer simulation has been used in SCN modeling, 
design, and analysis. The common usage of computer simula-
tion for SCN is to predict the effect of a strategy on KPI prior 
to implementation. The study [15] implements the analysis of 
Europe environmental policy assessment impact on logistic 
transport efficiency. The result of the simulation was a con-
trollable variables combination such as emissions, cost, lead 
time, and delivery time to define actions that should be taken 
to improve SCN performance during the policy implementa-
tion. Various control factors effect analysis in a system can 
be used as a basis to build a decision support system. How-
ever, no modification to standard KPI was performed by the 
control application provided. This study performs direct mo
dification to the existing KPI based on the simulation results.  
The simulation of a valid model outputs approximately near 
result to the implementation [16].

Computer simulation is useful for multi-factor SCN 
design. A multi-constraint urban logistic transport system 
requires the model to cover every single factor that would 
affect the entire SCN [17]. Traffic lights and crossing pedes-
trians may slow down vehicle movement, which increases 
delivery time. The ABM allows each vehicle to experience 
the traffic while its data are logged. As a result, the ABM 
simulation enables action planning and the action outcome 
estimation before the actual action has been performed [18]. 
Moreover, ABM can mimic the actual object without relying 

on statistical distributions, which facilitates the properties or 
attributes attachment of the modeled objects [19]. Therefore, 
ABM allows more flexible logic constructions over DES.

The architecture of the ABM provides modularity, which 
eases the integration of a simulation model with another 
model. The study [20] shows ABM model integration with 
DES results in a realistic stochastic process that enables vari-
ous responses according to the DES simulation. Such models 
are testable through some predefined scenarios, which can be 
optimized to find the best variable settings. The study [21] 
performs further optimization of such models through ana-
lytical methods, which helped in the urban goods transport 
planning in Rotterdam, Netherlands. The study [22] includes 
environmental factors to optimize the model. However, all of 
the mentioned studies do not involve any economic metric. 
This study adds SCN KPI to the simulation model, which 
can be the economic metric for the data-driven simulation. 
The simulation found the best pattern for freight transport 
routing inside a city or town.

Data-driven simulation allows the model to include the 
human factor to predict human-related process behavior. 
The vehicle routing process is a human-related process when 
vehicles are non-autonomous. The human controls are varied 
in nature so that the outcome of a process handled by a per-
son may differ with another person [23]. Statistically, the 
human-related process is often modeled with normal distri-
bution while the machine-related process obeys uniform dis-
tribution [24]. Further challenge is not to model the human 
action in a simulated environment but to model more de-
tailed sub processes such as biological processes with a single 
model. A common technique to analyze biological processes 
is through external simulation environment integration [25]. 
This study presents a novel approach by integrating electro-
encephalography (EEG) data with GIS-based Agent-Based 
Modeling (ABM) simulation to develop a robust Spatial 
Cognitive Network (SCN) that incorporates human factors. 
The integration of EEG, a powerful tool for measuring brain 
activity, with ABM simulation techniques allows for a deeper 
understanding of how human cognition influences spatial 
behaviors within the simulated environment. All this allows 
us to assert that it is expedient to conduct a study on the 
integration of the simulation cognitive processes, and spatial 
decision-making. 

3. The aim and objectives of the study

The aim of this study is to obtain factors for optimal land 
logistic driver action control. This will make it possible to con-
trol the transport scheduling process based on human factors. 

To achieve the aim, the following objectives were accom-
plished:

– to investigate the relation between cognitive human 
factors and SCN performance;

– to explore the effect of logistic transport driver actions 
configuration on SCN performance;

– to optimize the delivery process based on driver energy.

4. Materials and methods

The primary focus of this study is to integrate electro-
encephalography (EEG) data with GIS-based Agent-Based 
Modeling (ABM) simulation to develop a robust Spatial 
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Cognitive Network (SCN) that incorporates human factors. 
The main hypothesis of this study posits that integrating  
EEG data into GIS-based ABM simulation will lead to a more 
accurate and behaviorally realistic model of spatial cogni-
tion within a simulated environment. In conducting this 
research, certain assumptions were made regarding the com-
patibility and integration of EEG data with ABM simulation 
techniques, as well as the validity of cognitive processes 
represented in the simulation based on EEG measurements. 
To facilitate the integration process and streamline the simu
lation, simplifications were adopted in the representation of 
cognitive states and their interactions within the SCN, while 
ensuring that essential aspects of human cognition and spa-
tial behaviors are captured effectively.

The human factors data required for land logistic driver 
energy tracking were EEG and location data. The EEG data 
were obtained from direct recording with a dry EEG electrode 
Neurosky Mindwave Mobile V2 through a notebook compu
ter with the Windows 10 operating system. The amplitude of 
EEG was measured by calculating the square root of the EEG 
data with equation (1). The frequency domain EEG data were 
then transformed to time domain data through inverse Fourier 
transform in equation (2). The amplitude of the EEG data was 
then used as the basis to obtain the wave transversal speed 
using equation (3). The time domain postsynaptic potential 
data can be obtained by using equation (4). The data were 
converted into calorific energy through equation (5):
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where AEEG is the amplitude of EEG frequency data,  
EEG(t) is the time-domain EEG data, ω is the brainwave  
velocity, PSP is the postsynaptic potential value.

The energy data were then used to evaluate the driver’s 
condition during transport. The evaluation scope was limited 
to driver energy tracking. The simulation logic was modeled 
with the built-in AnyLogic state-chart written in the Java 
programming language. There were 3 states of a vehicle 
modeled in the simulation. The states were atDistributor, 
moveToRetailer, and moveToDistributor. In atDistributor, 
the driver agents gained energy intake because they were 
assumed to take a rest period and eat during rest. In moveTo-
Retailer and moveToDistributor, the driver agents spent 
their energy to perform delivery. The logic of each state is 
shown in pseudocode 1:

Pseudocode 1. Vehicle agents state-chart transition logic:
1. Truck, Distributors, Retailers agents initialized
2. Integer Retailers.generateDemands()
3. String msg = new msg(Distributors)
4. Order order = Distributor.generateOrder(msg) 
5. While simulation.Run = True:
6. If Truck.onState(atDistributor)
7. BMR += sleepEnergy + eatEnergy – CEE

8. Else if Truck.onState(moveToRetailer)
9. BMR -= CEE
10. Else if Truck.onState(atRetailer)
11. BMR += sleepEnergy + eatEnergy – CEE 
12. Else if Truck.onState(moveToDistributor)
13. BMR -= CEE
14. Else
15. Simulation.Run = False

The logistic transport routes were obtained from the East 
Java route around Karanglo, Gempol, Bungurasih, and Gu-
beng highways. The simulation model understands the loca-
tion through geographical information system (GIS) built-in 
package integration with openstreetmap (OSM) data. The 
data contain real EEG recording data of the drivers. 

The supply chain performance analysis in the model was 
performed through inventory shift analysis. The inventory 
shifts were determined by the order generated by retailers. Each 
retailer generates an order for the distributor through a message 
event system that produces random demands. The message was 
instantiated as an object received by the distributor.

5. Results of the cognitive human factor effect  
on the SCN performance 

5. 1. The relationship investigation results between 
cognitive human factors and SCN performance 

The EEG results indicates the challenge faced by drivers 
during the transport operation. The EEG results are presen
ted in Fig. 1, which shows the squared value of postsynaptic 
potential values over frequency. The x-axis of the plot rep-
resents the number of observations during data collection. 
The Bungurasih-Gubeng route is the longest because the 
observation number is more than 2,000 while for the other 
routes only around 1,000 (Fig. 1, a). Bungurasih-Gubeng 
is also the hardest route among all the observed routes as 
it produces the highest EEG peak value, which is more 
than 8.0 Volts2/Hz while the Gempol-Bungurasih route 
only around 6.5 Volts2/Hz (Fig. 1, b), and Karanglo-Gempol 
about 7.0 Volts2/Hz (Fig. 1, c).

The recorded EEG data represent the cognitive dyna
mics of a land logistic driver. Cognitive dynamics is a branch 
of neuroscience that studies brain activity or collective 
neuron activity such as postsynaptic neuronal dynamics in 
EEG [26]. More insights can be obtained from a collection 
of neurons instead of a single neuron analysis. In the case of 
land logistic driver activity, the cognitive dynamics represent 
the vigilance requirements on a certain route. The results 
indicate that the condition of a route affects the driver’s re-
sponse. Such condition occurred due to the brain’s non-stop 
information processing in beta and alpha states [27]. How-
ever, in the gamma state the brain vigilance may be halted, 
which triggers a flow phenomenon. Flow is a condition when 
a person gives full attention towards an object, performance, 
or anything that causes them unaware of the environmental 
situation [28]. Therefore, a higher EEG value indicates more 
postsynaptic connection activation to process information 
from situational response.

The postsynaptic response can be tracked from the postsy
naptic potential value. As the transformation from EEG results, 
the postsynaptic potential gives similar insights. However, the 
insights become clearer as the voltage data can be thought of as 
an active and inactive process such as binary representation in 
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electronics [29]. From Fig. 2, a, the Bungurasih-Gubeng route 
shows a level higher postsynaptic potential compared to Gem-
pol-Bungurasih (Fig. 2, b) and Karanglo-Gempol (Fig. 2, c). 
The postsynaptic potential shift pattern of the Bungurasih-Gu-
beng route also shows a more frequent shift at the time domain 
level compared to other routes.

 
 

 
 

 

a

b

c

Fig. 1. EEG recording results of truck drivers: a – Bungurasih 
to Gubeng route; b – Gempol to Bungurasih route; 	

c – Karanglo to Gempol route

The frequent postsynaptic potential shift indicates fre-
quent information processing and retrieval. The change 
in postsynaptic values shows the amount of the collective 
neuronal dynamics activity in synapses. The phenomenon 
was extracellular and intracellular ion exchange. There are  
4 potassium ions from the intracellular region that ex-
changed with a sodium ion [30]. The ion exchange process 
was through a proton pump that has to be activated with 
adenosine tri-phosphate (ATP), which is a currency of hu-
man energy in metabolism [31]. Three ATP have to be re-
leased each time the pumping process started, which open 
the intracellular-extracellular region interface [5]. During 
the ion exchange process, the diffusion between two regions 
occurred, which enforces the ion concentration to stabilize 
the effect. Diffusion is a transport mechanism in which sub-
stances in the higher concentration region move towards the 
lower concentration regions [32]. Consequently, the impact 
of the collective neuronal dynamics phenomenon is cognitive 
energy expenditure (CEE). 
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Fig. 2. Postsynaptic potential plot of truck drivers: 	
a – Bungurasih to Gubeng route; b – Gempol to Bungurasih 

route; c – Karanglo to Gempol route

According to the CEE phenomenon, the energy expen-
diture of some tasks performance in a certain period of time 
can be predicted through brain activity. EEG results can be 
used to track brain activity during a physical or cognitive 
task performance [33]. Hence, the results of EEG recording 
of the driving task on each route were converted to calories 
using equation (5). The results were plotted in Fig. 3 where 
Fig. 3, a is the Bungurasih-Gubeng route, Fig. 3, b Gem-
pol-Bungurasih, and Fig. 3, c Karanglo-Gempol. The caloric 
patterns of each data are equal to the postsynaptic potential 
patterns. The Bungurasih-Gubeng data still form the same 
frequency pattern with the highest energy peak among 
others. Therefore, the Bungurasih-Gubeng route requires 
slightly more energy compared to the other measured routes.

The CEE depends on decision-making and situational re-
sponse activities. Both define the cognitive load of a land ve-
hicle driver, which also determines driving performance [34]. 
The performance largely depends on efficient situational 
response, which requires long-term vigilance. The vigilance 
itself drives the executive function to sustain concentra-
tion [35]. During the performance of the executive function, 
the information perception is higher, which results in greater 
ion exchange. As a result, the energy frequency shift is higher. 
Meanwhile, the complexity of the task defines the peak of 
the postsynaptic response, which forms a linear simultant 
relationship with the CEE.
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Fig. 3. CEE plot of truck drivers: 	
a – Bungurasih-Gubeng route; b – Gempol-Bungurasih 

route; c – Karanglo-Gempol route

5. 2. Exploration of logistic transport driver actions 
configuration 

The ABM simulation animation view represents the loca
tion information precisely. The order fulfillment operations 
during transport can be tracked from the interactive GIS 
scene as shown in Fig. 4. 

The green building icon represents the retailer location. 
The yellow building icon is a distributor that has 30 truck 
fleet agents. Based on Fig. 4, it is also can be seen that the 
routes were close to each other. Automatically, each fleet 
agent chooses the shortest path to reach the end node. The 
GIS map is a linear graph connection that connects one lo-
cation node to another [36]. Hence, the agents are optimized 
with efficient time complexity in operation.

The efficient graph path finding by the agents in the 
constructed model indicates that the model is capable of 
real-world interaction. The virtual real world interaction 
requires real-time data transaction in which data are exchan
ged over time from a device to the model [37]. This makes 
real-time data-driven model building possible. The interac-
tion between a virtual object model that mimics the object 
features including its functions in the real world is called 
a cyber-physical system [38]. The expandability of the ABM  
model makes the feature mimicking process easy, which 
allows the model to directly capture physical information.  
Therefore, the constructed ABM model is suitable for the 
cyber-physical system of an SCN. 

5. 3. Optimization of the delivery process based on 
driver energy

During simulation runtime, the CEE pattern in each 
state was logged as in Fig. 5. The calorific energy expenditure 
pattern is balanced as shown in Fig. 5. Sleeping and eating 
increase energy intake, which reduces the gap between the 
energy spent and basal metabolic rate (BMR). The results in 
Fig. 5 do not include BMR due to variations in BMR. The 
value of BMR depends on various biological factors such as 
age, body weight, muscle mass, and many other factors [39]. 
In order to avoid bias, this study limits the view on BMR by 
assuming each truck driver has the same BMR.

In the simulation, the CEE is immediately covered by 
the energy intake. Energy intake from foods and physical 
recovery from sleep and naps are critical to maintain alert-
ness during low cognitive load tasks such as driving at low 
speed. A sharp mind is required for decision-making pro-
cesses such as deciding the best driving strategy on a cer-
tain road in a certain condition [40]. The best driving stra
tegy outputs the safest and most efficient route. Current 
simulation results average 8 fulfilled orders in a single step 
out of 30 deliveries or 26.7 % in each simulation. However, 

the reordering events are random so 
the amount of the order could be be-
low current orders or above current 
orders. Order fulfillment occurred  
when the energy expenditure reaches  
its peak. Each order fulfillment is fol-
lowed by peak energy intake, which 
is used in the next process. Conse-
quently, the inventory shift pattern 
follows the shift of CEE and ener- 
gy intake. Hence, the inventory shift 
is defined by the order fulfillment 
process determined by the driving 
strategy.

The simulation found the best 
pattern to maintain a stable SCN 
performance. The SCN performance 
can be maintained through HF ma
nagement in logistic transport. The 
HF management is based on the CEE 

 
Fig. 4. Animation view of the simulation results
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pattern that can be controlled through the proper rest period 
scheduling for distributors and retailers. The transport oper-
ation is in the most balanced state when the most exhaustive 
operation is closest to the rest schedule. The duration of the 
rest period also needs to be determined according to the most 
exhaustive task.

 
Fig. 5. Cognitive energy expenditure pattern during the 

simulation process

The constructed ABM model can act as a cyber-physical 
system for SCN optimization. However, the SCN perfor-
mance tracking based on driver performance only cannot 
provide reliable prediction all the time. The inaccuracy of 
the model may flex the prediction results. The accuracy of 
the model depends on the historical data volume and traf-
fic data integration. Even though the EEG data represent 
the situational response, the route familiarity reduces the 
brain activity to decide actions when capturing information. 
Hence, there are some complexities that need to be reduced 
to build an accurate real-time model. The reinforcement 
learning model can reduce the large data volume require-
ment while responding to the situation according to the 
driver’s experience.

6. Discussion of the cognitive human factor effect  
on the SCN performance 

This study investigated the relationship between cog-
nitive human factors and Supply Chain Network (SCN) 
performance in logistic transports. EEG data were used as an 
indicator of Cognitive Energy Expenditure (CEE) to assess 
driver fatigue and workload on different routes. The results 
showed a clear correlation between challenging routes and 
higher CEE, as indicated by increased EEG frequency and 
peak value (Fig. 1). For instance, the Bungurasih–Gubeng 
route, which was the longest route in the study, exhibited the 
highest EEG peak value (Fig. 1, a).

An Agent-based Model (ABM) simulation was develo
ped to analyze how driver CEE impacts SCN performance. 
The model incorporated real-world elements such as rest 
periods, meal scheduling, and route optimization (Fig. 4). 
The simulation results demonstrated that proper schedul-
ing based on CEE peaks can lead to a balanced workload 
for drivers and ensure successful task completion. The 
average delivery success rate achieved in the simulation 
was 8 deliveries out of 30 per time step (26.7 %), indicat-
ing efficient order fulfillment. This balanced approach to 
scheduling also ensured smooth inventory flow by prevent-
ing stockouts.

The findings of this study highlight the importance of 
Human Factors (HF) management in logistic transport 
operations. By monitoring CEE and implementing proper 
rest periods based on workload peaks, SCN performance can 
be significantly improved. The ABM simulation serves as a 
valuable tool for optimizing SCN performance through HF 
management. 

However, it is important to acknowledge limitations in 
the model’s accuracy. Factors such as historical data volume, 
traffic data integration, and driver familiarity with routes can 
all influence the model’s predictive capabilities. EEG data, 
while effective in capturing situational response, may not 
fully account for the reduced brain activity experienced by 
drivers familiar with a route.

To address these limitations and achieve a more robust 
real-time model, future research could explore incorporat-
ing reinforcement learning. This approach could potentially 
reduce the reliance on large data volumes while enabling 
the model to adapt to dynamic situations based on driver 
experience. Overall, this study provides valuable insights 
into the impact of driver CEE on SCN performance and 
paves the way for further development of real-time opti
mization models that consider both human factors and ope
rational efficiency.

While this research offers a promising ABM simulation 
for optimizing SCN performance through driver CEE, 
limitations exist. The model’s accuracy relies heavily on 
historical data volume, traffic integration, and driver route 
familiarity. EEG data may not fully capture the impact of 
route familiarity on brain activity. Future research incor-
porating reinforcement learning could address these limi
tations by reducing reliance on large datasets and enabling 
adaptation to driver experience for a more robust real-time 
optimization model.

One disadvantage of this study is that it solely relied on 
EEG data to assess driver fatigue. While EEG provides valu-
able insights into cognitive load, it doesn’t capture the full 
picture of driver fatigue. Factors like sleep quality, pre-exist-
ing health conditions, and individual tolerance to workload 
can all influence fatigue levels. Future studies could incor-
porate additional measures like subjective fatigue surveys 
or physiological data like heart rate variability to provide  
a more comprehensive understanding of driver fatigue and its 
impact on SCN performance.

Building upon this study, future research can explore 
incorporating real-time traffic data and driver experience 
into the ABM simulation. This could involve implementing 
reinforcement learning algorithms. However, challenges lie 
in developing efficient algorithms that can handle the dy-
namic nature of traffic data and translate driver experience 
into adaptable decision-making within the simulation. Addi-
tionally, ensuring the privacy and security of real-time driver 
data during collection and integration will be crucial.

7. Conclusions

1. The SCN performance is defined by inventory shift, 
which is also defined based on driver performance. Driver 
performance peaked during the order fulfillment process 
when the fleet agents reach a distributor node or a retail node. 
The driver performance was indicated by the peaked CEE.  
The CEE reaches the maximum value of 60 cal during the 
order fulfillment process.
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2. The inventory shift pattern is determined by the 
CEE-energy intake shifting pattern, which should always be 
balanced. Drivers always rest and eat after fulfilling orders. 
Therefore, the balance of SCN performance should always 
be maintained. The total energy of the energy input from 
sleeping and eating always balanced the total output energy.

3. The output of the simulation shows the control vari-
ables that can be optimized to improve SCN performance 
and truck driver’s safety. The rest and eat pattern of a fleet 
agent must be optimized whenever the CEE pattern becomes  
chaotic. The chaotic pattern is defined by the extreme ca
lorific change of energy expenditure from 15, 16, and back 
to 15 cal. The frequency of the longitudinal waveform plot 
pattern between the simulation step and CEE indicates the 
frequency of energy expenditure. 

Conflict of interest

The authors declare that they have no conflict of inte
rest in relation to this research, whether financial, personal,  
authorship or otherwise, that could affect the research and its 
results presented in this paper.

Financing

This study is funded by Riset Kolaborasi Indonesia (RKI) 
with grant No. 6672/2022.

Data availability

Data will be made available on reasonable request.

Use of artificial intelligence

The authors confirm that they did not use artificial intel-
ligence technologies when creating the current work.

Acknowledgments

The authors would like to acknowledge the Riset Kolabo
rasi Indonesia (RKI) program for the funding, Brawijaya Uni-
versity, Sepuluh Nopember Institute of Technology and State 
University of Malang for their encouragement and support.

References

1.	 Essakly, A., Wichmann, M., Spengler, T. S. (2019). A reference framework for the holistic evaluation of Industry 4.0 solutions for 

small-and medium-sized enterprises. IFAC-PapersOnLine, 52 (13), 427–432. https://doi.org/10.1016/j.ifacol.2019.11.093 

2.	 Wang, S., Jiang, Z., Noland, R. B., Mondschein, A. S. (2020). Attitudes towards privately-owned and shared autonomous vehicles. 

Transportation Research Part F: Traffic Psychology and Behaviour, 72, 297–306. https://doi.org/10.1016/j.trf.2020.05.014 

3.	 Walker, G., Strathie, A. (2016). Big data and ergonomics methods: A new paradigm for tackling strategic transport safety risks. 

Applied Ergonomics, 53, 298–311. https://doi.org/10.1016/j.apergo.2015.09.008 

4.	 Dunn, N., Williamson, A. (2012). Mitigating the effects of monotony. Rail Human Factors around the World, 774–782. https://doi.org/ 

10.1201/b12742-87 

5.	 Gerstner, W., Kistler, W. M., Naud, R., Paninski, L. (2014). Neuronal Dynamics. Cambridge University Press. https://doi.org/10.1017/ 

cbo9781107447615 

6.	 Balfe, N. (2020). Human factors applications of on-train-data-recorder (OTDR) data: an exploratory study. Cognition, Technology 

& Work, 23 (2), 239–253. https://doi.org/10.1007/s10111-019-00622-y 

7.	 Basacik, D., Waters, S., Reed, N. (2015). Detecting Cognitive Underload in Train Driving: A Physiological Approach. The Fifth 

International Rail Human Factors Conference. Available at: https://programme.exordo.com/rhf2015/delegates/presentation/42/

8.	 Zhang, X., Li, J., Liu, Y., Zhang, Z., Wang, Z., Luo, D. et al. (2017). Design of a Fatigue Detection System for High-Speed Trains 

Based on Driver Vigilance Using a Wireless Wearable EEG. Sensors, 17 (3), 486. https://doi.org/10.3390/s17030486 

9.	 Kazil, J., Masad, D. Agent Based Modeling in Python with Mesa. SciPy 2015. Available at: https://www.youtube.com/ 

watch?v=lcySLoprPMc

10.	 Zaitsev, D. A. (2017). A generalized neighborhood for cellular automata. Theoretical Computer Science, 666, 21–35. https://doi.org/ 

10.1016/j.tcs.2016.11.002 

11.	 Meneghan, L. L. (1976). «Life» a fascinating game. The Arithmetic Teacher, 23 (1), 56–60. https://doi.org/10.5951/at.23.1.0056 

12.	 Joque, J. (2016). The Invention of the Object: Object Orientation and the Philosophical Development of Programming Languages. 

Philosophy & Technology, 29 (4), 335–356. https://doi.org/10.1007/s13347-016-0223-5 

13.	 Trigueiro de Sousa Junior, W., Barra Montevechi, J. A., de Carvalho Miranda, R., Teberga Campos, A. (2019). Discrete simula-

tion-based optimization methods for industrial engineering problems: A systematic literature review. Computers & Industrial Engi-

neering, 128, 526–540. https://doi.org/10.1016/j.cie.2018.12.073 

14.	 Iannino, V., Mocci, C., Vannocci, M., Colla, V., Caputo, A., Ferraris, F. (2020). An Event-Driven Agent-Based Simulation Model for 

Industrial Processes. Applied Sciences, 10 (12), 4343. https://doi.org/10.3390/app10124343 

15.	 Sarraj, R., Ballot, E., Pan, S., Hakimi, D., Montreuil, B. (2013). Interconnected logistic networks and protocols: simulation-based effi-

ciency assessment. International Journal of Production Research, 52 (11), 3185–3208. https://doi.org/10.1080/00207543.2013.865853 

16.	 Xu, X., Liu, J., Li, H., Hu, J.-Q. (2014). Analysis of subway station capacity with the use of queueing theory. Transportation Research 

Part C: Emerging Technologies, 38, 28–43. https://doi.org/10.1016/j.trc.2013.10.010 

17.	 Jlassi, S., Tamayo, S., Gaudron, A. (2018). Simulation Applied to Urban Logistics: A State of the Art. City Logistics 3, 65–87. 

https://doi.org/10.1002/9781119425472.ch4 



Control processes

13

18.	 Zhao, E., Yan, R., Li, K., Li, L., Xing, J. (2021). Learning to Play Hard Exploration Games Using Graph-Guided Self-Navigation. 

2021 International Joint Conference on Neural Networks (IJCNN). https://doi.org/10.1109/ijcnn52387.2021.9534251 

19.	 Sert, E., Bar-Yam, Y., Morales, A. J. (2020). Segregation dynamics with reinforcement learning and agent based modeling. Scientific 

Reports, 10 (1). https://doi.org/10.1038/s41598-020-68447-8 

20.	 Li, J., Rombaut, E., Vanhaverbeke, L. (2021). A systematic review of agent-based models for autonomous vehicles in urban mobility 

and logistics: Possibilities for integrated simulation models. Computers, Environment and Urban Systems, 89, 101686. https:// 

doi.org/10.1016/j.compenvurbsys.2021.101686 

21.	 de Bok, M., Tavasszy, L. (2018). An empirical agent-based simulation system for urban goods transport (MASS-GT). Procedia 

Computer Science, 130, 126–133. https://doi.org/10.1016/j.procs.2018.04.021 

22.	 de Bok, M., Tavasszy, L., Sebastiaan Thoen. (2022). Application of an empirical multi-agent model for urban goods transport to analyze 

impacts of zero emission zones in The Netherlands. Transport Policy, 124, 119–127. https://doi.org/10.1016/j.tranpol.2020.07.010 

23.	 Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G. et al. (2015). Human-level control through deep 

reinforcement learning. Nature, 518 (7540), 529–533. https://doi.org/10.1038/nature14236 

24.	 Knief, U., Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, 

53 (6), 2576–2590. https://doi.org/10.3758/s13428-021-01587-5 

25.	 Sanz-Leon, P., Knock, S. A., Spiegler, A., Jirsa, V. K. (2015). Mathematical framework for large-scale brain network modeling in The 

Virtual Brain. NeuroImage, 111, 385–430. https://doi.org/10.1016/j.neuroimage.2015.01.002 

26.	 Hong, S. B., Jung, K.-Y. (2003). Basic Electrophysiology of the Electroencephalography. Journal of the Korean Neurological Asso-

ciation, 21 (3), 225–238. Available at: https://www.jkna.org/upload/pdf/200303001.pdf

27.	 Jap, B. T., Lal, S., Fischer, P. (2011). Comparing combinations of EEG activity in train drivers during monotonous driving. Expert 

Systems with Applications, 38 (1), 996–1003. https://doi.org/10.1016/j.eswa.2010.07.109 

28.	 Shepherd, J. (2021). Flow and the dynamics of conscious thought. Phenomenology and the Cognitive Sciences, 21 (4), 969–988. 

https://doi.org/10.1007/s11097-021-09762-x 

29.	 Street, S. (2016). Neurobiology as Information Physics. Frontiers in Systems Neuroscience, 10. https://doi.org/10.3389/fnsys.2016.00090 

30.	 Schelski, M., Bradke, F. (2017). Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics. Molecular and 

Cellular Neuroscience, 84, 11–28. https://doi.org/10.1016/j.mcn.2017.03.008 

31.	 Vergara, R. C., Jaramillo-Riveri, S., Luarte, A., Mo nne-Loccoz, C., Fuentes, R., Couve, A., Maldonado, P. E. (2019). The Energy 

Homeostasis Principle: Neuronal Energy Regulation Drives Local Network Dynamics Generating Behavior. Frontiers in Computa-

tional Neuroscience, 13. https://doi.org/10.3389/fncom.2019.00049 

32.	 Shi, Z., Genack, A. Z. (2018). Diffusion in translucent media. Nature Communications, 9 (1). https://doi.org/10.1038/s41467-018-04242-4 

33.	 Fan, C., Peng, Y., Peng, S., Zhang, H., Wu, Y., Kwong, S. (2022). Detection of Train Driver Fatigue and Distraction Based on Forehead 

EEG: A Time-Series Ensemble Learning Method. IEEE Transactions on Intelligent Transportation Systems, 23 (8), 13559–13569.  

https://doi.org/10.1109/tits.2021.3125737 

34.	 Melnicuk, V., Thompson, S., Jennings, P., Birrell, S. (2021). Effect of cognitive load on drivers’ State and task performance during 

automated driving: Introducing a novel method for determining stabilisation time following take-over of control. Accident Analy-

sis & Prevention, 151, 105967. https://doi.org/10.1016/j.aap.2020.105967 

35.	 Lieberman, H. R. (2007). Cognitive methods for assessing mental energy. Nutritional Neuroscience, 10 (5-6), 229–242. https:// 

doi.org/10.1080/10284150701722273 

36.	 Burrough, P. A. (1992). Are GIS data structures too simple minded? Computers & Geosciences, 18 (4), 395–400. https://doi.org/ 

10.1016/0098-3004(92)90068-3 

37.	 Hasan, R. A., Alhayali, R. A. I., Zaki, N. D., Ali, A. H. (2019). An adaptive clustering and classification algorithm for Twitter data 

streaming in Apache Spark. TELKOMNIKA (Telecommunication Computing Electronics and Control), 17 (6), 3086. https:// 

doi.org/10.12928/telkomnika.v17i6.11711 

38.	 Rezqianita, B. L., Ardi, R. (2020). Drivers and Barriers of Industry 4.0 Adoption in Indonesian Manufacturing Industry. Proceedings of 

the 3rd Asia Pacific Conference on Research in Industrial and Systems Engineering 2020. https://doi.org/10.1145/3400934.3400958 

39.	 Khonsary, S. (2017). Guyton and Hall: Textbook of Medical Physiology. Surgical Neurology International, 8 (1), 275. https://doi.org/ 

10.4103/sni.sni_327_17 

40.	 Witt, M., Kompa , K., Wang, L., Kates, R., Mai, M., Prokop, G. (2019). Driver profiling – Data-based identification of driver be-

havior dimensions and affecting driver characteristics for multi-agent traffic simulation. Transportation Research Part F: Traffic 

Psychology and Behaviour, 64, 361–376. https://doi.org/10.1016/j.trf.2019.05.007


