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1. Introduction

The mechanics of the contact interaction of bodies is 
an important part of the mechanics of a continuous envi-
ronment, which is actively developing and is constantly 
at the center of modern research. This importance can be 
justified by the fact that all structures and mechanisms 
consist of contacting elements in one way or another, and 
the distribution of contact forces between these elements is 
not known in advance. Contact problems can be considered 
key within the mechanics of deformable solids due to the 
fact that contact is the main method of applying forces. In 
addition, stress concentration in the contact zone can lead 
to damage, and sometimes to destruction. Only a limited 
class of such problems can be solved analytically, therefore 
it is advisable to devise numerical and numerical-analytical 
methods for their solution, as well as to apply expert systems 
and modern information technologies. The finite element 
method (FEM) and boundary element method (BEM) are 
especially widely used in modern mechanics [1, 2]. Also pro-
posed are approaches [3] that combine FEM for simulating 
interphase interactions at the macro level with BEM for 
solving the contact problem at the micro level. However, it 
should be noted that it is the analytical approach that shows 

a deep understanding of the behavior and characteristics of 
the analyzed system or phenomenon. Moreover, analytical 
solutions often reveal basic laws and asymptotic behavior 
that may remain hidden in purely numerical analysis [4]. 
So, for example, the approach to solving the problem of the 
interaction between a base and a sliding die is extended to 
the problem of collinear interphase cracks with different 
electrical conditions on their edges [5]. Research into the 
problems of contact interaction of crack edges taking into 
account friction is quite complex and extensive [6]. A mod-
ern trend is to study the contact mechanisms of solid bodies 
in tribosystems [7, 8]. Solving such problems plays a central 
role in the fabrication of bionic materials and the mitigation 
of friction-induced damage, which is of great interest in 
fields such as medical engineering.

The relevance of finding effective ways to solve problems 
of contact interaction is due to the high cost and duration 
of creating real prototypes, as well as the understanding of 
the empirical results. The use of complex structures made of 
metal, under the conditions of an aggressive environment, 
which is the reason for the change in their structural fea-
tures, because of, for example, corrosion, requires constant 
control by scientists and workers. Degradation of the struc-
ture during its operation can be the cause of a potential ac-
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cident. Ensuring the durability of such structures to reduce 
future costs is an extremely urgent issue. Therefore, the 
further improvement of methods for calculating the strength 
of machine parts, elements of engineering structures and 
buildings, the use of new materials, advanced technologies 
are important issues that require the constant attention 
of researchers and active development. The results of such 
studies have important practical significance because mod-
ern technological progress determines the appearance of 
new engineering structures and materials, which becomes 
the reason for the relevance of the study of contact problems. 
More intensive use of composite materials in production, as 
well as high-precision modeling of the behavior of structures 
at the design stage, requires improvement and expansion of 
existing methods of contact interaction analysis.

2. Literature review and problem statement

In work [9], an analytical solution to the problem was 
obtained for a ring punch in the form of a double series, in 
which the coefficients are calculated exactly from simple 
recurrence relations. Devising such an approach made it 
possible to implement the use of fairly simple mathematical 
transformations to find new analytical solutions to classical 
and non-classical problems of mechanics. But areas of a 
different shape were not considered. The advancement of 
the method proposed in [9] is the analytical method devised 
in [10] for areas close to ring ones. It is based on the use of 
the development of the potential of a simple layer and is ap-
plied to the problems of the propagation of cracks, which are 
close in shape to a circular ring. This allows us to assert the 
sufficient universality of the proposed method. But devising 
a method for a family of problems about pressing stamps on 
an elastic half-space with a cross-sectional shape close to a 
ring remained an unsolved issue. This is the approach used 
in [11]. However, as a drawback, it can be pointed out that 
the study of the stability of the solution obtained by such an 
analytical method was not considered there. This was done 
in work [12].

One of the unsolved issues of the previous studies men-
tioned above is the consideration of initial or residual stress-
es. Work [13] reports the results of research on the contact 
interaction of elastic bodies with initial stresses without 
taking into account frictional forces. The development of 
this method for the case of a rigid cylindrical ring punch and 
an elastic half-space was studied in [14, 15], within the limits 
of the linearized theory of elasticity with an arbitrary struc-
ture of the elastic potential, which simplified the statement 
of the problem itself.

Considering friction in the process of body contact is 
one of the most important issues. During the phenomenon 
of friction, various processes such as mechanical, electrical, 
thermal, chemical, and vibrational can occur simultaneously. 
That is, it is such a process that complicates mathematical 
modeling. For example, works [16, 17] propose a reduction 
to a quasi-static problem to speed up the analysis of con-
tact characteristics. The new algorithm leads to significant 
savings in computational resources, providing satisfactory 
accuracy. However, this method is aimed only at solving a lo-
cal problem. Most contact problems, both with and without 
friction, require a separate statement and solution methods.

Issues related to the optimization of contact stresses, 
which prevents local concentration of stress and promotes 

uniform distribution of the load, which in turn helps increase 
the efficiency and durability of structures, remained unre-
solved in the above review of the literature. For example, [18] 
developed a method for analytically solving a quasi-static 
contact problem taking into account frictional forces. The 
method is based on the proposed development of the poten-
tial of a simple layer. The problem of optimizing the punch 
shape and pressure distribution in the contact zone was 
solved. Unsolved issues are the solution of similar problems 
with a doubly connected contact zone. The reason for this 
may be objective difficulties associated with the extreme 
complexity of mathematical considerations for building an 
analytical solution method. Most contact problems, both 
with and without friction, require a separate statement and 
construction of solution methods.

The method of solving inverse problems was proposed by 
the authors of [19], in which the problem of shell theory in 
the variational statement was considered. This method was 
developed in [20], in which the authors solved the contact 
problem as an inverse one. The authors obtained a solution 
to the contact problem of pressing a punch into an elastic 
half-space, taking into account friction, in the presence of 
adhesion, separation, and sliding zones. The given approach 
is represented in the form of an inverse problem in which, as 
an additional condition, the Coulomb friction law was used 
in the friction regions. This solution method, together with 
the discretization procedure, makes it possible to determine 
the zones of micro-slip, adhesion, and delamination.

All this gives reason to assert that over the past decades, 
interest in finding new methods and ways of solving contact 
problems has only been growing. Obvious is the need to 
combine already existing classical approaches with modern 
information technologies and the latest methods and algo-
rithms based on the use of systems, for example, expert sys-
tems. It is in the field of mechanics, where tasks often require 
complex calculations and the analysis of a large number of 
variables, that expert systems can help in the diagnosis and 
monitoring of mechanical systems, providing accurate and 
reliable solutions to maintain their performance. Compre-
hensive analysis can reveal optimal solutions that are usually 
not obvious with a narrower approach. The integration of 
various methods and techniques can lead to new results and 
improvements in the field of contact mechanics problems.

3. The aim and objectives of the study 

The purpose of our research is to construct mathematical 
and computer models of the contact interaction of a rigid 
punch with an elastic half-space. The use of such models will 
make it possible to determine ways to solve practical prob-
lems, such as calculating the strength and wear resistance 
of power transmission line supports, foundations, hydraulic 
structures, etc.

To achieve the goal, the following tasks were set:
– to derive calculation formulas for the analytical solu-

tion of problems for flat two-link stamps;
– to build finite element models of the interaction of a 

flat absolutely rigid punch with an elastic half-space;
– to develop a generalized algorithm for solving the 

contact problem for the system punch – elastic half-space, to 
implement CLIPS functionality;

– to determine the contour of the damaged punch shape 
using the developed tools.
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4. The study materials and methods

The object of our study is the stressed-strained state of 
the die – elastic half-space system, when the uniform and 
isotropic elastic half-space of an absolutely rigid flat die 
occupying a two-connected region is pressed. The main 
hypothesis assumes that devising a complex approach to 
the solution of this class of contact problems, namely, the 
construction of a generalizing algorithm, will increase the 
efficiency and quality of their solutions. Mathematical and 
computer modeling of the contact interaction of a cylindrical 
punch with a flat two-link base with an elastic half-space 
under the action of a compressive force will allow conduct-
ing research within the limits of the main hypothesis. The 
problem of researching pressing on a homogeneous and iso-
tropic elastic half-space of an absolutely rigid flat punch in 
the form of a non-circular ring is considered. The developed 
generalization algorithm for creating and analyzing models 
will make it possible to effectively and sufficiently accu-
rately model the behavior of the system under the specified 
conditions.

The following simplifications were adopted in the work: 
the punch is considered as an absolutely rigid body, and the 
elastic half-space is considered homogeneous and isotropic.

The analytical solution was obtained using a variant 
of the perturbation method, based on the small-parameter 
expansion of the potential of a simple layer distributed over 
a doubly connected region. In this way, the problem of press-
ing a flat punch in the form of a non-circular ring is reduced 
to a sequence of problems for a punch in the form of a circular 
ring [9–12, 21]. Special software for calculations and anal-
ysis of the results was developed in the publicly available 
C++ language (USA). The construction of the finite-ele-
ment model takes place with the help of the ANSYS (USA) 
software package. The academic version of ANSYS STU-
DENT 2024 R1 was used, which provides free access within 
the framework of scientific research [22]. Mathematical 
modeling and finite element analysis were carried out within 
the Static Structural module. The use of hexahedra made it 
possible to regularize the finite-element mesh using the Face 
Meshing method. Face Sizing method was used to increase 
mesh detailing in the contact area. To access the functional-
ity that is missing in the current program interface, a soft-
ware application was developed in the APDL programming 
language [22]. As a result of postprocessing, the results were 
obtained in the form of arrays of stress and displacement 
values. The probe tool was used to acquire stress values from 
conditional sensors that were previously located on the elas-
tic half-space along the contact contour of the punch.

In a general form, the problem of determining the con-
tour of the cross section of the punch interacting with the 
elastic half-space is stated [20, 23, 24]. With the help of 
the free software system CLIPS, (C Language Integrated 
Production System) (USA) [25], an expert system is built 
to automate the search for the most suitable punch form. 
CLIPS is a software environment for developing expert sys-
tems capable of solving artificial intelligence problems using 
rules and inferential mechanisms.

The software for processing the results of the expert 
system and visualization is implemented in the C++ lan-
guage. A knowledge base was arranged as one of the key 
components of the expert system. It included information on 
the geometric characteristics and properties of the materials 
of the stamps and half-space, information on the stressed-

strained state of the punch-elastic half-space system, as well 
as a set of rules and facts. The purpose of the built expert sys-
tem is to determine the shape of the cross-sections of stamps 
with a flat sole pressing on an elastic half-space.

The coordinates of points from the list of facts were ob-
tained using a regular expression, which separates only the 
necessary information, regarding the coordinates of points 
of bodies with corresponding stress values, from the general 
text response of the expert system.

After receiving the coordinates of the points, the process 
of generating the shape of the cross section of the punch is 
carried out using the developed software in OpenGL (Open 
Graphics Library is a specification of the software interface 
for rendering 2D and 3D graphics).

It is worth noting that for the correctness of our results, 
the coordinates of the points were previously arranged in the 
sequence of movement along the contour of the cross section. 
A special calculateAngle function has been developed that 
accepts the coordinates of two points as parameters: the 
center of the circle and a specific point on the contour of 
the punch. It is designed to calculate the angle between the 
horizontal axis and the line that connects the center of the 
circle and the given point. The comparePoints function was 
developed and used to compare the coordinates of two points 
on the punch contour by their angles relative to the origin of 
the coordinate system. Thus, the size of the angle becomes 
the ordering criterion. The points were sorted by the order 
of increasing angles relative to the origin of the coordinate 
system for the Ox axis, which resulted in the positioning of 
the points in a clockwise direction around the center of the 
circle along the contour of the punch.

In the process of visualizing the shape of the two-link 
punch, the initial collection of points was divided into two 
collections for the outer and inner contours, respectively. 
Cubic spline interpolation was used to reproduce the out-
line of the punch. The cubic spline was chosen because of 
its smoothness and flexibility properties that make it well 
suited for many types of data and problems.

Assumptions regarding the adequacy of the mod-
els [26, 27] and the correctness of the results [28] in the 
study undergo the necessary stages of verification of a com-
parative nature [11], as well as others.

5. Research results regarding the development of 
a generalized algorithm for modeling the contact 
interaction of a punch with an elastic half-space

5. 1. Analytical method for solving the problem of 
pressing a two-link punch into an elastic half-space

The problem of pressing a rigid flat punch in the form of 
a non-circular ring on a homogeneous and isotropic elastic 
half-space x3≤0 is considered. The elastic half-space fills 
the entire part of the half-space contained on one side of the 
Ox1x2 plane. We introduce the coordinate system so that 
the elastic half-space coincides with the region x3≤0 (Fig. 1).

The problem considers the use of only isotropic and homo-
geneous materials operating within the limits of elasticity. For 
example: the punch material is steel: E=200000 MPa, μ=0.3, 
and for the elastic half-space – E=180 MPa, μ=0.2. On the 
Ox1x2 plane, a two-connected region Ω is considered, bounded 
by closed lines K1 and K2, which contains points located after 
deformation on the displaced surface of the punch base. The 
boundary conditions refer to the undeformed surface of the 
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elastic body, that is, to the plane x3=0. The base of the punch 
is considered absolutely smooth; therefore, it is assumed that 
the tangential stresses σ31, σ31 are absent along the entire 
plane x3=0:

3 31 23 .:0 0 0,x = σ = σ = 	 (1)

Normal stresses are absent on the plane x3=0 outside the 
region Ω of the contact of the punch with the elastic half-
space. At the points of the region Ω, the elastic medium is 
subjected to a compressive load p(x), therefore:

( ) ( )33

0,              ,

,      .

x
x

p x x

∉Ωσ = − ∈Ω
	 (2)

Here, x(x1, x2, 0) is a point on the Ox1x2 plane of 
three-dimensional space.

The function p(x) characterizing the pressure distri-
bution under the punch is not specified in advance. Under 
conditions (1), (2), the balance of the punch is described by 
the following equations:

( )d ,P p x x
Ω

= ∫∫ 	 (3)

( )1 2 d ,M x p x x
Ω

= ∫∫  ( )2 1 d ,M x p x x
Ω

= −∫∫ 	 (4)

where P, M1, M2 are the main vector and main moments of 
forces applied to the punch.

Under the action of the load, the punch will move gradually 
and rotate around some y-axis of the Ox1x2 plane. Let us denote 
the gradual movement parallel to the vertical axis x3 by δ, and 
by β1, β2 – the projections of the small rotation vector:

3 0,x =  ( )1 2,  :x x ∈Ω  3 2 1 1 2.U x x= δ−β +β 	 (5)

In the case of a flat die, the condition for the vertical 
movement of the points of the region Ω is reduced to a 
two-dimensional integral equation of the first kind for the 
desired normal pressure distribution p(x):

( )
( ) ( )

1 2 1 2
2 1 1 2 2 2

1 1 2 2

, d d1
,

2

p x x x x
x x

G x x x xΩ

′ ′ ′ ′− ν
δ−β +β =

π ′ ′− + −
∫∫ 	 (6)

where G is the shear modulus. The values δ, β1, β2 are un-
known in advance, and the equilibrium equations of the 
punch (3), (4) are used to determine them.

In addition, the punch must be pressed over the entire 
compression surface, so the desired pressure distribution 
satisfies the condition:

( )1 2, 0,p x x ≥  ( )1 2, .x x ∈Ω 	 (7)

It is assumed that the base, with which the punch is 
pressed against the half-space, has the shape of a smooth 
surface, the contact area occupies in the Ox1x2 plane a 
two-connected region Ω, bounded by closed lines K1 and K2, 
containing points located after deformation on the undis-
placed surface z of the punch base.

It is further assumed that the unknown equations of 
lines K1 and K2 can be represented in the form of the fol-
lowing functions that depend on the small parameter ε. The 
parameter may take both geometric and mechanical, or any 
other, value, characterizing the shape and dimensions of the 
contact area:

( )( )1 1: 1 , ;K a fρ = ⋅ + ε θ 	 (8)

( )( )2 2: 1 , ,K b fρ = ⋅ + ε θ 	 (9)

where a<b, ε<1, the functions f1(ε,θ), f2(ε,θ) are continuous 
and single-valued functions such that they can be represent-
ed by series of powers of ε in the form:

( ) ( ) ( )

( ) ( )

2
1 10 20

3
30 0

1

,   

 ... ,i
i

i

f f f

f f
∞

=

ε θ = ε θ + ε θ +

+ε θ + = ε θ∑ 		  (10)

( ) ( ) ( )

( ) ( )

2
2 01 02

3
03 0

1

,   

 ... ,k
k

k

f f f

f f
∞

=

ε θ = ε θ + ε θ +

+ε θ + = ε θ∑ 		  (11)

coefficients of which fik(θ) are continuous functions on the 
interval [0, 2π].

In the case when f1(ε,θ)=f2(ε,θ), the boundary lines of the 
region are similar.

We considered the case when the equations of lines K1 
and K2, limiting Ω, the area of contact of the punch with the 
half-space, can be represented in the form of the following 
functions:

( )( )1 1 , ,a fρ = ⋅ + ε θ ( )( )2 1 , ,b fρ = ⋅ + ε θ ( ), 1 ,a b< ε <   (12)

where ρ, θ are polar coordinates, x1=ρcosθ, x2=ρsinθ, f(ε,θ) is 
a continuous and single-valued function such that it can be 
represented by a power series of ε in the form:

( ) ( ) ( )2
1 2,   ,f f fε θ = ε θ + ε θ +.	 (13)

The punch is pressed into the half-space by a vertical 
force Q. Since the equations of the lines (12) bounding the 
region Ω depend on the small parameter ε, it is obvious that 
the desired distribution of normal pressures p(ρ, θ) also de-
pends on ε. The solution to equation (6) is found in the form:

( ) ( )
0

, , .k
k

k

p p
∞

=

ρ θ = ρ θ ε∑ 	 (14)

Fig. 1. General view of a flat punch in the form of a non-
circular ring
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New variables (R, φ) are introduced, which are related to 
the old ones (ρ, θ) by the following dependences:

( )( )1 , ,p R f= + ε θ  .θ = ϕ 	 (15)

Here f(ε, θ) is determined by expression (13); at the same 
time, the region Ω bounded by lines (12) will turn into a 
circular ring D bounded by circles R=a, R=b.

In the new variables, the solution (14) is represented in 
the form of a power series ε:

( )( ) ( )
0

, , , , .k
k

k

p R P R
∞

=

ρ ϕ ε ϕ ≡ ϕ ε∑ 	 (16)

It follows from dependences (15), (13) that ρ=R at ε=0. 
Taking this into account, we obtained the expressions for 
Pk(R, φ) at k=0, 1, 2, necessary in the first approximations, 
which take the form:

( ) ( )0 0, , ,P R p Rϕ = ϕ 	 (17)

( ) ( ) ( ) ( )1 1 0 1, , , ,P R p R p R Rf′ϕ = ϕ + ϕ ϕ 	 (18)

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 0 2

2 2
1 1 0 1

, , ,

, 0.5 , .

P R p R p R Rf

p R Rf p R R f

′ϕ = ϕ + ϕ ϕ +

′ ′′+ ϕ ϕ + ϕ ϕ 	 (19)

The stroke means the derivative with respect to the vari-
able R. The integral included in equation (6) is represented 
in the form of an expansion by powers of ε:

( )
0

,  
d ,k

k
k

p
U s U

r

∞

=Ω

ρ θ
= = ε∑∫∫ 	 (20)

( )22 2 2
0 0 02 cos ;r x y= − = ρ +ρ − ρρ θ−θ  ( )0 0, .ρ θ ∈Ω 	 (21)

Since the integrand function in the integral (20) turns 
to infinity at the point (ρ0, θ0), when finding the derivatives 
for the expansion of (20), it is necessary to first exclude this 
point from the region Ω. To this end, the point (ρ0, θ0) is cut 
out of Ω by a circle of radius α.

The derivatives included in expression (20) are deriv-
atives of the parameter ε of the double integral, in which 
not only the integrand function depends on this param-
eter but also the boundary equations depend on ε. By 
differentiating with respect to the parameter ε and taking 
into account that the boundary equations of the region 
with the discarded point depend on the parameter, it is 
obtained by passing to the boundary at α, which goes to 0 
and ε=0. By means of mathematical transformations, the 
following is obtained:

0

,k
k

k

∞

=

δ = δ ε∑  1 1
0

,k
k

k

∞

=

β = β ε∑  2 2
0

  .k
k

k

∞

=

β = β ε∑ 	 (22)

Then in equations (3), (4) the integrals included in 
these equations are represented in the form of series by 
powers of ε.

By substituting expansion (22) as well as (20) into equa-
tions (3), (4), (6), and equating expressions with the same 
powers of ε, the following systems of equations for determin-
ing Pk(ρ,θ), δk, β1k, β2k are obtained.

( ) ( )0 1 1

,2
d , ,.., ,

1
kk

k k
D

P RG
s P P P

v r −

θδ π
= +Φ

− ∫∫ 	 (23)

( ) ( )0 1 1, d , ,.., ,k k k k
D

Q P R s F P P P −= θ +∫∫ 	 (24)

1 2sin cos ,k k k k′δ = δ +β ρ θ−β ρ θ 	 (25)

( ) ( )1 0 1 1, sin  d , ,..., ,k k k k
D

M P s V P P P −= ρ θ ρ θ +∫∫ 	 (26)

( ) ( )2 0 1 1, cos  d , ,..., ,k k k k
D

M P s W P P P −= ρ θ ρ θ +∫∫  

( )0,1,2, .k =  	 (27)

The expression for the functions Φk, Fk, Vk, Wk at 
k=0, 1, 2, ... is written out, which are specially introduced 
and used to simplify the notation when performing math-
ematical transformations:

0 0,Φ =  ( )1 1 0 ,L PΦ =  ( ) ( )2 1 1 2 0 ,L P L PΦ = + 	 (28)

0 0,F =  ( ) ( )1 0 1 2 , d ,
D

F P f s= ρ θ θ∫∫ 		  (29)

( ) ( ) ( ) ( )
( ) ( )

1 1 0 2

2 2
0 1

2 , 2 ,
d ,

,D

P f P f
F s

P f

 ρ θ θ + ρ θ θ +
 =
 + ρ θ θ 

∫∫ 	 (30)

0 0,V =  ( ) ( )1 0 1, 3 sin d ,
D

V P f s= ρ θ θ ρ θ∫∫ 	 (31)

( ) ( )
( ) ( )

1 1 0 2

2 2
0 1

( , ) ( ) ,
3 sin d ,

,D

P f P f
V s

P f

 ρ θ θ + ρ θ θ +
 = ρ θ
 + ρ θ θ 

∫∫ 	 (32)

0 0,W =  ( ) ( )1 0 1, 3 cos d ,
D

W P f s= ρ θ θ ρ θ∫∫ 	 (33)

( ) ( ) ( ) ( )
( ) ( )

1 1 0 2

2 2
0 1

, ,
3 cos d ,

,D

P f P f
W s

P f
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∫∫

∫∫ 	 (36)

where D is a circular ring, a≤ρ≤b.
Thus, a sequence of problems (23) to (27) for the circular 

ring D was built for the region Ω. Calculation formulas were 
also derived for the analytical solution of problems for flat 
stamps of different shapes in the plan close to ring ones.

5. 2. Construction of finite-element models for the 
punch-elastic half-space system

The three-dimensional geometry of the punch body and 
the elastic half-space were designed (Fig. 2). The material 
for the elastic half-space was assumed to be isotropic and 
homogeneous.

A finite element mesh was constructed for these geo-
metric objects. A hexahedron was chosen as the dominant 
finite element, which provided more controlled and accurate 
results in the modeling process. A total of 120 to 210 origi-
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nal discretized finite element models were built for each die 
cross-section configuration. The developed models made it 
possible to reproduce the processes of both axisymmetric 
loading and non-axisymmetric loading.

Structures and mechanisms in operation are under con-
ditions where various types of damage occur due to various 
reasons. Such processes can take place both according to a 
certain law [29, 30] and randomly. Fig. 3 shows the results 
of a computer simulation of the interaction of a cylindrical 
flat in-plane punch in the shape of a circle with a homoge-
neous isotropic elastic half-space. Fig. 3, a demonstrates the 
distribution of normal stresses for a punch in the form of a 
circle without damage. Fig. 3, b–d successively shows the 
distribution of normal stresses for damage of the wear type. 
Wear damage occurred according to the following rule: 
for a central angle of 90°, a part of the cross section of the 
circle was removed gradually with a step of 0.04 from the 
value of the radius of the circle (using the spline function). 
Fig. 3, b demonstrates that the wear occurred on one side of 
the circle (central angle – 90°) to a depth of 0.12 times the 
radius. Fig. 3, c demonstrates that the wear occurred on two 

opposite sides of the circle (90°+90°) to a depth of 0.12 times 
the radius. Fig. 3, d demonstrates that the wear occurred on 
three sides of the circle (270°) to a depth of 0.12 times the 
radius. Fig. 3, e demonstrates that the wear occurred on four 
sides of the circle (360°) to a depth of 0.12 times the radius. 
Fig. 3, f shows the case of point damage of the crack type, 
which penetrates to a depth of 0.2 times the radius of the die.

Fig. 2. Example of a finite-element model of a two-connected 
planar flat punch with an elastic half-space

Fig. 3. Distribution of normal stresses in the half-space under the circular punch: a – circle without damage; b – a circle with 
damage to the edge of the punch within the central angle of 90°; c – a circle with damage to the edge of the punch within 
two vertical central angles (90°+90°); d – a circle with damage to the edge of the punch within the three central corners 
(90°+90°+90°); e – a circle with damage to the edge of the punch within the four central corners (90°+90°+90°+90°); 	

f – a circle of damage of the crack type, which penetrates to a depth of 0.2 from the radius of the punch

a b

c d

e f
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Fig. 4 shows as examples the results of computer simula-
tion of the interaction of a ring-shaped punch with a uniform 
isotropic elastic half-space. Fig. 4, a demonstrates the distri-
bution of normal stresses for a ring-shaped die without dam-
age. Fig. 4, b–e consistently shows the distribution of normal 
stresses for damage of the wear type. Wear damage occurred 
according to the following rule: for a central angle of 60°, a 
part of the cross-section was removed gradually with a step 
of 0.0625 from the value of the ring width (using the spline 
function). Fig. 4, b demonstrates that the wear occurred on 
one side of the outer contour of the ring to a depth of 0.125 
from the width of the ring. Fig. 4, c shows that the wear oc-
curred on the same side of the outer contour of the ring to 
a depth of 0.1875 from the width of the ring. Fig. 4, d – the 
wear occurred on the same side of the outer contour of the 
ring to a depth of 0.25 from the width of the ring. Fig. 4, e – 
the wear occurred on the same side of the outer contour of 
the ring to a depth of 0.3125 from the width of the ring. 
Fig. 4, f – the wear occurred on the same side of the ring’s 
outer contour to a depth of 0.375 from the ring’s width.

In this way, data arrays with normal and tangential 
stresses and displacements were formed. The software devel-

oped in the C++ programming language is used to transfer 
these data arrays. In the case of the manual option, the data 
is exported to an Excel file for further analysis and process-
ing with the help of a js-script and the formation of files for 
the knowledge base. To simulate the shapes of stamps after 
corrosion deformation, the corrosion models of Gutman and 
Dolynsky [29, 30] were considered, which provide an oppor-
tunity to evaluate two different approaches to the mathe-
matical description of metal corrosion processes.

5. 3. Building a generalizing algorithm
Since quite often in the case of solving practical prob-

lems, the geometric characteristics of stamps are not avail-
able for direct study, the evaluation of these parameters can 
be carried out in various ways [19, 20, 23–28]. In this study, 
a knowledge base was built, which included information on 
the geometric characteristics and properties of the materi-
als of stamps and half-space, information on the stressed-
strained state of the punch-elastic half-space system. A set 
of rules and facts was also formed. With the help of CLIPS, 
a system was built that can identify the contact zones of 
stamps with a flat sole that press on an elastic half-space.

Fig. 4. Distribution of normal stresses in the half-space under the ring punch: a – circular ring without damage; b – a circular 
ring with damage at an angle of 60° with a depth of 0.125 times the width of the ring; c – a circular ring with damage at an 

angle of 60° with a depth of 0.1875 times the width of the ring; d – a circular ring with damage at an angle of 60° with a depth 
of 0.25 times the width of the ring; e – a circular ring with damage at an angle of 60° with a depth of 0.3125 times the width 

of the ring; f – a circular ring with damage at an angle of 60° with a depth of 0.375 times the width of the ring

a b

c d

e f
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A point fact template has been developed, which 
represents information about a point with specified x 
and y coordinates, as well as the value of normal and 
tangential stresses and displacement. Point coordi-
nates, values of normal and tangential stresses, and 
displacements have data type FLOAT.

The known-stress fact template is used to store 
known stress values, displacements, and point coor-
dinates. In this template: stress is the known value 
of normal stress, x, y are the coordinates of the point 
where the known value of normal stress was measured.

The contour template represents the contour 
of a figure with the specified coordinates of the 
points that form this contour. In this template: 
points – a string with the coordinates of the points 
that form the contour. In this case, this slot will 
be filled with a string of coordinates, for exam-
ple, “(x1 y1) (x2 y2) (x3 y3)”. This fact template is 
used to accumulate results and output them as the 
results of the expert system.

The designed expert system follows a classi-
fy-contour rule, which performs shape contour clas-
sification based on comparison of point normal 
stresses with known normal stress values.

This rule contains a condition that collects data for 
each point with normal stress, a condition that retrieves 
the known normal stress values along with the coordinates, 
and a test function that compares the normal stress value of 
a point with a known value with some user-specified toler-
ance independently. By default, the error is 0.1. If the con-
dition of the rule is met, an action is performed that creates 
a new fact of type contour, which contains the coordinates 
of a known point with the corresponding normal stress:

IF THEN ,A C

where:

knownStress stress ,A= − ≤ ε

C – adding point coordinates to the resulting points fact.
An example of a program segment for the formation of 

rules and facts of an expert system in the specific intuitive 
language СOOL, which is part of CLIPS [25], is given. In 
the example, a fragment of the knowledge base is provided, 
which illustrates the presence of arrays of normal stresses 
and coordinates of points of the punch contour:

(deftemplate point
	 (slot x (type FLOAT))
	 (slot y (type FLOAT))
	 (slot stress (type FLOAT))
)

(deftemplate known-stress
	 (slot stress (type FLOAT))
	 (slot x (type FLOAT))
	 (slot y (type FLOAT))
)

(deftemplate contour
	 (slot points (type STRING) (default “”))
)

The algorithm for solving the contact problem for 
the absolutely rigid punch-elastic half-space system 
can be represented by the following sequence of ac-
tions (Fig. 5, 6):

Step 0. Develop software for analysis and visualization 
of the analytical solution for pressing into the elastic half-
space of stamps of various shapes close to ring, which was 
obtained earlier [11]. (The analytical solution is obtained 
separately for each problem).

Step 1. Create a project in ANSYS and the Static 
Structural module. In the Geometry subsection, create a 
three-dimensional model of the geometry of the half-space 
and punch.

Step 2. Carry out the process of generation and correc-
tion of the finite element mesh.

Step 3. If the finite-element mesh meets the conditions 
for qualitative partitioning, namely the fulfillment of the 
necessary conditions, then we proceed to step 4, if not, then 
we return to step 2.

Step 4. Calculation of the process of contact interaction 
of the punch and the elastic half-space by means of computer 
simulation.

Step 5. Check the reliability of the obtained data by com-
paring it with the results obtained earlier in step 0. If after 
evaluating the results it turns out that the error exceeds the 
permissible, then it is necessary to return to step 2, other-
wise, go to step 6.

Step 6. Locate conditional sensors along the contact 
contour to simulate the process of reading information from 
field experiments.

Step 7. Read information about the stressed-strained 
state (SSS) of the system from conditional sensors.

Step 8. This step provides branching for the selection of 
the information transfer option. Transfer information about 
the stressed-strained state to the knowledge base of the 
expert system. If the user has chosen the automated option 
of data transfer to the knowledge base of the expert system, 
then go to step 9, otherwise – to step 10.

Step 9. Process the results of stress calculations using 
a specially developed software application, which is imple-
mented in the C++ programming language and uses the 

(defrule classify-contour
	 (point (x ?x) (y ?y) (stress ?stress))
	 (known-stress (stress ?known-stress) (x ?known-x) (y ?known-y))
	 (test (<= (abs (- ?stress ?known-stress)) 0.1))
	 =>
	 (assert (contour (points (str-cat “(“ ?known-x “ “ ?known-y “)”))))
)
(deffacts initial-known-stress
(known-stress (stress -14034000.0) (x -0.000718) (y -0.004951))
(known-stress (stress -18598000.0) (x -0.000125) (y -0.005012))
(known-stress (stress -17564000.0) (x -0.001298) (y -0.004838))
(known-stress (stress -17039000.0) (x -0.001892) (y -0.00465))
(known-stress (stress -14541000.0) (x -0.002472) (y -0.00436))
(known-stress (stress -14782000.0) (x -0.003051) (y -0.003969))
…
(known-stress (stress -15988000.0) (x -0.003601) (y -0.003477))
(known-stress (stress -16772000.0) (x -0.004079) (y -0.002898))
(known-stress (stress -16825000.0) (x -0.00447) (y -0.00226))
(known-stress (stress -17299000.0) (x -0.004702) (y -0.001681))
(known-stress (stress -17297000.0) (x -0.004876) (y -0.001102))
(known-stress (stress -13063000.0) (x -0.004977) (y -0.000522)).
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ANSYS API to obtain data from sensors. After completing 
the procedure, proceed to step 11.

Step 10. The data is exported to an Excel file for further 
analysis and processing using a js script and the formation of 
files for the knowledge base. A manual data transfer option 
has been added as an alternative to the automated option, 
which allows one to make changes to the data, or retrieve 
data from external sources outside of the ANSYS project.

Step 11. Data processing by an expert system. The 
solution of the infinite-dimensional optimization problem 
is reduced to a finite-dimensional one by approximating 
the vector function U(x) using the finite element method. 
Determine the resulting vector by Newton’s method. Save 
point coordinates.

Step 12. Sort the identified points in a circle to simplify 
the process of further visualization.

Step 13. If necessary, divide the initial collection of 
points into two collections for external and internal con-
tours, respectively.

Step 14. Perform cubic spline interpolation for each 
collection.

Step 15. Output the value of the identified points. Visu-
alize the outline of the punch.

Step 16. The end.

The above block diagram (Fig. 5, 6) demonstrates the 
generalized algorithm for solving the contact problem for the 
absolutely rigid punch-elastic half-space system.

5. 4. Determining the contour of the damaged form of 
the punch using the developed tools

Applying the algorithm described above, an example was 
considered – the problem of pressing into an elastic half-space 
a cylindrical absolutely rigid flat punch, the cross-section of 
which has an annular area in plan (Fig. 2). The analytical 
solution was obtained and the pattern of the stressed-strained 
state of the die-elastic half-space system was calculated [11]. 
A ring punch was considered for the test task.

The outer diameter of the die before damage was 100 mm, 
and the inner diameter was 40 mm. The material of the 
punch is steel: E=200000 MPa, μ=0.3, and for the elastic 
half-space – an isotropic material with the following param-
eters: E=180 MPa, μ=0.2. Conditional sensors were located 
evenly around the entire circle.

The simulation results are shown in Fig. 7 for the case 
when the stressed-strained state of the punch-elastic half-
space system was established for the undamaged ring form 
of the punch.

The simulation results shown in Fig. 8 illustrate the situa-
tion where damage to the die shape has occurred by wear, for 
the case of one-sided damage from the same inner and outer 
sides of the ring. Wear-type damage occurred at a central an-
gle of 60°. From the outer side of the ring, the depth of damage 
was 0.08 of the ring width, and from the inner side – 0.0625 
of the ring width.

Information about normal stresses and displacements from 
conditional sensors located along the perimeter of the punch 
was submitted to the input of the expert system (Fig. 7).

For the represented 57 conditional sensors, after 450 cal-
culations for various damage schemes (Fig. 7, 8), the follow-
ing shape of the punch was obtained based on the data read 
from the sensors (Fig. 9).

Fig. 5. Block diagram of the generalizing algorithm

Fig. 6. Block diagram of the generalizing algorithm 
(continued)
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Satisfactory results for the outer contour were obtained 
at a depth of 4–6 % of the ring thickness. It must be recog-
nized that the reproduction of deeper damage to the shape 
of the punch requires an increase in the number of the 
experimental base. It should also be noted that the system 
more accurately determines the shape of the outer contour 
of the punch than the inner one. It can be assumed that this 
is caused, first of all, by the mutual influence of the points of 
the internal contour of the punch.

When conducting a number of numerical experiments, 
it was noticed that when the deformation of the contour oc-
curs randomly and locally, such calculations give sufficiently 
good results. This approach makes it possible to take into 
account small damage on the contour (less than 1 % of the 
ring width) and reproduce such as single deep cracks (more 
than 10 % of the ring width).

6. Discussion of results of developing a generalized 
algorithm for modeling the contact interaction of a punch 

with an elastic half-space

Based on previous studies in the field of analytical meth-
ods for solving contact problems of the theory of elastici-
ty [9–12, 18, 21], an analytical approach to solving problems 
of the punch-elastic half-space system was devised.

Finite-element models of the interaction of a flat ab-
solutely rigid punch with an elastic half-space were built 
according to a certain rule for the formation of the cross-sec-
tion of the punch, generalizing the approaches [26, 27] of 
searching for damage zones at contact sites (Fig. 5, 6). In 
fact, data arrays were built to study the damaged forms of 
the cross-sections of stamps, which made it possible to suc-
cessfully restore the contours of flat stamps (Fig. 7–9).

A generalizing algorithm for solving contact problems has 
been developed, which uses existing software products ANSYS 
and CLIPS, as well as authentic software developments. It is 
this combination of an analytical approach and the use of com-
puter capabilities that creates a single trajectory of constructing 
a solution to the contact problem for the die-elastic half-space 

system. This allows a holistic 
approach to the solution of 
complex practical problems 
based on a combination of nu-
merical methods and existing 
software tools with analytical 
solutions, the experience of 
which can be found, for exam-
ple, in works [20, 23, 24].

The advantages of this 
study in comparison with 
known ones are the com-
bination of mathematical 
modeling and computer sim-
ulation for solving contact 
problems of the theory of 
elasticity.

The limitations of the 
study are the impossibility 
of applying the developed 
algorithm to the solution of 
contact problems of another 
class without an additional 
review of the analytical step 

Fig. 7. Scheme of arrangement of conditional sensors for 
reading normal stresses before damage to the punch contour

Fig. 8. Scheme of the location of conditional sensors for 
reading normal stresses after damage to the punch contour

Fig. 9. Restored contour of the ring punch
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of the algorithm. That is, there is a need to derive a new sepa-
rate analytical solution. But it is quite possible to extend this 
approach, for example, to the problem of collinear interphase 
cracks with different electrical conditions on their banks [5]. 
The disadvantages of the proposed approach include the fact 
that the mathematical apparatus for solving contact prob-
lems is quite complex and it is not always possible to obtain 
an analytical solution for conducting comparative assess-
ments [14, 15, 18]. But the proposed approach should be used 
to solve problems that make sense to break down into sim-
pler components and find effective solutions. At each step, 
it is possible to improve and adapt the proposed approach, 
which will allow finding new ways to solve the problem [19].

In the same way, using a similar approach and already 
performed calculations, it is possible to search, for exam-
ple, for areas of adhesion and sliding under a punch on 
the surface of an elastic half-space [23, 24], using already 
developed software and the functionality of the CLIPS 
software system.

Also, these results can be implemented in engineering 
strength calculations to increase the reliability and dura-
bility of structures or contribute to the saving of materials.

This work is a further advancement of research aimed at 
devising methods and algorithms for solving contact prob-
lems from the theory of elasticity.

7. Conclusions 

1. To obtain an analytical solution, we have used a vari-
ant of the perturbation method, based on the expansion of 
the potential of a simple layer distributed over a doubly con-
nected region by a small parameter. In this way, the problem 
of pressing a flat punch in the form of a non-circular ring was 
reduced to a sequence of problems for a punch in the form of 
a circular ring. That has made it possible to employ the well-
known circular ring solution.

2. Finite-element models of the interaction of a flat ab-
solutely rigid two-link in the plane of the die with an elastic 
half-space were built. This has made it possible to perform 
calculations for stamps of different configurations.

3. A generalized algorithm for identification of cross-sec-
tions of stamps was developed. Its feature is the possibility of 
application for solving the contact problem for the punch-elas-
tic half-space system, with the introduction of CLIPS func-
tionality, when the contact area is unknown in advance.

4. The contact problem for the punch-elastic half-space 
system has been solved; the contour of the damaged punch 
shape was determined using the developed tools. Based on 
this, it was found that the system more accurately determines 
the shape of the outer contour of the punch than the inner one. 
This is due primarily to the mutual influence of the points of 
the internal contour of the punch. It is noted that when the 
deformation of the contour occurs randomly and locally, such 
calculations give fairly good results. Thus, it becomes possible 
to take into account small damage on the contour, which is 
less than 1 % of the width of the ring, as well as reproduce 
single deep cracks, which exceed 10 % of the width of the ring.
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