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1. Introduction

The improvement of engineering structures, the complica-
tion of their operating conditions, as well as the introduction 
of new materials lead to the need for further development of 
methods for calculating structures. With the use of new struc-
tures and materials, material consumption is reduced, the 
scope of application of thin-walled systems with low rigidity, 
for which the danger of elastic loss of stability increases, and, 
consequently, the importance and relevance of the theory and 
methods for practical solution of problems of elastic stability 
of engineering structures increases. The problem of stability 
is relevant to all types of structural elements and machine 
parts, and its importance especially increases in relation to 
anisotropic thin plates. The practical solution of this problem 
currently encounters difficulty mainly not in drawing up 
equations, but in obtaining the numerical value of the critical 
parameters of the external influence.

The approximate method in general and, in particular, 
the discrete method for solving the problem of stability of 

elastic systems has a certain area of application, the main 
indicators of which follow from the fundamental character-
istics of the method. First of all, these include the necessary 
initial information. In this method it is an additional load. To 
obtain it, one must have differential equations that describe 
the deformation of the system in a given and adjacent states. 
Since such a condition meets almost no restrictions when 
setting stability in the “small”, the scope of application of the 
additional load method is very extensive.

Therefore, research on the development solution the prob-
lem of stability and the discrete method for solving is relevant 
for all types of structural elements and machine parts.

2. Literature review and problem statement

The works [1, 2] of many authors, classics of the mechan-
ics of deformable solids, are devoted to the stability of elastic 
systems, which analytically consider stability examples 
following which it is difficult to determine numerical values 
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This paper is devoted to the development of general 
algorithm for solving to the stability problem of anisotro-
pic plates using the additional load discretization method. 
The study of the stability problem is relevant for all types 
of structural elements and machine parts, and its impor-
tance is especially increasing with respect to anisotropic 
thin plates. This is due to the fact that with the use of new 
structures and materials, the material intensity is reduced, 
the area of application of thin-walled systems with low 
stiffness, for which the danger of elastic loss of stability 
increases, and, therefore, the importance and relevance of 
the theory and methods of practical solution of problems of 
elastic stability of such structures increases.

In many works, analytical expressions for determi-
nation of critical load are given. At present, the determi-
nation of critical loads causes great difficulties in their 
numerical determination. Therefore, the article presents 
the most effective numerical and analytical solution of this 
problem.

As a rule, to solve stability problems of anisotropic 
plates, different representations of the bending deflection 
function in different rows are used. But the use of such 
representations is justified only under certain boundary 
conditions and under the condition of uniformly distribut-
ed load. The study described in this paper offers a way to 
overcome these difficulties, allowing the numerical values 
of critical forces to be determined without much difficul-
ty. With increasing grid density, the accuracy of the criti-
cal load value increases rapidly and with an 8×8 grid, the 
deviation from the exact solution equal to is 1 %.

From a practical point of view, the discovered mech-
anism of numerical realization of this problem allows to 
improve engineering design calculations of stability of 
anisotropic plates with different conditions on supports 
and with different loading
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of the critical load. The paper [3] considered the solution of 
the stability problem for shallow shells by the method of dis-
cretization the additional load and the basis of the method of 
discretization the additional load in relation to the problem 
of stability of curved rods of arbitrary shape. A numerical 
solution of the stability problem is shown, but only problems 
related to curved rods are solved here. Some issues directly 
related to the method of discretization the additional load 
are considered by the author [4, 5] in relation to the current 
state of the question of the stability of elastic systems. The 
numerical solution is also shown here, but the anisotropic 
material characteristics of the structure are not considered. 
The paper [6], have considered the problems of calculating 
the stability of rods and plates depending on their geometric 
parameters and analyzed the obtained calculation results, 
determined the factors influencing the stability of rods and 
plates and the limits of applicability of formulas for calculat-
ing the critical buckling force of rods and plates. However, 
the paper does not show the complex stability problems of 
plates with different boundary conditions.

The paper [7] shows a method for calculating the stability 
of plates and rods, which allows for various calculations of the 
stress-strain state depending on the boundary conditions – ap-
plied loads, moments and degrees of freedom. The work is inter-
esting from an engineering point of view, but the non-uniformi-
ty of the distributed compressive load is not taken into account.

In article [8], the calculation of the stability of an isotro-
pic plate by the method of separation of variables was consid-
ered, the plate was calculated for stability under compression 
in the longitudinal direction, and the results were compared 
with existing solutions. The variable separation method was 
used, however, the paper does not consider the anisotropy of 
plates often encountered in engineering structures.

A method for calculating the stability of plates under 
shear loads is presented [9], but the paper does not give 
numerical solutions of these equations for non-uniform 
loading. Based on Vlasov’s variational method, a system of 
differential equations was obtained to study the stability of 
plates. In [10], the problem of stability of a compressed plate 
is solved and the theoretical results are compared with data 
from a full-scale experiment, but the paper does not take into 
account the anisotropy of the plates. A method has been pro-
posed [11] for determining the critical load leading to loss of 
stability of anisotropic rectangular simply supported plates, 
complex plate supports are also not considered here.

In the reviewed papers [1–11], many stability problems 
of structures have been solved, but the issues related to the 
numerical implementation of the problem of determining the 
critical force have not yet been solved. The reasons for this 
may be objective difficulties related to the complexity of 
solving stability problems.

It is clear that a general method for numerical solution 
of the stability problem of anisotropic plates with a variety 
of boundary conditions and contours under different loads 
is needed.

3. The aim and objectives of the study

The aim of the study is to develop a general algorithm 
for solving the stability problem of anisotropic plates with 
different boundary conditions and different external load. 
This will allow to solve in practice the stability problems of 
anisotropic plates as a part of various structures.

To achieve this aim, the following objectives are accom-
plished:

– to develop a solution to the problem of stability of 
anisotropic plates using the method of discretisation of ad-
ditional load, 

– to determine the Green’s function by the variation-
al-difference method as an invariant part of the problem of 
determining the critical load;

– to show the convergence of the numerical implementa-
tion of this problem using the proposed method of additional 
load discretisation.

4. Materials and methods 

The study deals with the development of a solution to 
the problem of stability of anisotropic plates. The elastic 
stability of plates is investigated. The material of the plate 
is assumed to be elastic. The hypothesis of straight non-de-
formable normals is also used. Small summands of the sec-
ond order of insignificance are neglected in the differential 
dependences of deformations and relative deformations.

The stability of a deformable system is considered as a 
special type of its ultimate resistance, which can occur be-
fore the system exhausts mechanical resistance according to 
the strength conditions of the material. The design of struc-
tures for stability consists of determining the critical load 
corresponding to this ultimate resistance. It determines the 
load-bearing capacity of a structure based on stability con-
ditions. During the operational stage, the load value must be 
below the critical value in compliance with the normalized 
stability margin. The task of the theory of stability of elastic 
systems is to formulate mathematically the stability condi-
tion, create and solve the resulting equation to determine the 
value of the critical load.

Determining the ultimate resistance as the final stage 
of the deformation process requires its broadest description. 
It can be obtained by nonlinear equations that express the 
deformation process more completely than a linear one.

In a stability problem, of the two nonlinearities – physical 
and geometric – the second one is mandatory, since the resis-
tance limit under the stability condition precedes the resistance 
limit under the material strength condition. The basis of geo-
metric nonlinearity is the theory of nonlinear deformations.

Let’s consider the qualitative features of the linear defor-
mation components, which are of significant importance for 
the problem of stability of deformable systems. In the nonlin-
ear, as in the linear theory of deformations, two types of de-
formations are distinguished. The first one describes linear 
deformation: the bringing together, or removal, of the ends 
of an infinitesimal segment ds emanating from the point 
M(x,y,z) by a unit of its original length. It is determined in 
the same way as in linear theory by the formula:

1 ,
ds ds

e
ds
−

=  			   (1)

or by the formula:

1 1,
ds

e
ds

= −  		  (2)

where ds1 is the distance between the end points of the seg-
ment after deformation.
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The second describes the shear deformation: the deforma-
tion of the angle between two infinitesimal segments intersect-
ing at point M. It is also defined similarly to the shear strain in 
the linear theory of deformations. The peculiarity of nonlinear 
deformations, which distinguishes them from linear ones, stems 
from the fact that when expressing the deformation length of a 
segment through its corresponding length before deformation, 
rotations of the segment are taken into account, i.e. the change 
in the direction cosines of the segment ds is taken into account 
with its transition to ds1, which in the x, y, z axes are equal for 
the segment ds: l=dx/ds; m=dy/ds; n=dz/ds. For the segment 
ds1:l1=dx1/ds1; m1=dy1/ds1; n1=dz1/ds1

Where dx, dy, dz and dx1, dy1, dz1 are projections on the 
x, y, z axes of the segments ds and ds1, respectively.

Linear deformation e is a function of f(l, m, n) and is 
represented as:

( )1 2 , , 1 .e f l m n= + − 			   (3)

In particular cases, for segments dx, dy, dz parallel to 
the axes x(l=1,m=0,n=0), y(m=1,l=0,n=0), z(n=1,l= 0,m=0), 
from (4) follows the value of the coordinate components e, 
respectively:

1 2 1,x xxe e= + −  				    (4)

1 2 1,y yye e= + −  				     (5)

1 2 1.z zze e= + − 				     (6)

Where approximately (using the Taylor series):

2 2 2
1

,
2xx

u u v w
x x x x

  ∂ ∂ ∂ ∂      ε = + + +       ∂ ∂ ∂ ∂         
 		  (7)

2 2 2
1

,
2yy

v u v w
y y y y

       ∂ ∂ ∂ ∂  ε = + + +      ∂ ∂ ∂ ∂         
  		   (8)

2 2 2
1

.
2zz

w u v w
z z z z

  ∂ ∂ ∂ ∂      ε = + + +       ∂ ∂ ∂ ∂         
 		  (9)

After expanding the radicals (4)–(6) into the Maclaurin se-
ries in εii, preserving only the first degree, let’s obtain simplified 
approximate formulas, which are usually used in practical cal-
culations: ex=εxx, ey=εyy, ez=εzz. With the same approximation, 
the coordinate components of the shear deformation in the xy, 
xz, yz planes are determined by the formulas, respectively:

,xy

u v u u v v w w
y x x y x y x y

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
ε = + + ⋅ + ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 	  (10)

,xz

w u u u v v w w
x z x z x z x z

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ε = + + ⋅ + ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
	  (11)

.yz

w v u u v v w w
y z y z y z y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
ε = + + ⋅ + ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

	 (12)

In (7)–(12), the terms outside the brackets determine the 
deformations in the linear formulation; let’s call them basic, 
and the terms enclosed in curly brackets define nonlinear 
additions to them; let’s call them “additionals”. Additionals 

necessarily accompany the main deformations, since through 
them the rotations of elementary segments emanating from 
the point M that naturally occur in a continuous medium are 
reflected due to any of the components of its movement u, v, w.

In this regard, “additionals” bring not only quantitative, 
but also (which is no less important) qualitative changes in 
that they: 

a) supplement the main deformation with new types of 
deformations;

b) oblige (through rotations of segments) to take into 
account the deformed scheme of the environment, which is 
not taken into account in a geometrically linear formulation.

Such an account radically changes many ideas estab-
lished by logic, based on the linear theory of deformation. 
For example, a rod centrally compressed along a straight 
axis, from the position of linear theory, experiences only 
uniform compression, and from a nonlinear position, com-
pression is accompanied by bending, which is characterized 
by rotations of the axis of the rod:

,y

w
x

∂
θ =

∂
			   (13)

.z

v
x
∂

θ =
∂

				    (14)

This kind of rotation significantly distinguishes the contin-
uous medium, which is used in the mechanics of a deformable 
solid as a model of a structural material, from the regions of 
figures representing it in the understanding of Euclidean geom-
etry. In the first, unlike the second, the deformation of any in-
finitesimal segment occurs not as an isolated, separate one, but, 
on the contrary, together with all the segments surrounding 
it. The deformed state that arises at a point is mathematically 
expressed by the strain tensor (which has complete analogy 
with the stress tensor). Therefore, any deformation of a segment 
must be considered in connection with the general deformation 
of the medium. Then it becomes natural to expect a change in 
the distance between the end points of a segment along the line 
of its original position in the general case not only due to the 
distance (as a “Euclidean” segment), but also due to rotation.

The equations of deformation of the medium in a geomet-
rically nonlinear formulation are compiled in the same way as 
in a geometrically linear one - with the involvement of either 
static-kinematic conditions (namely, the conditions of equi-
librium, continuity and physical law), or energy conditions, 
which are reflected in the variational principles (these include 
the principles possible movements and possible stresses).

In order to simplify the equations, an approximate ac-
count of the “additional” is allowed. It usually consists in the 
fact that some of the terms in the “additional” are omitted 
and its influence is not taken into account in all equations, 
and especially in the equations of the physical law.

5. Results solution to the problem of stability of anisotropic 
plates using the additional load discretization method

5. 1. Development a solving the stability problem of 
anisotropic plates by the method of discretization of ad-
ditional load

To obtain the additional load, one must have differential 
equations that describe the deformation of the system in a 
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given and adjacent states. Since such a condition encounters 
almost no restrictions when setting stability in the “small”, 
the scope of application of the additional load method is 
very extensive. It includes not only simple elastic systems 
of individual elements, but also complex ones formed by the 
articulation of elements. It is important to note that only 
differential equations are needed, not their solutions.

The former, unlike the latter, are preserved under any 
continuous and discontinuous boundary conditions, includ-
ing for holes. In this regard, in relation to multi-element 
systems, it is enough to have differential equations for each 
element separately even before the conditions for the junc-
tion between them are met. 

To determine the Green’s function in complex cases, ap-
proximate methods are used: variational-difference method, 
finite element method and other methods. They solve a wide 
class of plane and spatial problems. Moreover, the Green’s 
function, by its nature, as relating to a unit load, is an in-
variant part of the calculation; it does not depend on the load 
of the system and is preserved for any loads specified on it. 
By varying the grid of points when determining the Green’s 
function, it is possible to identify a pattern, the use of which 
greatly simplifies computational operations.

It follows from the fact that the boundary conditions 
under the action of a single concentrated force have a local 
influence. Therefore, the matrix of equations compiled us-
ing the variational-difference method for determining the 
Green’s function is invariant with respect to the zone of in-
ternal points remote from the boundary. This pattern allows 
to compile standard matrices of coefficients of equations for 
the Green’s function in relation to each given system.

In this paper one considers the stability of an orthotro-
pic (as one type of anisotropy) plate under the conditions 
of a plane problem, which is compressed by forces Nx, Ny in 
the direction of the x, y axes and sheared by forces Nxy in its 
plane (Fig. 1). 

The tension is determined for an orthotropic plate by the 
formulas: 

( ),
1

x
x x y y

x y

E
σ = ε +µ ε

−µ µ
 			   (15)

( ),
1

y
y y x x

x y

E
σ = ε +µ ε

−µ µ
 		   (16)

.Gτ = γ 			   (17)

Poisson’s ratios µx and µy are related by the relation:

.y
y x

x

E

E
µ = µ  			   (18)

Bending stiffnesses Dx and Dy and torsional stiffness Dk 
are calculated using the formulas:

( )
3

,
12 1

x
x

x y

E h
D =

−µ µ
			   (19)

( )
3

,
12 1

y
y

x y

E h
D =

−µ µ
			   (20)

31
.

12kD Gh= 			   (21)

Bending and torque moments and the transverse forces 
arising in the cross section are determined through the cur-
vatures kx, ky and kxy:

( ),x x x y yM D k k= − +µ  			   (22)

( ),y y y x xM D k k= − +µ 			    (23)

2 ,xy k xyM D k= −  				    (24)

and

( ),x x x pr yQ D k D k
x
∂

= +
∂

			  (25)

( ).y y y pr xQ D k D k
y
∂

= +
∂

			   (26)

In formulas (25), (26) Dpr refers to the reduced cylindri-
cal stiffness:

( )1
2 4 .

2pr x y k x y y x kD D D D D D= µ + = µ + µ + 	 (27)

For an orthotropic plate, the equilibrium equation taking 
into account the deformed state has the following form:

4 4 4

4 2 2 4

2 2 2

2 2

2

.

x pr y

x xy y

w w w
D D D

x x y y

w w w
N N N

x x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂

 ∂ ∂ ∂
= − + + ∂ ∂ ∂ ∂ 

		  (28)

The right side of equation (28) represents an additional 
load q*(x,y), additionally obtained by a plate compressed 
in two directions by distributed forces (Nx, Ny) and shifted 
in its plane by a force (Nxy) in an additional deflected state 
during loss of stability:

( )
2 2 2

2 2
, 2 ,x xy y

w w w
q x y N N N

x x y y
∗  ∂ ∂ ∂

= − + + ∂ ∂ ∂ ∂ 
	 (29)

where Nx, Ny, Nxy are the forces in the plane of the plate in a 
given state.

The deflection w(xk, yk) at point k from the additional 
load is found using the Green’s function ( ), , ,k kw x y x y :Fig. 1. Plate loaded in its plane

y a 

b 

x 

Nx(y) 

Ny(y) 

Nxy 

xk 

yk 

K 
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( ) ( ) ( ), , , , , d d .k k k k
ab

w x y q x y w x y x y x y∗= ∫∫  		  (30)

Following the additional load sampling method, a grid 
is applied to the plate, for example, 5×5, 10×10 or another, 
formed by lines parallel to the x, y axes. Let’s replace the 
additional load within the grid cells with dimensions Δx, 
Δy with averaged concentrated forces. Let’s write down 
expressions for deflections at the nodal points of the cell. To 
do this, let’s replace integration in (30) by summation and, 
using unit displacements δij, obtain the following equations 
for deflections wi:

( )
( )

( )

1 111 12 11

2 21 22 2 2 2

1 2

,

,
.

,

n

n

n n n nn n n

q x y x yw

w q x y x y

w q x y x y

∗

∗

∗

 ⋅∆ ∆δ δ δ       δ δ δ ⋅∆ ∆    = ⋅   
        δ δ δ ⋅∆ ∆     





    





		  (31)

The derivatives in the load expression q*(xi, yi) are 
written in finite differences, the order of which is not higher 
than the second. Having performed the operations belonging 
to (31), let’s obtain a system of linear homogeneous equa-
tions for the deflections wi. Let’s equate the determinant of 
this system to zero:

11 12 1

21 22 2

1 2

0,

n

n

n n nn

a a a

a a a

a a a

−λ 
 −λ  = 
  −λ 





   



	 	 (32)

where aii are known numbers; λ is parameter to be determined.
Having expanded the determinant (32), it is possible to 

arrive at an algebraic equation for λ under simple loading, 
when Nx, Ny, Nxy depend on one quantity. The smallest value 
of which gives the numerical value of the critical force.

5. 2. Determination of the Green’s function by the 
variational-difference method

The Green’s function ( ), , , ,k kw x y x y  with the help of 
which it is possible to determine the elements of the compli-
ance matrix δij in (31), is found using the variational-differ-
ence method. According to Lagrange’s variational principle, 
the variation of the total potential energy is zero:

0.W Tδ = δ −δΠ = 		  (33)

Variation of the work of an external unit force 1P =  ap-
plied at point k:

.k kT w P wδ = δ = δ
	

(34)

Variation of the work of internal forces throughout the 
entire volume of the plate:

1 2
1 2

.n
n

w w w
w w w
∂Π ∂Π ∂Π

δΠ = δ + δ + + δ
∂ ∂ ∂

 		  (35)

Substituting (35) and (34) into (33):

1 2
1 2

0.k n
n

w w w w
w w w

 ∂Π ∂Π ∂Π
δ − δ + δ + + δ = 

∂ ∂ ∂ 
 	 (36)

General formula for strain energy for plates:

( )1
d d d .

2 x x y y x y z
ω

Π = σ ε +σ ε + τγ∫∫∫  		  (37)

The deformation energy for anisotropic plates is obtained 
from the general formula (37):

( )

( )

2

2 2

11
d d d ,

2

1

x
x y x y

x y

y
y x x y

x y

E

x y z
E

G
ω

 ε +µ ε ε + −µ µ Π =  
 + ε +µ ε ε + γ

−µ µ  

∫∫∫ 	 (38)

here Ex, Ey are the elastic modulus of the plate material under 
tension and compression along the x, y axes;

G is a shear modulus of elasticity;
µx, µy is the Poisson’s ratios.
To obtain the formula for potential energy in deflections, 

deformation in formula (38) is expressed in terms of deflec-
tions w, using the dependencies arising from the hypothesis 
of direct normals of the middle plane:

2

2
,x

w
z

x
∂

ε = −
∂

		      (39)

2

2
,y

w
z

y
∂

ε = −
∂

		  (40)

2

2 .
w

z
x y
∂

γ = −
∂ ∂

		  (41)

In this case:

Let’s express derivatives through finite differences and 
replace integration by summing the values ΠiΔxΔy, where 
the discrete values of Πi at points i. Then, according to (42), 
it is possible to obtain Π as a function of deflections wi. Let’s 
substitute Π in (36) and group the terms with the displace-
ment variations δw1, δw2,…, δwn taken out of brackets. Let’s 
assume that a unit force when determining the Green’s func-
tion is applied at point k=1, then according to (36):
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Each expression in parentheses must be equal to zero, 
since equation (43) must be satisfied for any value. Thus, 
equation (43) turns into a system of linear algebraic equa-
tions, the number of which is equal to the number of required 
displacements wi:

22 2 2 2

2 2 2

22 2 2 22

2 2 22

22
2

1

1
d d d .

2 1

4

x
y

x y

h y
xh

x yF

E z w w w
x x y

E z w w w
x y z

y x y

w
G z

x y

   ∂ ∂ ∂  +µ ⋅ + −µ µ ∂ ∂ ∂     
   ∂ ∂ ∂  Π = + +µ ⋅ +  −µ µ ∂ ∂ ∂    
 
  ∂
+ ⋅   ∂ ∂   

∫∫ ∫  (42)



Applied mechanics

21

11 12 1 1

21 22 2 2

1 2

1

0
.

0

n

n

nn n nn

b b b w

b b b w

wb b b

     
     
     ⋅ =     
            





   



	  (44)

Having solved the system of equations (44), let’s ob-
tain a diagram of deflections from a unit force applied at 
point 1. Due to the symmetry of the Green’s function, it is 
an influence surface that gives us the values δ1j ( j=1,2,…,n). 
Next, let’s apply a unit force to the plate at point 2. In this 
case, system (44) will not change, only the unit on the 
right side will appear in the second row. Having solved this 
system, let’s obtain the surface of influence of deflections at 
point 2 and, therefore, δ2j. In the same way, let’s determine 
the surface of influence of deflections for all other points 
of the plate.

5. 3. Numerical solution 
of the plate stability problem 
using the additional load dis-
cretization method

It is required to deter-
mine the critical value of the 
force for a longitudinally com-
pressed uniformly distribut-
ed force Nx, simply supported 
square plate (Fig. 2) at, Ny=0, 
Nxy=0, Nx=const, µ=0.3.

Let’s first determine the 
Green’s function using the 
variational-difference method. 
Let’s apply a grid with 4×4 cells 
on the plate (Fig. 2). It is possible to determine the specific 
energy of transverse bending of the plate Πk (k=1, 2, ..., 9) at 
each nodal point of the grid:

2

3 1 75 1 9
2 2

3 1 75 1 9
1 2 2

2

4 8 2 6
2

22

22 ,
2

1.4

4

w w ww w w
a a

D w w ww w w
a a

w w w w
a

 − +− + + −  
  
  − + − + Π = ⋅ −  
  −  + − −  −      

  	 (45)

2

3 2 9 2
2 2

2 2

3 2 9 2 1
2 2 2

2 2

,
2 2 2

1.4
4

w w w w
a aD

w w w w w
a a a

 − − + −  
  

Π =   − − −  − ⋅ −       

 	 (46)

2

4 3 2 1 3
2 2

4 3 2 1 3
3 2 2

2

9 5
2

2 2

2 2 ,
2

1.4

4

w w w w w
a a

D w w w w w
a a

w w
a

 − + − + −  
  
 − + −  Π = ⋅ −  
  −  −  −      

	 (47)

and so on.
Total energy Π:
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( )
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 
+ Π +Π +Π +Π  



 	 (48)

Here, points 1–9 are points lying inside the plate at the 
nodes of the division grid; points: 10, 14, 18 and 22 are points 
located at the corners of the plate; the remaining 12 points: 
11, 12, ..., 25 are intermediate points, three on each of the 
four sides of the plate. The coefficients at Π express the value 
of the part of the grid area on the plate from which the strain 
energy is collected in determining the total energy.

Following the Lagrange principle, let’s vary Π with 
respect to wk and draw up equations to determine the deflec-
tions wk when applying a unit force sequentially at points k=1, 
2, ..., 9. When applying a unit force at the point k=1, let’s ob-
tain a system of linear equations (49), where the unknowns 
are the deflections at points k=1, 2, ..., 9:

Having solved this system, let’s obtain discrete values of 
the Green’s function as a function of influence for displace-
ments 1w  at point 1. If on the right side the free term of the  

system of equations 
216a

D
 enters the second line, then it is 

possible to obtain discrete values of the Green’s function as 
a function of influence for displacements 2w  at point 2 and 
etc. The matrix of coefficients in equations (49) remains un-
changed for all positions of the unit force. The displacements 

kw  obtained as a result of solving equations similar to (49), 
when applying a unit force sequentially at points k=1, 2, ..., 9, 
are equal to the elements of the compliance matrix of the sys-
tem of equations (31) in lines1, 2, ..., 9, respectively.

Having ,kw  and following (31), it is possible to compose a 
system of homogeneous linear equations for wk . From the con-
dition that the determinant of this system is equal to zero, an 
algebraic equation for Nx,kr follows, solving which let’s obtain:

2 2

,

16
31.5 31.5 .x kr

a l
N

D D
= = 		  (50)

The considered problem was solved with different divi-
sion grids. The results shown in Table 1.

Considering the numerical values of the critical load for 
different division grids (Table 1), let’s draw the following 
conclusions:

1. With increasing grid density, the accuracy of the crit-
ical load value increases rapidly and with an 8×8 grid, the 

deviation from the exact solution equal to 
2

39.5
l
D

 is –1 %.
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2. The mesh density for the plate when discretization the 
Green’s function and discretization the additional load can 
be different. This makes it possible to reduce the order of the 
matrices without compromising the accuracy of the solution 
for the critical load; the Green’s function is invariant, i.e. Once 
defined, it is used unchanged under various system loads.

Table 1

Critical load values for different division grids

Numbers 
solution

Division 
grids

Quantity 
equations

Critical mean-
ing loads

Divergence in % rela-
tive to exact decision

1 3×3 4 17.5 –56

2 4×4 9 31.5 –20

3 6×6 25 35.3 –10.5

4 8×8 49 39.1 –1

6. Discussion of results development solution the problem 
of stability of anisotropic plates using the additional load 

discretization method 

The advantages of this research in comparison with 
similar known ones are as follows. Usually, to solve stability 
problems of anisotropic plates, different representations of 
the deflection function at loss of stability in different rows 
are used. But the application of such representations is justi-
fied only under certain boundary conditions and under the 
condition of uniformly distributed load. When attempting 
to go beyond these limitations, the numerical realization of 
the problem of determining the critical load becomes much 
more complicated. Objective difficulties arise due to the un-
certainty of the mechanisms for representing the deflection 
function, taking into account the boundary conditions and 
the non-uniformity of the distributed load. The research 
described in this paper proposes a way to overcome these 
difficulties. It is based on the fact that the procedure of 
deflections function representation and boundary condi-
tions consideration is carried out in discrete form, Green’s 
functions (influence functions) are used to determine the 
additional displacements arising at the loss of stability. And 
Green’s functions, due to their invariance, do not change 
when the external load changes. This method allows to ob-
tain stable results for anisotropic plates with very different 
boundary conditions and outlines under different loading.

In contrast to the studies given in [4, 5, 10], the stability 
problem of an orthotropic plate, as one of the types of anisot-
ropy, is solved on the basis of the same data as the stability 
problem of isotropic plates. 

The solution of the stability problem by the method 
of discretization of additional load has shown that the 
proposed method, in contrast to the study [11], allows to 
determine the critical load by a general algorithm for arbi-
trary anisotropic plates, without complicating the solution 
of the problem for the most complicated cases of loading 
and boundary conditions.

The solved problems show the convergence of the numeri-
cal implementation of this problem using the proposed meth-
od of discretization of the additional load. The obtained value 
of the critical force is compared with the solutions of other 
authors. The comparison gives satisfactory results (Table 1).

In solving the stability problem of anisotropic plates by 
the proposed numerical and analytical method of discretiza-
tion of the additional load, the determination of the Green’s 
function (influence function) is of great importance. The 
Green’s function, inherently related to the unit load, is an 
invariant part of the calculation; it does not depend on the 
load on the system and is preserved at any load given on 
it (42), (44). By varying the grid of points in determining 
the Green’s function, a regularity has been identified, the 
use of which greatly facilitates computational operations. It 
follows from the fact that the boundary conditions under the 
action of a single concentrated force have a local influence. 
Therefore, the matrix of equations (49) compiled by the 
variational-difference method for determining the Green’s 
function is invariant with respect to the zone of internal 
points distant from the boundary. This regularity allows to 
compile standard matrices of equation coefficients for the 
Green’s function with respect to each specific system.

The peculiarity of the proposed method and the results 
obtained in comparison with existing methods [6, 7, 9] is 
that this method can be applied without difficulty to aniso-
tropic plates with a large variety of boundary conditions and 
contours under different loading conditions.

The limitations inherent in this study are the limits of 
applicability of the additional load discretization method, 
such as solving the dynamic stability problem [7].

The disadvantage of this research is that increasing the 
accuracy of the solution leads to computational difficulties. 

The development of this study can be in the field of sta-
bility of plates with different holes, stiffening ribs, in contact 
with an elastic base, etc. In these cases, the difficulty will be 
to correctly account for these variations.

7. Conclusion

1.  Solving the stability problem by the method of discret-
ization of the additional load has shown that this will allow 
to determine the critical load for arbitrary anisotropic plates 
without complicating the solution of the problem for the most 
complicated cases of loading and boundary conditions. 

2. The Green’s function determined in the study by the 
variational-difference method is an invariant part of the 
problem of determining the critical load; it is independent 
of the load on the anisotropic plate and is preserved under 
any loads given on it, which is one of the advantages of the 
proposed additional load discretization method.

Fig. 2. Longitudinal compressed square plate
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3. Numerical solution of the problems shows the con-
vergence of the implementation of this problem using the 
proposed method of discretization of the additional load, 
the obtained value of the critical force is compared with the 
solutions of other authors and this comparison gives satisfac-
tory results. With increasing grid density, the accuracy of the 
critical load value increases rapidly and with an 8×8 grid, the 
deviation from the exact solution equal to is 1 %. The mesh 
density for the plate when discretization the Green’s function 
and discretization the additional load can be different. This 
makes it possible to reduce the order of the matrices without 
compromising the accuracy of the solution for the critical load.
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