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1. Introduction

A fluid serves as the working medium in a variety of 
hydraulic automation systems, transferring power to the 
executive body. Turbulent fluid flow may occur in pressure 
systems. There are different transition sections in pressure 
systems where structural alterations in the flow’s hydrody-
namic properties take place. One major avenue to enhance 
machine tool designs is the study of turbulent stationary 
motion in the transition zones of channels containing fluid 
under pressure. The correctness of research findings deter-
mines the stability and accuracy of control and regulation 
systems. Thus, it is imperative and very practical to analyze 
the structural changes in turbulent flows in the inlet area.

Studies of velocity distribution patterns in the transi-
tion areas of closed beds (entrance and exit regions, sudden 
expansion, narrowing, etc.) show that the particles near the 
stationary walls perform a decelerating motion, and the par-
ticles near the axis gain acceleration and perform an acceler-
ating motion. Due to these two phenomena, a rearrangement 
of the velocity field occurs at the transition sites, resulting in 

a change in the velocity distribution pattern. The transition 
zone is the zone following the inlet cut, where the velocity 
distribution pattern of the incoming fluid is rearranged to 
the velocity distribution pattern of the stabilized closed 
bed zone. The accuracy of the results of the inspection of 
the transition site of the entrance cut is determined by the 
problems of the precise construction of the fluid channels of 
the machinery, which can provide guarantees for the clear 
and stable operation of the control and regulation systems. 
In this regard, the discussed problem is topical and has an 
important practical significance.

The most important problem of fluid movement research 
is the construction of a mathematical model of the given 
physical phenomenon, the results of which determine the 
applicability limits of the selected calculation method. It 
is very important that the built model more accurately de-
scribes the ongoing hydromechanical phenomena and, at the 
same time, provides the possibility of obtaining analytical 
solutions.

The investigation of turbulent stationary motion in the 
transition areas of pressurized fluid channels is one of the 
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This paper investigates the structural changes in the 
turbulent motion of an incompressible fluid in the hydro-
dynamic entrance region of plane-parallel pressure 
motion. Movement in pressure hydromechanical sys-
tems usually occurs in a turbulent regime. Studying the 
patterns of changes in hydrodynamic parameters under 
conditions of stationary turbulent pressure motion in the 
inlet region is a very urgent task. The study was carried 
out on the basis of boundary layer equations. Taking 
into account the dependence of changes in the kine-
matic viscosity coefficient that occur between layers of 
fluid, a boundary value problem was formed. Analytical 
solutions have been obtained that make it possible to 
obtain patterns of changes in velocity and pressure in 
any effective flow section. Based on the general conclu-
sions of the study, solutions were found for two cases: 

a) the velocity of the fluid entering the cylindrical 
pipe is constant;

b) the velocity of the incoming fluid has a parabol-
ic distribution.

For these cases, using computer analysis of the data 
obtained, general graphs of velocity changes were con-
structed in various sections along the hydrodynam-
ic entrance region. These graphs, which display the 
change in velocity along the entire length of the inlet, 
make it possible to obtain the velocity of fluid move-
ment at any point along the inlet length and estimate the 
length of the transition zone. The results obtained are 
among the least studied issues of classical fluid mechan-
ics and are of important theoretical interest. The results 
obtained are applicable for the correct construction of 
the hydrodynamic entrance region of machinery. A cal-
culation formula has been obtained to determine the 
length of the hydrodynamic inlet region
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main ways to improve the structures of machine tools. The 
precise and stable operation of the management and regula-
tion systems depends on the accuracy of the research results.

The study of turbulent stationary hydromechanical phe-
nomena in the transition areas of pressure pipes is one of 
the most complex problems of hydromechanics, where the 
change of quantities, in addition to time, also depends on the 
coordinates of the point. Therefore, studies to identify pat-
terns of changes in the hydrodynamic parameters in case of a 
turbulent plane-parallel flow in the hydrodynamic entrance 
region are relevant.

2. Literature review and problem statement

Studies of hydrodynamic phenomena in the transition 
area of the inlet shear were mainly carried out under condi-
tions of laminar motion. Many theoretical and approximate 
calculation methods have been developed. At the base of 
each calculation method are conclusions about the nature of 
the movement, with which theoretical research and a sum-
mary of the results are carried out. 

In work [1], the problem of laminar flow of a viscous 
incompressible fluid at the inlet section of a plane-parallel 
pressure motion is considered. The problem is solved with 
the help of integration of approximating Navier-Stokes 
equations at constantly distributed inlet velocities. Accord-
ing to the results of the study, the regularities of velocity 
and pressure changes along the transitional section were 
revealed. However, the solutions obtained are not acceptable 
for turbulent flows.

The study of the patterns of change in the hydrodynamic 
parameters under the conditions of non-stationary flow at 
the entry of the cylindrical pipe and the initial arbitrary 
distribution of velocities in the entry section was conducted 
based on the boundary layer equations [2]. The change of 
hydrodynamic parameters of the flow also occurs on the 
sections of the sudden expansion of the live section. Con-
ducted research [3] regularity of changes in hydrodynamic 
parameters in the area of sudden expansion of the live section 
of the plane-parallel pressure movement based on the equa-
tions of the boundary layer. A method [4] of identifying the 
regularities of changes in hydrodynamic parameters of the 
flow at the transition section is developed, which allows to 
obtain a velocity profile in any cross section based on the re-
sults of the deformation of the velocity fields under common 
initial and boundary conditions. These works investigated 
the patterns of changes in the hydrodynamic parameters of 
a viscous fluid during laminar motion, which narrows the 
scope of their application.

In work [5], the problem of pulsating flow of a viscous 
fluid at the inlet of a round pipe was solved on the basis of 
approximate equations. A comparison of the results of theo-
retical and experimental studies of the pulsation motion of a 
viscous fluid is given in [6].

The problem of the entrance section of a round pipe with 
a suddenly applied velocity at the entrance of the pipe was 
solved in [7] with the help of the hypothesis of self-modeling 
of the velocity profiles in the boundary layer and the impulse 
equation. A similar problem for the suddenly applied velocity 
at the inlet at small Reynolds numbers was solved by numer-
ical integration of the Navier-Stokes equation in work [8]. 
In conditions of periodic disturbance, a thin boundary layer 
at the inlet of a round pipe was investigated with the help of 

linear approximations. However, the boundary layer is consid-
ered on a flat plate, which reduces the accuracy of the results.

In work [9], the problem of laminar unsteady flow of 
a viscous fluid in axisymmetric pipes based on changes in 
viscosity and pressure gradient is considered. The proposed 
method and obtained solutions reveal regularities of hydro-
dynamic flow parameters taking into account viscosity vari-
ability and can be applied, in particular, to Newtonian fluid. 
The proposed methodology and obtained solutions allow to 
reveal regularities of hydrodynamic flow parameters taking 
into account viscosity variability, in particular, it can also be 
applied to Newtonian fluid [10].

In work [11], an analytical solution to the equation of mo-
tion for unsteady motion of fluid in round pipes is presented, 
in which an arbitrary change in kinematic viscosity in time 
is allowed. Velocity and flow are expressed in the form of 
a series of Bessel and Kelvin functions of a radial variable, 
while the dependence on time is expressed in the form of a 
Fourier series. Analytical solution for velocity is compared 
with direct numerical solution of equation of motion.

Gradual increase in flow rate causes non-periodic 
non-stationary flow. Analysis of flow stability depending on 
the ratio of the current flow to the established laminar flow 
is carried out in work [12]. As a result, the conditions for 
the stability of the unsteady flow in the pipe are obtained. 
The mentioned researches are mainly related to the inter-
pretation of the phenomena taking place at the entrance of 
the pipe. However, hydrodynamic parameter rearrangement 
phenomena also occur in other transition sites of the pipe, on 
which researches are scarce. At the site of sudden expansion 
of the cut (D/d=4). the flow lines were constructed by nu-
merical integration of the flow equations of the plastic fluid, 
the velocity and pressure changes in the axial direction were 
determined [13]. Under conditions of sudden, symmetric and 
asymmetric expansion of the shear, quantitative estimates of 
members of the Nave-Stokes equations were carried out, and 
the resulting nonlinear inhomogeneous differential equa-
tions were integrated numerically [14]. The results of the 
analysis were compared with the results of the experiments. 
Remarkable experimental studies in the region of sudden 
shear dilatation were performed in [15]. For that purpose, 
a test rig was built and the sites of sudden shear expansion 
were tested for the cases d/D=0.22;0.5;0.85. The investiga-
tions were carried out under Newtonian and non-Newtonian 
fluid conditions.

In stationary motion conditions, the patterns of viscous 
fluid motion in the transition area of the plane parallel 
motion inlet shear, with general boundary conditions, were 
studied [16]. Velocity and pressure change patterns were 
obtained, graphs of their change were constructed, and 
the length of the transition area was determined. However, 
the movement of the fluid in the transition areas is often 
non-stationary, so the study of the mentioned problem under 
the conditions of non-stationary motion is important, which 
has important practical significance.

Taking into account the dependence of turbulent stresses 
on a stationary wall, a study was carried out to identify the 
structural state of an incompressible flow [17]. In [18], an 
experimental study was carried out to identify the velocity 
component normal to the wall. It was revealed that not all 
values of turbulent stresses lead to an asymptotic state of 
velocities towards a stationary wall. In [19], an analysis of 
the study of the transition period and turbulence over the 
past thirty years is presented. Despite best efforts, some in-
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evitable omissions will continue to be explored as turbulence 
research deepens. The influence of the pressure gradient on 
the universal logarithmic law that determines the average 
velocity profile was studied in [20].

Based on the results of a literature review on the study 
of the input region of plane-parallel pressure motion, it was 
revealed that the change in the viscosity coefficient is not 
taken into account. This formulation of the problem makes it 
necessary to study the input region, where the movement is 
laminar. However, the study of the input region of plane-par-
allel turbulent pressure motion requires taking into account 
the change in the viscosity coefficient.

Based on the results of the study, it is necessary to reveal 
the behavior of hydrodynamic parameters’ change in the 
transition region in case of turbulent pressure flow and de-
velop a method of hydraulic calculation of the entrance area 
of plane-parallel channels.

3. The aim and objectives of the study

The aim of the study is to reveal regularities of changes 
in the hydrodynamic parameters of a viscous fluid at the 
entrance region of the plane-parallel pressure motion during 
stationary turbulent motions of incompressible fluid. This 
will make it possible to correctly design plane-parallel hy-
draulic channels of various mechanisms and machines.

To achieve this aim, the following objectives are accom-
plished:

– to formulate the boundary value problem and deter-
mine the initial and boundary conditions and develop a 
method for solving the boundary value problem and reveal 
the regularity of changes in the hydrodynamic parameters 
of the turbulent stationary flow of a viscous fluid at the inlet 
section of the plane-parallel pressure motion;

– to plot graphs of axial velocity change along the length 
of the entrance region and identify the conditions for deter-
mining the length of the inlet section of the plane-parallel 
thrust movement in stationary turbulent flow.

4. Materials and methods

4. 1. Object and hypothesis of the study
The object of study is the hydrodynamic entrance region 

of plane-parallel pressure flow.
The main hypothesis of the study is that the coefficient 

of turbulent viscosity is taking into account according to 
the Boussinesq hypothesis. Thus, the turbulent viscosity 
coefficient change was taken into consideration in studying 
structural changes in turbulent plane-parallel flow. 

The turbulent motion of an incompressible fluid at the 
entrance region of a flat channel has been studied. The stud-
ies were carried out on the basis of simplified Navier-Stokes 
equations taking into account the coefficient of turbulent 
viscosity. A boundary value problem has been formulated 
and an integration technique has been developed. To obtain 
numerical results, computer calculations were carried out.

4. 2. Choosing a calculation scheme
The tangential stresses arising in the turbulent flow are 

determined by the kinematic coefficient of turbulent viscos-
ity. According to Boussinesq [22], the kinematic coefficient 
of viscosity is directly proportional to the distance from the 

stationary wall (Fig. 1). In this case, the turbulent tangen-
tial stresses are determined by the following formula:

,
du
dy

τ = −ρε  				      	  (1)

where ε is the kinematic coefficient of turbulent viscosity, 
which is directly proportional to the distance from the sta-
tionary wall [23]:

,nyε = 					     (2)

where n is a ratio coefficient that has a velocity dimensionality.

In the transition region, the velocity of the particle 
changes in two directions: in the direction of the oz axis of 
motion and in the direction of the oy axis perpendicular to 
the axis of motion. Therefore, the average velocity of the 
turbulent current in the transition area depends on the z and 
y coordinates of the point: To solve the problem, the velocity 
distribution pattern in the inlet section is given in the form 
of an arbitrary function: U=φ(y).

The mathematical model of the problem leads to the inte-
gration of the boundary layer equations [23].

But for the boundary layer integration of equations 
obtained by due to the presence of a non-linear term is as-
sociated with certain mathematical complications, so linear 
approximation was made [1] after which the differential 
equation of motion takes the following form:

1 1
,o

u P
U

z z y
∂ ∂ ∂τ
⋅ = − +
∂ ρ ∂ ρ ∂

				     (3)

where y coordinate is calculated from the fixed wall of the pipe.
Taking into account relations (1), (2), the last equation 

will take the following form:

2

2

1
,o

u P u u
U n y

z z y y

 ∂ ∂ ∂ ∂
⋅ = − − + ∂ ρ ∂ ∂ 

 			  (4)

0 .y h≤ ≤

The boundary conditions of eq. (4) integration will be:

( ),0 0,u z =  ( ) ( )0, | .u y y= φ  			   (5)

The equation of indivisibility in this case will be:

0,
u u
z y
∂ ∂

+ =
∂ ∂

					     (6)

where U0 is the characteristic velocity of the section, 
which is equal to the average velocity of the effective 
cross-section:

Fig. 1. Entrance length study scheme
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( )
0

1
d .

h

oU y y
h

+

= φ∫ 				    (7)

It is assumed that the constant change in pressure gra-
dient depends only on the z coordinate of the path. It means 
that the pressures at all points of the live section have the 
same values, therefore:

( )1
.f z

z
∂Ρ

− =
ρ ∂

				    (8)

Considering eq. (8), eq. (4) will take the following form:

( )
2

2
.

yo

u u u
U f z n y

z y

 ∂ ∂ ∂
= − + ∂ ∂ ∂ 

			   (9)

The boundary conditions of eq. (9) integration will be:

( ),0 0,u z =  ( ) ( )0, | ,u y y= φ 		   (10)

,u u′→  when ,z →∞

where u’ is the averaged velocity of the turbulent motion at 
the point in the stabilized region.

In the stabilized region 0,
u
z
∂

=
∂

 and u’ velocity will be 

determined from the following equation:

2

2

1
,

u u
n y

z y y

 ′ ′ ∂Ρ ∂ ∂
= − + ρ ∂ ∂ ∂ 

			   (11)

and the tangential stresses will depend on the change in 
pressure as follows:

.
z y∗

∂Ρ ∂τ
=

∂ ∂
					     (12)

The gradient of pressure change in the direction of 
movement in a stabilized turbulent flow remains constant, 
therefore from equation (12) it is possible to get that the tan-
gential stresses in the live section are distributed according 
to the linear law, therefore:

0 0 ,
y h y
h h

∗ −
τ = τ = τ 				    (13)

where τ0 is the tangential stress on the fixed wall.
From (1), (2) and (11) let’s get the velocity distribution 

pattern in the effective cross-section in the established tur-
bulent flow [22]:

( )
2

ln ,
U

u h y y C
n h

∗′ = ⋅ − +
⋅

		   (14)

where y is the distance of the point from the fixed wall (Fig. 1), 
U* is the dynamic velocity near the stationary wall:

.o h
U

z∗

τ ∂Ρ
= = ⋅

ρ ∂ ρ

The integration constant C needs to be determined from 
the velocity condition of the fluid moving on a stationary 
wall, where the particles stick to the wall due to the vis-
cosity of the fluid and are stationary. However, from the 

logarithmic law of velocity distribution (14) it follows that 
the velocity near the stationary wall must be infinitely large, 
which does not correspond to reality. Therefore, the value of 
the integration constant C is determined not from the con-
dition of a stationary wall, where the velocity due to particle 
adhesion is equal to zero, but from the condition of being at a 
certain distance from the wall, where the laminar boundary 
layer existing near the wall transitions to a turbulent bound-
ary layer. Therefore, the value of the integration constant 
C is determined at some distance from the wall under the 
condition that the laminar and turbulent tangential stresses 
are equal [22].

Eq. (14) can be transformed into the following form:

ln .
u y y

A C
U h h∗

′  = − +  
			   (15)

This logarithmic law of velocity distribution contains 
two constant coefficients, the values of which are deter-
mined experimentally [23]. The value of coefficient A does 
not depend on the properties of the stationary wall, its type 
of roughness, but depends on the degree of turbulence.

Let’s import dimensionless variables:

( )
0

, ,
u

U z y
U

=  
0

,
P

P
P

=  ,
y

x
h
=  .

z
h
= σ 	  (16)

(9) will take the following form:

( )
2

2
0

.
U n U U

f x
U x x

 ∂ ∂ ∂
= − σ − + ∂σ ∂ ∂ 

	   (17)

The boundary conditions for the integration of the equa-
tion (17) will be:

( ),0 0,U σ =  0,σ >

( ) ( )0, ,U x x= φ  0 1.x≤ ≤ 			   (18)

Let’s look for the solution of the eq. (17) in the form of 
two additions, the first of which takes into account the in-
fluence of the pressure change and the initial distribution of 
velocities in the inlet section, and the second is the change of 
the velocity in the stabilized area from the pressure gradient:

( ) ( ) ( )1, , ,U x U x u x′σ = σ + 			   (19)

where U1(σ, x) is the partial solution of the inhomogeneous 
differential equation in the case of boundary conditions, and 
( )u x′  is determined by eq. (15):

( )
2

1 1 1
2

0

.
U U Un

f x
U x x

 ∂ ∂ ∂
= − σ − + ∂σ ∂ ∂ 

		  (20)

Let’s look for the general solution of eq. (20) in the form 
of a sum:

( ) ( ) ( )1 1
1

, ,k k
k

U x C J x
∞

=

σ = σ ⋅ λ∑  			   (21)

where Ck(σ) are the unknown coefficients depending on 
the variable, ( )1 kJ xλ  are the Bessel functions of the first 

order of the first genus, λk (k=1, 2…) are the systematic con-
stant coefficients to be determined.
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Eq. (21) is the general solution of the inhomoge-
neous eq. (20). The eigenvalues of the equation are deter-
mined from the condition that at the center of plane parallel 
motion, which is the axis of symmetry of the range of motion, 

the velocity has a maximum value, therefore 
( )

1

,
0,

x

U x

x
=

∂ σ
=

∂
  

as a result of which, from eq. (21), let’s get the characteristic 
equation of the problem ( )1 0,kJ ′ λ =  the positive roots λk of 
which will be the eigenvalues. 

Eq. (21) satisfies all boundary conditions of eq. (20). To 
determine the unknown Ck(σ) coefficients, the value of the 
function U1 (σ, x) is substituted from eq. (21) into eq. (20):

( ) ( )

( ) ( ) ( ) ( )

1
1

2
1 1

10

.

k k
k

k k k k
k

C J x

n
f C xJ x J x

U

∞

=

∞

=

′ σ ⋅ λ =

 ′′ ′= σ − σ ⋅ λ λ + λ 

∑

∑ 	 (22)

Taking into account that [24]:

( ) ( ) ( )2
1 1 12

1 1
1 ,

4k k k k
k

xJ x J x J x
x

 
′′ ′λ λ + λ = − − λ 

λ 
 	 (23)

will get:

( ) ( )

( ) ( ) ( )

1
1

12
10

1 1
1 .

4

k k
k

k k
k k

C J x

n
f C J x

U x

∞

=

∞

=

′ σ ⋅ λ =

 
= σ − σ ⋅ − λ 

λ 

∑

∑  	 (24) 

Considering eq. (15), (21), the general solution of the 
problem will be:

( ) ( ) ( ) [ ]1
1

, ln ,k k
k

U x C J x AU x x B
∞

∗
=

σ = σ ⋅ λ + − +∑ . 	 (25)

To determine the values of the Ck(σ) coefficient, the solu-
tion of eq. (25) is substituted into the eq. (17) and there is:

( ) ( )

( ) ( ) ( )

1
1

12
10

0

1 1
1

4

.

k k
k

k k
k k

C J x

n
f C J x

U x

nAU
U

∞

=

∞

=

∗

′ σ ⋅ λ =

 
= σ − σ ⋅ − λ − 

λ 

−

∑

∑

  	 (26) 

The term ( ) ( )
0

nAU
F f

U
∗σ = σ −  of eq. (26) is transformed 

into a series according to the eigenfunctions:

( ) ( ) ( )1
1

,k k
k

F a J x
∞

=

σ = σ λ∑ 			   (27)

as a result of which eq. (26) will take the following form:

( ) ( ) ( ) ( )

( ) ( )

1 1
1 1

2 2
12

10

1
1 .

4

k k k k
k k

k k k
k k

C J x a J x

n
C J x

U x

∞ ∞

= =

∞

=

′ σ ⋅ λ = σ λ −

 
− σ ⋅ − λ λ 

λ 

∑ ∑

∑  		 (28)

Multiplying both sides of eq. (28) by ( )1 mJ x dxλ  and 
integrating in [0; 1} interval and taking into consideration 
the orthogonality condition [24] of eigenfunctions:

( ) ( )

( ) ( )

1

1 1

1 2
2 2
1 12

0

d

0 ,

1
d , ,

k m
o

k
k k

k

J x J x x

n k m

J x x J n k m

λ ⋅ λ =

µ ≠
= λ − λ = λ µ = λ

∫

∫









	 (29)

there is:

( ) ( ) ( )
( ) ( )

( )
2

2

2 2
0 1

.
4 1

k k
k k k

k k

Ln
a C C

U J

λ λ
′σ = σ + σ

λ − λ
		  (30)

Denoting 
0

,
4

n
U

α =  
( )

( ) ( )

2
2

2 2
11

k k
k

k k

L

J

λ λ
β =

λ − λ
 eq. (30) can be 

transformed as:

( ) ( ) ( ).k k k kC C a′ σ +αβ σ = σ  		    (31)

Since:

( ) ( )

( ) ( )

1 1
2

2 12
0 0

4 2 2
14

1
1 d

1
1 ,

k k
k

k k k
k

L J x x
x

J

 
λ = − λ = 

λ 

 = λ + λ −λ λ

∫ ∫

  		  (32)

and get:

( ) ( )
( ) ( )

4 2 2
1

2 2 2
1

1
.

1
k k k

k

k k k

J

J

λ + λ −λ
β =

λ λ − λ
  			   (33)

Solution of eq. (31) according to [4] will be:

( ) ( ) ( ) ( )

( )
0

exp exp d

exp .

k k k k

k k

C a

C

σ

σ = −αβ σ τ αβ τ τ+

+ −αβ σ

∫
 		 (34)

( )ka τ  coefficients are determined from eq. (27):

( ) ( ) ( ) ( )
1 2

2
1 12

0

1
d ,k

k k k
k

F J x x J a
λ −

σ λ = λ σ
λ∫   		  (35)

from which:

( ) ( ) ( )
( ) ( )

2
1

2 2
1

,
1

k k
k

k k

L F
a

J

λ λ σ
σ =

λ − λ
				   (36)

where: 

( ) ( )
1

1 1
0

d .k kL J x xλ = λ∫

Having the values of the ak coefficients, let’s get the val-
ues of the Ck(σ) coefficients from eq. (34):

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

2
1

2 2
1

0

exp
1

exp d exp .

k k
k k

k k

k k k

L
C

J

F C
σ

λ λ
σ = −αβ σ ×

λ − λ

× αβ τ σ τ+ −αβ σ∫  		  (37)

When ( ) 0 const,f Cσ = =  then:
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( ) 0 0
0

const
nAU

F C B
U

∗σ = − = = ,

therefore:

( ) ( )

( ) ( )( )
0

0
0

0

exp d

exp d exp 1 .

k

k k
k

F

B
B

σ

σ

αβ τ σ τ =

= αβ τ τ = αβ σ −
αβ

∫

∫

Substituting the value of the last expression into eq. (37):

( ) ( )
( ) ( )

( )( )

( )

2
0 1

2 2
1

1 exp
1

exp .

k k
k k

k k k

k k

B L
C

J

C

λ λ
σ = − −αβ σ +

αβ λ − λ

+ −αβ σ  	 (38)

Substituting these values of Ck(σ) coefficients into eq. (25), 
let’s get the solution of the problem:

( )
( )

( ) ( )
( )( )

( )

( ) [ ]

2
0 1

2 2
1

1

1

,

1 exp
1

exp

ln .

k k
k

k k k
k

k k

k

U x

B L

J

C

J x AU x x B

∞

=

∗

σ =

 λ λ
− −αβ σ +  αβ λ − λ= × 

 
+ −αβ σ  

× λ + − +

∑

 	 (39)

The values of the Ck coefficients are determined from the 
boundary condition (18) U0(0,x)=φ(x) therefore:

( ) ( ) [ ]1
1

ln .k k
k

x C J x AU x x B
∞

∗
=

φ = λ + − +∑ 	 (40)

Multiplying both sides of the above equation by 

( )1 kJ xλ  and integrating in [0;1] interval:

( ) ( ) ( )

( ) ( )

1 2
2

1 2
0

1

1
0

1
d

ln d ,

k
k k k k

k

k

x J x x J C

AU x x B J x x∗

λ −
φ λ = λ +

λ

 + − + λ 

∫

∫

from this:

( )
( ) ( )

( ) ( )
( ) ( )

2 2 2
3 0 1

2 2 2 2
.

1 1
k k k k k k

k

k k k k k k

L AU L B L
C

J J
∗

 λ λ λ λ + λ λ
 = −

λ − λ λ − λ  
 	 (41)

Substituting this value of the coefficient in eq. (39):

( )
( ) ( )( )

( )
( )

( )
( )

( )
( ) ( )

[ ]

0 1

1 0

3

1

2
1

2 2
1

,

1 exp

exp

ln ,
1

k
k

k

k k

k k

k

k k

k k

U x

B L

AU L
L

BL

J x
AU x x B

J

∞

= ∗

∗

σ =

 λ
− −αβ σ + αβ 

= ×   λ +  λ − −αβ σ  + λ     

λ λ
× + − +
λ − λ

∑

	 (42)

where:

( ) ( )
1

0 1
0

ln d .kL x x J x x= − λ∫   			   (43)

This regularity of velocity variation in the entrance tran-
sition area makes it possible to obtain the variation of veloc-
ities according to the section and according to the length in 
any section of the transition area.

5. Research results of structural changes in the 
hydrodynamic parameters of a turbulent flow at the 
entrance region of a plane-parallel pressure motion 

5. 1. Results of the decision on structural studies of 
the initial section of plane-parallel pressure motion

Having a general solution to the problem, now let’s 
consider the following specific cases, the first case, when  
( ) 0 const,F Bσ = = ( ) 0 const,x Aφ = =  then:

( )
( ) ( )( )

( )
( )

( )

( )
( ) ( )

[ ]

0 1

1 0

0 1

1

2
1

2 2
1

,

1 exp

exp

ln ,
1

k
k

k

k k

k

k

k k

k k

U x

B L

AU L
A L

BL

J x
AU x x B

J

∞

= ∗

∗

σ =

 λ
− −αβ σ + αβ  = ×    λ +   − −αβ σ    + λ      

λ λ
× + − +
λ − λ

∑

    	 (44)

the second case, when ( ) 0 const,F Bσ = =  ( ) 2
0x A xφ =  therefore:

( ) ( ) ( )

( ) ( )
( ) ( )

1
20

12 2
0

0 1

2 2

d
1

.
1

k
k k

k k k

k k

k k k

A
C x J x x

J

AU L BL

J
∗

λ
= λ −

λ − λ

 λ + λ
 −

λ − λ  

∫

		  (45)

Since:

( )
1

2
4 1

0

2

d

1 2 9
, 2, , ,

7 7 2 4

k

k
k

L x J x x

F

= λ =

 λ   = − λ    
    

∫

there is:

( )
( ) ( )( )

( )
( )

( )

( )
( ) ( )

[ ]

0 1

1 0

0 4

1

2
1

2 2
1

,

1 exp

exp

ln .
1

k
k

k

k k

k

k

k k

k k

U x

B L

AU L
A L

BL

J x
AU x x B

J

∞

= ∗

∗

σ =

 λ
− −αβ σ + αβ  = ×    λ +   − −αβ σ    + λ      

λ λ
× + − +
λ − λ

∑

	 (46)

Based on the results of the boundary value problem 
integration, regularities of changes in the hydrodynamic 
parameters of the incompressible fluid in the entrance region 
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of plane-parallel pressure flow (44), (46) were obtained. Nu-
merical calculations were performed and graphs of changes 
in axial velocities along the cross-section and along the 
length of the entrance region were plotted.

5. 2. Plotting of the graphs of changes in the turbulent 
flow’s hydrodynamic parameters in the entrance region

5. 2. 1. Graphs of structural changes in the hydrody-
namic parameters of a turbulent flow at the inlet section of 
plane-parallel pressure motion taking place in the first case

To visualize the patterns of changes in axial velocity 
along the cross section and along the length of the transition 
section, depending on the initial distribution of velocities, 
graphs of their changes were constructed. 

Graphs (Fig. 2, 3) of structural changes at the entrance 
region of the pressure turbulent flow at F(ϭ)=B0=const, 
φ(x)=A0=const have been plotted following the eq. (44).

From graphs shown in Fig. 2, 3 the length of the hydro-
dynamic entrance, where occurs redistribution of velocity, is 
obtained σ=2.3 and z=2.3h. 

5. 2. 2. Graphs of structural changes in the hydrody-
namic parameters of a turbulent flow at the inlet section 
of plane-parallel pressure motion taking place in the 
second case

Graphs (Fig. 4, 5) of structural changes at the entrance 
region of the pressure turbulent flow at F(ϭ)=B0=const, 
φ(x)=Ax2 have been plotted following the eq. (46).

The hydrodynamic entrance length according to 
graphs (Fig. 4, 5) of parabolic distribution of initial velocities 
in the hydrodynamic entrance region will be σ=1.2 and z=1.2h. 

6. Discussion of the research results on structural changes 
in hydrodynamic parameters in the hydrodynamic entrance 

region of plane-parallel pressure motion

The peculiarity of the study is that it takes into account 
changes in the coefficient of turbulent viscosity depending 
on the distance of the fixed wall. Based on the results of the 
research obtained, it is possible to correctly design similar 
channels of various hydromechanical equipment. 

The accuracy of the correspondence between the calcu-
lated data and the field data depends on the accuracy of the 
hypothesis of taking into account the coefficient of turbulent 
viscosity. The proposed solution corresponds to the hypothesis 
of turbulent viscosity varying linearly with the distance of the 
stationary wall. In this case, the calculated data can provide 
an exact coincidence with the field data at Reynolds number 
up to 20.000, which is a limitation of its applicability. Further 
improvement of this study is associated with clarifying the 
calculated dependence of turbulent shear stress on coordinates. 
However, when refining the calculated dependence, one must 
proceed from the assumption that the formulated boundary 
value problem can be integrated and the regularities of struc-
tural changes in hydrodynamic parameters can be obtained.

Fig. 2. Variation of axial velocities in the transversal cross-
section (x) along the length (σ) and the hydrodynamic 

entrance region when AU*=0.01; φ(х)=A0=1; B0=25; α=5

Fig. 3. Variation of axial velocities along (σ) of the hydrodynamic 
entrance length when AU*=0.01; A0=1; B0=5; α=1

Fig. 4. Variation of axial velocities in the transversal cross-
section (x) along the length (σ) and the hydrodynamic entrance 

region when AU*=0.1; φ(х)=A0х2; A0=1; B0=2.5; α=2

Fig. 5. Variation of axial velocities along (σ) of the 
hydrodynamic entrance length when AU*=0.1; φ(х)=A0x2; 

A0=1; B0=2,5; α=2
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A boundary value problem of turbulent plane-parallel 
pressure fluid motion, which has great practical significance, 
has been formulated. As a result of solving the boundary value 
problem, formulas for the distribution of axial velocities and 
pressure along the length of the inlet section of plane-parallel 
pressure motion during turbulent flow of a viscous incompress-
ible fluid were obtained. The studies were carried out with a 
uniform and parabolic velocity distribution at the inlet sections.

Graphs constructed by computer calculation using formu-
las (44), (46) demonstrate the development of the process at 
the inlet section of plane-parallel pressure motion. Analysis 
of the results of the numerical calculation and the resulting 
graphs (Fig. 2–5) showed that the degree of development of 
the process depends on the pressure gradient and the initial 
velocity distribution in the inlet section. The flow of a viscous 
fluid in the inlet transition section under turbulent motion is 
unstable. The shape of the velocity distribution diagrams at 
each fixed section is stable. It changes along the length of the 
transition section (Fig. 2–5) due to the deformation of the 
distribution diagrams and the influence of the pressure gra-
dient. Outside the transition section, the velocity distribution 
diagrams remain unchanged. The study of the development of 
viscous fluid flow in the inlet region of plane-parallel pressure 
motion was carried out using the Boussinesq hypothesis on 
the distribution of turbulent shear stresses.

Based on the integration results, approximate results were 
obtained. However, the accuracy of integrating results in engi-
neering calculations is quite sufficient. The results of this study 
can contribute to improving the design changes in the transition 
sections of hydraulic systems of various mechanisms and ma-
chines, which will lead to an increase in their reliable operation.

Based on the relevance of the problem, further development 
is associated with clarifying the length of the transition section 
and design changes in the input area of the cylindrical channel. 
Analysis of the results of the numerical calculation and the re-
sulting graphs determined the length of the input section. The 
condition of the input region is the coincidence of the numerical 
values of the velocities at each fixed point of the section.

The deviation of axial velocities in the transition section 
at y=1 should not exceed 1 % of the unsteady velocity of the 
stabilized section. Based on this condition, the length of the 
transition section was obtained, which has important practi-
cal applications in the design of various hydraulic automation 
systems. The length of the hydrodynamic entrance region in 
the case of a uniform distribution of velocity in the inlet sec-
tions is z=2.3h. This indicator in case of laminar movement is 
z=0.103hRe, which indicates a strict reduction in the length of 
the transition region.

This study was carried out on the basis of the Boussinesq 
hypothesis about the kinematic coefficient of turbulent viscos-
ity, which is acceptable at the Reynolds number Re≤20000. 
This limitation narrows the applicability of this study results.

The disadvantage of this study is related to the limited 
scope of application of the accepted kinematic coefficient of 
turbulent viscosity.

Improvement of this study is associated with clarifying 
the dependence of the kinematic coefficient of turbulent 

viscosity on the point location, which is acceptable under 
developed turbulent conditions.

7. Conclusions 

1. As a result of solving the formulated boundary val-
ue problem, patterns of structural changes in a turbulent 
plane-parallel flow were revealed, in particular patterns of 
changes in axial velocities and pressure along the length of 
the inlet section, with uniform and parabolic distributions 
of initial velocity values. The peculiarity of this study is that 
the connection between the coefficient of turbulent kinemat-
ic viscosity and the distance of the stationary channel wall 
is taken into account. The obtained patterns of structural 
parameters of the flow along the length of the inlet section 
make it possible to identify the nature of the movement.

2. Graphs of changes in dimensionless hydrodynamic 
parameters of the flow were constructed for uniform and 
parabolic distributions of initial velocities at the entrance 
to the pipe. The results obtained make it possible to identify 
the influence of pipe and fluid parameters on changes in the 
parameters of the initial section. Thanks to the universality of 
the obtained graphs, it is possible to draw a conclusion about 
the nature and degree of change in hydrodynamic parameters 
at the entrance region of turbulent plane-parallel pressure 
flow. The length of the hydrodynamic entrance region was 
determined for a uniform (z=2.3h) and parabolic (z=1.2h) dis-
tribution of initial velocities, which is important information 
when designing entrance region of pressure hydraulic systems 
depending on the regime of flow. The correct design of a hy-
draulic system guarantees controlled flow regime. 
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