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1. Introduction

Modern rolling I-beams with parallel faces of the flanges, 
including wide flanges, up to 1 m high, provide the ability to 
cover spans of 13...15 m in the presence of significant loads. 
The specific labor intensity of their production in terms of 
basic operations is 2...2.5 times lower than in similar trusses. 
However, material consumption is 1.5 times higher than in 
trusses.

As a result of the search for ways to increase the efficiency 
of rolled I-beams, an original structural form occurred ‒ an 
I-beam with holes in the web, in which the material is con-
centrated closer to the flanges. In the technical literature, 
it received several names ‒ I-beam with a perforated web, 
I-beam with a developed section, lattice I-beam. Hereafter, 
we shall use the term “castellated beams”, which is used in 
design standards, in particular, DBN V.2.6-198:2014 “Steel 
structures. Design norms”.

The effectiveness of the castellated beam compared to 
the original I-beam is explained by the fact that its height 

is approximately 1.4...1.5 times greater, the web thickness 
is 1/75...1/95 of the height. Castellated beams provide 
20...30 % material savings compared to rolled I-beams and 
are cheaper by 10...18 %. They are 25‒35 % more efficient 
than welded I-beams due to the reduction in processing op-
erations and the amount of welding [1].

Castellated beams made of two steel grades are lighter 
by 34‒39 % and cheaper by 16‒20 % compared to hot-rolled 
I-beams with solid web made of one steel grade, with the 
same load-carrying capacity. These positive qualities com-
bined with compactness, transportability, and the possibility 
of using highly automated manufacturing make them com-
petitive even compared to lattice structures [2, 3].

On the one hand, increasing the load-carrying capacity 
of the beam for bending requires developing the cross-section 
of the beam in height as much as possible by forming holes 
in the beam (hexagonal cutouts) of the largest possible size. 
However, too large holes in the beam web lead to premature 
exhaustion of its bearing capacity under the condition of 
ensuring strength under normal stresses at the design points 
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The object of this study is a castellated beam, in 
which the web openings have the shape of a regular hexa-
gon. The beam is examined to find optimal cross-sec-
tional dimensions. The optimization task is stated as the 
task of finding the optimal profile numbers for top and 
bottom Tees of the beam and the optimal width of the 
web opening while ensuring the required load-carrying 
capacity of the beam. Minimization of the volume of the 
beam material was considered as an optimality criteri-
on. The stated optimization problem was solved using 
the exhaustive search method. For an assortment of 
normal I-beams with parallel flanges, castellated beams 
were obtained with optimal cross-sectional dimensions 
depending on the steel grade, the beam span, and the 
magnitude of transverse uniformly distributed load. 
The optimization calculations proved that it was possi-
ble to increase the elastic section modulus of the beam 
to 35.48...50 % through the use of a castellated web. 
Castellated beams with optimal cross-sectional dimen-
sions at the same load-carrying capacity are character-
ized by lower steel consumption (up to 23.19 %) com-
pared to I-beams with a solid web. Analysis of the results 
has made it possible to devise recommendations for the 
optimal distribution of material in the cross-sections of 
such beams. The results are valid only for the assort-
ment of normal I-beam profiles and only for the case of 
uniformly distributed load acting on the beam when the 
compressed beam flange is laterally restrained from the 
bending plane and the beam web has openings in the 
form of regular hexagons. It is under such conditions 
that the reported results can be implemented in practice 
both at the stage of selecting cross-sections of the stud-
ied class of structures, and at the development of effec-
tive assortments of castellated beams
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at the top and bottom of the hole. At the same time, normal 
stresses occur in the extreme fibers of the cross-section of 
the beam, which are much smaller than the yield strength of 
steel. With this in mind, scientific research into the optimal 
design of castellated beam structures is considered rele-
vant. Since castellated beams actually expand the scope of 
application of hot-rolled I-beam profiles, the results of such 
studies will be demanded by manufacturers of such profiles.

2. Literature review and problem statement

Applied tasks of optimal design of building structures 
are often stated as problems of searching for unknown pa-
rameters of the structure, which ensure the extreme value 
of the determined optimality criterion in the search space 
delineated by a set of given constraints. The mathematical 
model of parametric optimization problems includes a set 
of design variables, an objective function, as well as con-
straints, which in general reflect nonlinear relationships 
between them [4].

A large body of research tackles the problem of finding 
the optimal dimensions of cross-sections of castellated 
beams [5, 6]. As part of the design variables, both the 
dimensions of the rolled profiles from which the beam is 
made, as well as the dimensions and pitch of the holes in the 
beam web [7] were considered. The first group of variables 
varies discretely, according to a defined set of possible val-
ues (assortment of rolling profiles). The presence of discrete 
design variables caused researchers to choose meta-heuristic 
optimization methods for solving the optimization problem 
of castellated beams [8]. At the same time, convergence to 
the global optimum is not always achieved, which required 
researchers to devise a significant number of modifications 
to meta-heuristic optimization methods.

Work [9] provides an overview of various statements 
of optimization problems for the considered class of struc-
tures and optimization algorithms based on meta-heuristic 
methods. At the same time, the desired parameters are set 
both on numerical sets and on finite sets of an arbitrary 
nature. The search strategy in such algorithms is based on 
the calculation and comparison of the values of some evalu-
ation function of project solutions at the points of the search 
space under consideration. At the same time, requirements 
regarding unimodality, continuity, and differentiability of 
such a function are not put forward. This makes it possible 
to use meta-heuristic methods for a wide class of functions of 
the optimality criterion and constraints of the mathematical 
model, including for functions that do not have an analytical 
description.

In paper [10], which considers the problem of finding 
optimal cross-sectional dimensions of a castellated beam, 
the authors used a hybrid optimization algorithm. This 
made it possible to avoid obtaining local optima during the 
optimization search. Work [11] reports a new meta-heuristic 
optimization method based on colliding bodies, which is 
used to solve problems of optimizing the dimensions of the 
cross-section of a castellated beam. The authors developed 
its modification, which improves the speed of convergence 
to the optimal solution and reduces the number of static 
analyses of the structure during the search for the optimal 
point. For the considered class of problems, the particle 
swarm method and its modifications were proposed in pa-
pers [12, 13], which allowed the authors to obtain a better 

convergence to the optimum. At the same time, only the 
height of the opening, the angle of inclination of the cut-
ting line to the axis of the beam, and the distance between 
the openings were considered as design variables of the 
optimization problem [13]. And the dimensions of rolled 
I-beam profiles, from which a castellated beam was made, 
were taken as fixed and did not change during the search 
for the optimum point. Paper [14] considers the problem of 
minimizing the cost of manufacturing a castellated beam 
structure using the charged system search algorithm. At 
the same time, design code constraints are considered in the 
mathematical model of the optimization problem. For the 
class of problems under consideration, the gray wolf pack 
optimization algorithm was also successfully applied in [15]. 
However, the authors of works [14, 15] did not consider cas-
tellated beams of monosymmetric cross-section, when in the 
compressed zone the cross-section elements of the beam have 
a greater thickness (for them, a more powerful rolled I-beam 
is used) than in the tensioned zone. Castellated beams of a 
monosymmetric cross-section are characterized by a higher 
load-carrying capacity provided that the local stability of 
the cross-section elements is ensured.

In addition, when applying the meta-heuristic methods 
listed above, despite their high efficiency and productivity, 
the authors obtained design solutions for structures that are 
only close to optimum [16]. This allows us to state that it is 
expedient to conduct a study aimed at finding a global opti-
mum for problems of optimizing castellated beams, stated in 
a mixed space of design variables.

On the other hand, a critical review of the works proved 
that the issue related to determining the optimal size ratio 
and geometric characteristics of cross-sections of castellated 
beams remained unresolved. Given this, it is advisable to 
analyze the obtained optimal solutions and develop rec-
ommendations for the optimal distribution of material in 
cross-sections of castellated beams.

3. The aim and objectives of the study

The purpose of our study is to develop a procedure for 
optimizing castellated beams and to study the properties 
of such beams with optimal parameters. This will make it 
possible to compile recommendations for designers regard-
ing the optimal distribution of material in cross-sections of 
castellated beams. 

To achieve the goal, the following tasks were set:
– to state the optimization problem of castellated beams 

in the presence of continuous and discrete design variables 
and propose a method for its solution; 

– to solve the problems of optimizing the cross-sections 
dimensions of castellated beams for different steel grades 
and different distributed loads on the beams;

– to develop recommendations for the optimal distribu-
tion of material in cross-sections of castellated beams.

4. The study materials and methods

The object of our research is castellated beams, which 
are investigated for the purpose of finding the optimal de-
sign solution in a mixed (continuous and discrete) space of 
variables. At the same time, the number of rolled I-beam 
profiles from the specified range of I-beams and the width 
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of the hexagonal opening in the beam web are considered as 
design variables.

The presence of holes in the web causes a changed pat-
tern of the stress state in the beam web. While the distri-
bution of normal stresses σx (directed along the axis of the 
beam) in the beam flanges in the middle of the opening is 
close to linear (Fig. 1, cross section 1-1), then in the corner 
zones of the openings the normal stress diagrams σx are 
curvilinear, which is due to the concentration of stress-
es (Fig. 1, cross-section 2-2). Some curvilinearity of the di-
agram of normal stresses σx is also observed in the web-post 
zone (Fig. 1, cross-section 3-3). At the same time, normal 
stresses σy appear in the butt weld of the beam web-post, 
oriented perpendicular to the axis of the beam, which are 
also caused by the concentration of stresses in the vicinity 
near the holes (Fig. 1, cross-section 4-4). The influence of 
stress concentrators on the load-carrying capacity of castel-
lated beams is in most cases covered by reserves of plasticity 
of the material. However, under cyclic and shock loads and 
impacts, especially under conditions of low temperatures, 
when the development of plastic deformations is complicat-
ed, cracks may appear in the corners of the holes due to the 
existing stress concentrators [17].

The design cross-section of a castellated beam is two 
T-sections beams (the upper and lower flanges of the beam), 
the joint operation of which is enabled by the existing web-
post between the holes. Top and bottom Tees of the castel-
lated beam, located within the opening, work both on the ac-
tion of the bending moment in the beam, which occurs under 
the action of the transverse load, and on the action of shear 
forces, which cause additional bending of the flanges. At the 
same time, the limit state of the beam Tees is characterized 
by a significant development of plastic deformations, which 
permeate almost its entire cross-section in the corners of the 
openings. The beam web-post behaves mainly in shear, and 
its load-carrying capacity is determined by local buckling. 
In the limit state, the cross-sectional elements (web/flange) 
of the compressed Tee of the beam may also subjected to 
local buckling.

There are several approaches to the calculation of cas-
tellated beams, from simple engineering calculation models 
in the elastic region without taking into account stress 
concentrators near the holes to complicated elastic compu-
tation models based on the finite element method [18]. There 
were also attempts to evaluate the load-carrying capacity 
of castellated beams according to the limit equilibrium 
criterion [19] or according to the criterion of limited plastic 
deformations [20].

A castellated beam, according to its calculation scheme, 
is many times a statically indeterminate system. This struc-
tural form occupies an intermediate place between a con-
tinuous beam and a truss without diagonals (Vierendeel 
girder). However, the performed theoretical and experimen-
tal studies showed that without a significant decrease in 
the accuracy of the calculation, the castellated beam can be 
considered a regular Vierendeel girder. Such a girder con-
sists of horizontal members the beam flanges of T-section, 
and vertical members ‒ beam web-posts. At the same time, 
it is assumed that there are points with zero moments in the 
middle of the web-posts and on the sections of the Tees in 
the sections in the middle of the opening. Thus, it is possible 
to imagine that at these points there are conventional hinges 
in which only shear and axial forces act. Such a model of 
a castellated beam made it possible to devise a method of 
approximate calculation of its load-carrying capacity by the 
Vierendeel method, which is used in the design standards of 
these structures ‒ DBN V.2.6-198:2014 “Steel structures. 
Design norms” and EN 1993-1-13:2024 “Eurocode 3 – De-
sign of steel structures – Part 1-13: Beams with large web 
openings”.

Thus, the current work uses an approximate estimation 
of the load-carrying capacity of a castellated beam by the 
Vierendeel method. It is assumed that the material of the 
beam works in the zone of elastic deformations of steel, ex-
cluding the area in the vicinity of the web opening, where 
plastic deformations can develop. At the same time, the 
physical and mechanical properties of the beam material 
were assumed to be the same in all directions. Deforma-
tions in the fibers of the beam cross-sections were assumed 
to be much smaller than its dimensions. When the beam 
is deformed under load, the hypothesis of plane sections is 
fulfilled.

In our work, the problem of optimal design of castellated 
beams is stated as a problem of nonlinear programming in 
the presence of design variables of continuous and discrete 
types. To solve such a problem, the method of exhaustive 
search is used, the choice of which is determined by the 
presence of a mixed search space. The software implemen-
tation of the exhaustive search method for the optimization 
problem of a castellated beam is performed in the MS Visual 
Studio 2022 environment by the C# language.

5. Results of optimization of cross-sectional dimensions 
of castellated beams

5. 1. Statement of the optimization problem
On the one hand, increasing the load-carrying capac-

ity of the beam for bending requires developing the beam 
cross-section in height as much as possible by forming open-
ings in the beam (hexagonal cutouts) of the maximum possi-
ble size. However, too large openings in the beam web lead to 
premature exhaustion of its load-carrying capacity under the 
condition of ensuring strength under normal stresses at the 
design points at the top and bottom of the opening. At the 
same time, normal stresses occur in the extreme fibers of the 
beam cross-section, which are much smaller than the yield 
strength of steel. Given this, it is considered appropriate to 
state the task of optimizing the cross-section dimensions of 
the beams under study.

The task to optimize cross-section dimensions of a cas-
tellated beam of a monosymmetric cross-section was stated 

Fig.	1.	Stress	distribution	on	the	section	of	a	castellated	beam
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as the search for the optimal number 
of profiles for the upper and bottom 
Tees and the optimal width of the web 
opening. At the same time, as part of the 
system of constraints, the conditions for 
ensuring the necessary load-carrying 
capacity of the beam in accordance with 
the design code requirements were con-
sidered. The criterion of optimality was 
the minimum volume of the material 
from which the beam was made. The 
following were considered as the initial 
data for performing the optimization 
calculation:

1) the predefined range of I-beam 
hot-rolled profiles, from which profile 
numbers were chosen for the upper and 
lower flanges of the beam; 

2) steel grade from which the beam was made; 
3) beam span; 
4) the shape of the opening is a regular hexagon;
5) beam load scheme ‒ the load applied to the upper 

flange of the beam as uniformly distributed along the entire 
beam span;

6) the value of the design loads for verifications of the 
load-carrying capacity of the beam according to the ultimate 
and serviceability limit states.

The stated optimization problem was represented in 
terms of a nonlinear programming problem [21] as a search 
for unknown values of the variable parameters of the beam 
structural member:

{ } ,
T

X Xι=


 1, ;XNι =   (1)

which provide the lowest value of the optimality criterion:

( ) ( )* *

  
min ;
X

f f X f X
∈ℑ

= =




 

  (2)

in the area of admissible decisions, which is defined by the 
system of constraints:

( ) ( ){ }0 | 1, ;ICX X Nηϕ = φ ≤ η=
 

  (3)

where X


 is a vector of design variables (unknown design 
parameters); NX – the total number of design variables;  
f, φη – some functions of the vector argument; *X



 – optimal 
design solution of the beam or optimum point (vector of op-
timal values of variable parameters of the structure); f* is the 
optimal value of the objective function (criterion of optimal-
ity); NIC is the number of constraints-inequalities ( ),Xηϕ



 
which determine the area of admissible design solutions ℑ.

The vector of design variables X


 includes parametric 
design variables of continuous (real) and discrete (inte-
ger) types [22]. The width of the hexagonal opening a in 
the beam web was considered as a parametric continuous 
variable that varies continuously within some defined in-
terval of possible values. Parametric discrete variables vary 
according to a defined finite set of possible values. As such 
variables, the ordinal numbers (indexes) of the profiles in 
the defined (considered) range of hot-rolled I-beam profiles 
were considered, namely N1 ‒ for the top Tee and N2 ‒ for the 
bottom Tee:

{ }1 2,  ,  .
T

X N N a=


  (4)

In the design cross-section of a castellated beam, the 
material is concentrated on the line of the beam flanges 
and represents two T-shaped sections that behave to-
gether (Fig. 2). The total height of the calculated beam 
cross-section h and the height of the top ,1h⊥  and bottom ,2h⊥   
Tees of the beam depend on the vector of design variables 

{ }1 2,  ,  
T

X N N a=


and are considered as state variables. Their 
value is determined by the section height of the original 
I-beams with variable numbers N1 and N2, which are used, 
respectively, for the top and bottom Tees of the beam, and 
the variable width a of the hexagonal opening.

The system of constraints (3) of the mathematical model 
involved strength checks of the castellated beam according 
to the level of normal stresses, formulated for the cross-sec-
tions located in the middle of each hexagonal opening. At the 
same time, the number of openings n in the form of regular 
hexagon with side a was calculated as a integer from divid-
ing the constant span of the beam L by the hole pitch s=3a.

The design constraints-inequalities were formulated for 
four design cross-section points located at a distance of 0.5a 
from the middle of the hole under consideration (Fig. 2):

– at design point 1 (according to the level of maximum 
normal stresses occurring in the extreme fiber of the upper 
flange of the beam):

, 1 , ,1

1 , , ,1,max ,1 ,2

1
1 0;

2
y j z j y

y c y net y y y

M h Q a I

R I W I IΣ

 
+ ⋅ − ≤  γ + 

 (5)

– at design point 2 (according to the level of normal 
stresses occurring at the top of the hole):

, 1 , ,1

1 , , ,1,min ,1 ,2

1 0;
2

y j z j yu

u c y net y y y

M d Q a I

R I W I IΣ

 γ
+ ⋅ − ≤  γ + 

 (6)

‒ at design point 3 (according to the level of maximum 
normal stresses occurring in the extreme fiber of the lower 
flange of the beam):

, 2 , ,2

2 , , ,2,max ,1 ,2

1
1 0;

2
y j z j y

y c y net y y y

M h Q a I

R I W I IΣ

 
+ ⋅ − ≤  γ + 

 (7)

– at design point 4 (according to the level of normal 
stresses occurring at the bottom of the hole):

, 2 , ,2

2 , , ,2,min ,1 ,2

1 0;
2

y j z j yu

u c y net y y y

M d Q a I

R I W I IΣ

 γ
+ ⋅ − ≤  γ + 

 (8)

Fig.	2.	Diagram	of	the	castellated	beam	section
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here Iy,1 and Iy,2  are the second moments of area of the upper 
and lower T-sections of the beam relative to its own axis of 
inertia parallel to the flanges; Iy,Σ,net – second moment of 
area of the beam cross-section minus the opening relative 
to the y-y bending axis, which is perpendicular to the beam 
web; Wy,1,max and Wy,1,min are, respectively, the largest and 
smallest elastic section modulus of the upper T-beam sec-
tion; Wy,2,max and Wy,2,min are, respectively, the largest and 
smallest elastic section modulus of the lower T-beam section;  
Ry1, Ru1 – design resistance of rolled steel for the upper 
T-shaped section of the beam; Ry2, Ru2 – design resistance 
of rolled steel for the lower T-shaped section of the beam;  
γc is the coefficient of beam operating conditions; My, j and 
Qz, j are the bending moment and shear force that occur in the 
jth design section of the beam and are calculated depending 
on the location of this section and the scheme and magnitude 
of the external load; d1, d2 – distances from the center of 
mass of the beam cross-section to the hole edge, respectively, 
along the top and bottom of the hole; h1, h2 are the distanc-
es from the center of mass of the beam cross section to the 
extreme fibers of the beam along the upper and lower flange, 
respectively (Fig. 2).

The system of constraints (3) also included strength 
checks of a castellated beam based on the level of shear 
stresses, which were formulated as:

sup

1 3 1

1 0;
0.58 w y c

Q s

at h R
− ≤

γ
  (9)

sup

2 3 2

1 0,
0.58 w y c

Q s

at h R
− ≤

γ
  (10)

where tw1 and tw2 are web thicknesses of rolled I-beams, from 
which the upper and lower flanges of the castellated beam 
are made, respectively, depending on the variable numbers of 
profiles N1 and N2; h3 is the distance between the centers of 
mass of the upper and bottom Tees of the beam (Fig. 2), which 
depends on the vector of design variables { }1 2,  ,  ;

T
X N N a=


 
Qsup is the shear force acting in the cross section of the beam 
located at a distance ℓ=c+2.5a from the support, here c is the 
width of the end-post or distance from the support section of 
the beam to the edge of the first hole (Fig. 2), the value c was 
calculated depending on the variable a of the opening width, 
the variable number of holes n and the constant span of the 
beam L.

The local buckling verification of the web of the upper com-
pressed Tee in the area of the opening was formulated in accor-
dance with the design code requirements DBN V.2.6-198:2014 
“Steel structures. Design norms” as:

1

1

1.0 0;f

w

b

h
− ≤   (11)

1

1

1 0;
2

f

w

b

h
− ≤   (12)

11

1
1

1

1 0,

0.498 1 0.25 2

yw

f
w

w

Rh
Eb

t
h

− ≤
 
 + −
 
 

 (13)

where hw1 is the design height of the top Tee web of the upper 
(compressed) zone, ,11 1 1;w f rh h t⊥ − −=  bf1, tf1 and r1 are, respec-
tively, the flange width, the flange thickness, and the radius of 

the flange-to-web junction of the top Tee of the beam, which 
depend on the variable number of the profile N1 chosen for it.

The local buckling checks of cross-section elements, as 
regulated by the codes, are derived from the assumption 
that each cross-section element is considered as a long thin 
plate properly restrained along one of the free edges. Such 
supporting of the plates is provided by adjacent cross-section 
elements. In view of this, conditions (11) and (12) must be 
fulfilled for the T-shaped cross-section. Otherwise, it would 
mean that either the width of the flange is insufficient to 
provide adequate web restraining, or the web height is insuf-
ficient to provide adequate support for the flange.

Checking the end-post local stability of a beam end-post 
with a perforated web is performed for unevenness in accor-
dance with DBN B.2.6-198:2014 “Steel structures. Design 
norms:

,max

,min

1 0,
2.5

ef y

w

h R

t E
− ≤   (14)

here hef is the design height of the web section of the beam web-
post, which is calculated as: hef=h–tf1–r1–tf2–r2; h is the full 
height of the developed section of the castellated beam, which 
depends on the design variables vector; tw,min is the smaller 
of the web thicknesses of rolled I-beams, which are used to 
manufacture the top and bottom Tees, tw,min=min{tw1, tw2};  
Ry,max is the larger of the design resistances of the material of 
rolled I-beams, Ry,max=max{Ry1, Ry2}. Inequality (14) was not 
included in the system of constraints (3) in the mathematical 
model. In the event that the condition of ensuring local stabil-
ity of the beam web-post (14) is not fulfilled, the beam web is 
strengthened with one-sided stiffeners, arranged in a checker-
board pattern in each web-post of the beam.

It should be noted that the verification of the later-
al-torsional buckling of the castellated beam was also not 
considered as part of the system of constraints (3). It is 
assumed that the compressed flange of a castellated beam 
is restrained by the necessary number of shear ties, which 
prevent horizontal displacements of the compressed flange 
from the beam bending plane.

As part of the system of constraints (3), the stiffness 
limitation of a castellated beam was considered at the level 
of the maximum deflection in the middle of the beam span, 
which was stated as for a beam loaded with a uniformly dis-
tributed load:

4

, ,

5
1 0,

384 0.95
sls

y net ult

q L
EI fΣ

× − ≤   (15)

here E is the modulus of elasticity of steel, E=2.06·105 MPa; 
fult – the limit deflection of the beam, which was taken in 
accordance with the requirements of DSTU B V.1.2-3:2006 
as fult=L/250; 0.95 is a coefficient that makes it possible to 
take into account some increase in the deflection of the beam 
due to the shear deformations of the web and the bending of 
the top and bottom Tees of the beam [23].

The optimality criterion (2) considered was the volume 
of material required for the manufacture of a castellated 
beam:

( ) ( )* *
1 2

  
min , , .
X

f f X V N N a
∈ℑ

= =






  (16)

Finally, the task of optimizing the cross-section dimen-
sions of a castellated beam was stated as the search for the 
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optimal numbers of profiles N1 and N2 for the beam top 
and bottom Tees, as well as the optimal width a of the web 
opening. At the same time, the criterion of optimality con-
sidered was the minimum volume of material (16). As part 
of the system of constraints, 
the conditions for ensuring 
the necessary load-carry-
ing capacity of the beam 
were considered in terms of 
strength (5) to (8), local 
stability (11) to (13), and 
stiffness (15).

It should be noted that 
as part of the mathematical 
model of the stated optimi-
zation problem, it would also 
be possible to consider ad-
ditional constraints that re-
flect the structural require-
ments for the construction 
of such beams [24]. These 
conditions can easily be ex-
pressed in the form of con-
straints on the upper and/or 
lower bounds for the design 
variables values.

The dimensionality 
of the parametric optimi-
zation problem consisted 
of 3 design variables and 
8 constraints in the form 
of inequalities. Taking into 
account the small size of the 
stated parametric optimiza-
tion problem, it was solved 
by the method of exhaustive 
search (full search) using 
software developed in the 
C# language in the MS Vi-
sual Studio 2022 environ-
ment [25].

5. 2. Results of opti-
mizing the cross-section 
sizes of castellated beams 
for different classes of 
steel and load

As a result of the optimi-
zation calculation, castellat-
ed beams were obtained with 
optimal cross-sectional di-
mensions depending on the 
steel grade, the beam span 
and the magnitude of uni-
formly distributed load act-
ing on the beam. The search 
for optimal dimensions of a 
castellated beam was car-
ried out for an assortment 
of normal hot-rolled I-beams 
with parallel flanges accord-
ing to GOST 26020-83. At 
the same time, beam spans 
of 12 m, 15 m, and 18 m were 

considered at different values of transverse uniformly distrib-
uted load and different steel grades. The results of the optimi-
zation calculation of a castellated beam with a span of 18 m for 
steel grades C235, C295, and C345 are given in Tables 1–3.

Table	1

Results	of	optimizing	the	cross-section	dimensions	of	a	castellated	beam	with	a	span	of	18	m	and	
grade	of	steel	C235

Uniform 
load quls, 

kN/m

The optimal profile num-
ber for beam flanges

Optimal dimensions I-beam with a solid 
web of the required 

load-carrying capacity

Efficiency of 
web openings 
application, %Top N1 Bottom N2

Opening 
width а, mm

Beam height 
h, mm

5 45B1 40B1 225 612 50B2 21.942

10 50B1 50B1 260 717 60B1 17.220

15 55B1 55B1 290 798 70B1 17.369

20 60B1 60B1 325 874 70B2 12.791

25 70B1 60B2 365 960 80B1 7.129

30 70B2 70B2 396 1,040 90B1 10.015

40 80B1 80B1 443 1,175 90B2 7.440

50 90B1 90B1 496 1,323 100B2 9.704

55 90B1 90B1 480 1,309 100B3 18.728

65 100B1 100B1 536 1,454 100B4 9.556

70 100B3 100B1 540 1,466 – –

75 100B2 100B2 533 1,460 – –

80 100B3 100B2 500 1,436 – –

85 100B3 100B3 520 1,456 – –

90 100B4 100B3 500 1,443 – –

95 100B4 100B4 516 1,460 – –

Table	2

Results	of	optimizing	the	cross-section	dimensions	of	a	castellated	beam	with	a	span	of	18	m	
and	grade	of	steel	C295

Uniform 
load quls, 

kN/m

The optimal profile num-
ber for beam flanges

Optimal dimensions I-beam with a solid 
web of the required 

load-carrying capacity

Efficiency of 
web openings 
application, %Top N1 Bottom N2

Opening 
width а, mm

Beam height 
h, mm

5 45B1 40B1 225 612 50B2 21.94244

10 50B1 50B1 260 717 60B1 17.21991

15 60B1 50B1 325 824 70B1 17.82288

20 60B1 55B1 325 851 70B2 19.64315

25 60B2 60B2 325 878 80B1 14.69566

30 70B1 60B2 366 961 80B2 16.68309

35 70B1 70B1 391 1,030 90B1 18.46128

40 70B2 70B2 383 1,029 90B1 10.47703

45 80B1 70B2 406 1,096 90B2 13.22791

50 80B1 80B1 437 1,169 100B1 14.4004

55 80B2 80B2 431 1,171 100B1 6.048207

65 90B1 90B1 484 1,312 100B2 9.966547

75 90B2 90B2 472 1,309 100B3 7.814641

80 100B1 90B2 488 1,368 100B4 13.941

85 100B1 100B1 520 1,440 100B4 10.0247

90 100B1 100B1 509 1,431 – –

95 100B2 100B2 523 1,451 – –

100 100B2 100B2 513 1,442 – –

105 100B3 100B3 515 1,452 – –

110 100B3 100B3 506 1,444 – –

115 100B3 100B3 495 1,435 – –

120 100B4 100B4 507 1,452 – –

125 100B4 100B4 497 1,443 – –
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Tables 1–3 demonstrate that the use of a web openings 
expands the scope of application of hot-rolled I-beams. The 
technology of manufacturing castellated beams makes it pos-
sible to increase the beam section modulus to 35.48...50 %. 
At the same time, the effectiveness of the use of the web 
openings, which is estimated by the volume of material re-
quired for the manufacture of the beam, 
reaches 23.19 %.

5. 3. Recommendations for the opti-
mal distribution of material in cross-sec-
tions of castellated beams

Our results of the optimization calcu-
lations have made it possible to plot the 
dependence of the optimal height of the 
beam depending on the ratio of the max-
imum bending moment occurring in the 
beam to the yield point of steel (required 
elastic section modulus). Fig. 3–5 show 
plots of the optimal height of a castellated 
beam for different beam spans (12 m, 15 m, 
and 18 m) and different steel grades (C235, 
C255, C295, C325, and C375).

In addition, during the optimization 
calculations, the problem of finding the 
optimal width of the web opening in the 

beam was solved. After all, 
increasing the load-carry-
ing capacity of the beam 
for bending requires de-
veloping the section of the 
beam in height as much as 
possible by forming web 
openings in the beam of 
the maximum possible size. 
At the same time, too large 
web openings in the beam 
lead to the premature ex-
haustion of its load-carry-
ing capacity under the con-
dition of ensuring strength 
under normal stresses at 
the design points at the top 
and bottom of the opening, 
while the extreme fibers of 
the beam section remain 
understressed.

Our results of optimiza-
tion calculations of castellat-
ed beams have made it pos-
sible to plot the dependence 
of the optimal width of the 
web opening in the beam de-
pending on the ratio of the 
maximum bending moment 
occurring in the beam to the 
yield strength of steel. Thus, 
Fig. 6‒8 show plots of the 
optimal width of the opening 
in the beam web for differ-
ent beam spans (12 m, 15 m, 
and 18 m) and different steel 
grades (C235, C255, C295, 
C325, and C375).

The above dependences of the optimal height of the cas-
tellated beam (Fig. 3–5) and the optimal width of the web 
opening (Fig. 6–8) on the required elastic section modulus 
of the beam cross section can serve as recommendations for 
designers. According to these plots, it is possible to select the 
dimensions of the cross-sections of castellated beams.

Table	3
Results	of	optimizing	the	cross-section	dimensions	of	a	castellated	beam	with	a	span	of	18	m	and	

grade	of	steel	C345

Uniform 
load quls, 

kN/m

The optimal profile number 
for beam flanges

Optimal dimensions I-beam with a solid 
web of the required 

load-carrying 
capacity

Efficiency of 
web openings 
application, %Top N1 Bottom N2

Opening 
width а, mm

Beam height 
h, mm

5 45B1 40B1 225 612 50B2 21.94244

10 50B1 50B1 260 717 60B1 17.21991

15 60B1 50B1 325 824 70B1 17.82288

20 60B1 55B1 325 851 70B2 19.64315

25 70B1 55B1 382 950 80B1 17.11609

30 70B1 60B1 377 968 80B2 19.51083

35 70B1 70B1 404 1,041 90B1 18.0199

40 70B2 70B1 391 1,033 90B1 14.39022

45 80B1 70B2 419 1,107 90B2 12.74789

50 80B1 70B2 404 1,094 100B1 19.62236

55 80B1 80B1 437 1,169 100B1 14.4004

60 90B1 80B1 466 1,246 100B1 8.331669

65 90B1 80B2 453 1,238 100B2 14.37432

70 90B1 90B1 487 1,315 100B2 9.900444

75 90B1 90B1 475 1,304 100B3 18.82932

80 100B1 90B1 504 1,378 100B3 8.692654

85 100B1 90B2 494 1,373 100B4 13.76608

90 100B1 100B1 528 1,447 100B4 9.790021

95 100B1 100B1 517 1,438 – –

100 100B2 100B2 532 1,459 – –

105 100B2 100B2 522 1,450 – –

110 100B3 100B2 518 1,451 – –

115 100B3 100B3 516 1,453 – –

120 100B3 100B3 507 1,445 – –

125 100B4 100B4 518 1,462 – –

130 100B4 100B4 510 1,455 – –

135 100B4 100B4 503 1,449 – –

Fig.	3.	Plotting	the	optimal	height	of	a	castellated	beam	with	a	span	of	12	m	
depending	on	the	required	elastic	section	modulus	of	the	beam
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Fig.	4.	Plotting	the	optimal	height	of	a	castellated	beam	with	a	span	of	15	m	depending	on	the	required	elastic	section	modulus	
of	the	beam
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Fig.	5.	Plotting	the	optimal	height	of	a	castellated	beam	with	a	span	of	18	m	depending	on	the	required	elastic	section	modulus	
of	the	beam
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Fig.	6.	Plotting	the	optimal	width	of	the	hexagonal	opening	for	a	castellated	beam	with	a	span	of	12	m	depending	on	the	required	
elastic	section	modulus	of	the	beam
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6. Discussion of results of cross-sectional size 
optimization of a castellated beam

Our results of the optimization calculations (Tables 1‒3) 
are primarily explained by the type of cross-section of the 
structural member and its stress-strain state. This obviously 
causes the presence of stress concentration in the corners 
of the openings in the beam web and affects the obtained 
optimal dimensions of the opening width. The reliability of 
the optimization results of cross-section dimensions for cas-
tellated beams (Tables 1‒3) is confirmed by the following:

– the rigor and correctness of the mathematical model of 
the optimization problem of the investigated class of struc-
tures; 

‒ the stability of the resulting numerical solutions in 
relation to the initial data and the analysis of convergence of 
the iterative search process.

The peculiarity of the proposed ap-
proach in comparison with existing ones 
is the simultaneous variation in the search 
for the optimum point of both the discrete 
cross-section sizes of rolled I-beam profiles 
from which the beam is made, and the con-
tinuous size of the width of the hexagonal 
opening in the beam web. Thus, unlike [13], 
in which only the height of the opening, the 
angle of inclination of the cutting line to the 
axis of the beam, and the distance between 
the openings were considered as design vari-
ables of the optimization problem, the vector 
of design variables with variables of discrete 
and continuous types proposed in this work 
makes it possible to obtain a better design 
beam solution.

It should be noted that it is not possible 
to compare our results of optimization cal-
culations with the optimal design solutions 
of castellated beams known and described in 
the literature since the latter were obtained 
for other design conditions (other calcula-
tion schemes and other design standards). 
However, the difference of this work com-
pared to similar well-known studies (such 
as, for example, [15]) is obtaining the de-
pendences of the optimal height of the cas-
tellated beam and the optimal width of the 
web opening depending on the ratio of the 
maximum bending moment in the beam to 
the yield strength of steel. The specified 
dependences are of practical value and could 
be used in engineering design practice to 
select cross-sectional dimensions of castel-
lated beams.

It should be noted that the reported 
results regarding the optimal distribution 
of material in cross-sections of castellated 
beams (Tables 1–3, Fig. 4–9) have certain 
application limits. In particular, they are 
valid only for the range of normal I-beam 
profiles and only for the case of an uniformly 
distributed load acting on the beam when 
the compressed beam flange is sufficiently 
restrained from the bending plane and the 
beam web has openings in the form of reg-

ular hexagons. It is under such conditions that our results 
can be implemented in practice both at the stage of selecting 
cross-sections of the studied class of structures, and at the 
development of effective assortments of castellated beams. 
However, the proposed methodology for finding the optimal 
dimensions of the cross-sections of castellated beams could 
be applied both for other conditions of loading and lateral 
restraining of beams, and for other assortments of I-beam 
profiles.

7. Conclusion 

1. We have stated and solved the problem of finding the 
optimal cross-section dimensions of castellated beams. In 
this case, the vector of design variables contained variables 
of continuous and discrete types, and the system of problem 

Fig.	7.	Plotting	the	optimal	width	of	the	hexagonal	opening	for	a	castellated	beam	
with	a	span	of	15	m	depending	on	the	required	elastic	section	modulus	of	the	beam
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Fig.	8.	Plotting	the	optimal	width	of	the	hexagonal	opening	for	a	castellated	beam	
with	a	span	of	18	m	depending	on	the	required	elastic	section	modulus	of	the	beam
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constraints included load-carrying capacity constraints in 
accordance with the code-based requirements.

2. As a result of the optimization calculation, castellated 
beams were obtained with optimal cross-sectional dimen-
sions depending on the steel grade, the beam span, and the 
magnitude of uniformly distributed load. Our optimiza-
tion calculations proved that the elastic section modulus 
of the beam could be increased to 35.48...50.0 % due to 
the use of a openings in the web. Castellated beams with 
optimal cross-sectional dimensions at the same load-car-
rying capacity are characterized by lower steel consump-
tion (up to 23.19 %) compared to I-beams with a solid web.

3. Recommendations for the optimal distribution of mate-
rial in cross-sections of castellated beams have been devised. 
These recommendations are represented in the form of plots 
of the optimal beam height and the optimal width of the web 
opening of the beam depending on the ratio of the maximum 
bending moment occurring in the beam to the yield strength of 
the steel. In this case, the average ratio of the optimal width of 
the hexagonal opening in the beam web to the optimal height of 
the beam was 0.34...0.37. The average ratio of the optimal beam 
height to the optimal beam web thickness was 80.95...84.1.
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