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The object of this study is a castellated beam, in
which the web openings have the shape of aregular hexa-
gon. The beam is examined to find optimal cross-sec-
tional dimensions. The optimization task is stated as the
task of finding the optimal profile numbers for top and
bottom Tees of the beam and the optimal width of the
web opening while ensuring the required load-carrying
capacity of the beam. Minimization of the volume of the
beam material was considered as an optimality criteri-
on. The stated optimization problem was solved using
the exhaustive search method. For an assortment of
normal I-beams with parallel flanges, castellated beams
were obtained with optimal cross-sectional dimensions
depending on the steel grade, the beam span, and the
magnitude of transverse uniformly distributed load.
The optimization calculations proved that it was possi-
ble to increase the elastic section modulus of the beam
to 35.48...50 % through the use of a castellated web.
Castellated beams with optimal cross-sectional dimen-
sions at the same load-carrying capacity are character-
ized by lower steel consumption (up to 23.19 %) com-
paredto I-beams with a solid web. Analysis of the results
has made it possible to devise recommendations for the
optimal distribution of material in the cross-sections of
such beams. The results are valid only for the assort-
ment of normal I-beam profiles and only for the case of
uniformly distributed load acting on the beam when the
compressed beam flange is laterally restrained from the
bending plane and the beam web has openings in the
Jorm of regular hexagons. It is under such conditions
that the reported results can be implemented in practice
both at the stage of selecting cross-sections of the stud-
ied class of structures, and at the development of effec-
tive assortments of castellated beams
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1. Introduction

Modern rolling I-beams with parallel faces of the flanges,
including wide flanges, up to 1 m high, provide the ability to
cover spans of 13...15 m in the presence of significant loads.
The specific labor intensity of their production in terms of
basic operations is 2...2.5 times lower than in similar trusses.
However, material consumption is 1.5 times higher than in
trusses.

As aresult of the search for ways to increase the efficiency
of rolled I-beams, an original structural form occurred — an
I-beam with holes in the web, in which the material is con-
centrated closer to the flanges. In the technical literature,
it received several names — I-beam with a perforated web,
I-beam with a developed section, lattice I-beam. Hereafter,
we shall use the term “castellated beams”, which is used in
design standards, in particular, DBN V.2.6-198:2014 “Steel
structures. Design norms”.

The effectiveness of the castellated beam compared to
the original I-beam is explained by the fact that its height
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is approximately 1.4...1.5 times greater, the web thickness
is 1/75..1/95 of the height. Castellated beams provide
20...30 % material savings compared to rolled I-beams and
are cheaper by 10..18 %. They are 25-35 % more efficient
than welded I-beams due to the reduction in processing op-
erations and the amount of welding [1].

Castellated beams made of two steel grades are lighter
by 34-39 % and cheaper by 16-20 % compared to hot-rolled
I-beams with solid web made of one steel grade, with the
same load-carrying capacity. These positive qualities com-
bined with compactness, transportability, and the possibility
of using highly automated manufacturing make them com-
petitive even compared to lattice structures [2, 3].

On the one hand, increasing the load-carrying capacity
of the beam for bending requires developing the cross-section
of the beam in height as much as possible by forming holes
in the beam (hexagonal cutouts) of the largest possible size.
However, too large holes in the beam web lead to premature
exhaustion of its bearing capacity under the condition of
ensuring strength under normal stresses at the design points




at the top and bottom of the hole. At the same time, normal
stresses occur in the extreme fibers of the cross-section of
the beam, which are much smaller than the yield strength of
steel. With this in mind, scientific research into the optimal
design of castellated beam structures is considered rele-
vant. Since castellated beams actually expand the scope of
application of hot-rolled I-beam profiles, the results of such
studies will be demanded by manufacturers of such profiles.

2. Literature review and problem statement

Applied tasks of optimal design of building structures
are often stated as problems of searching for unknown pa-
rameters of the structure, which ensure the extreme value
of the determined optimality criterion in the search space
delineated by a set of given constraints. The mathematical
model of parametric optimization problems includes a set
of design variables, an objective function, as well as con-
straints, which in general reflect nonlinear relationships
between them [4].

A large body of research tackles the problem of finding
the optimal dimensions of cross-sections of castellated
beams [5,6]. As part of the design variables, both the
dimensions of the rolled profiles from which the beam is
made, as well as the dimensions and pitch of the holes in the
beam web [7] were considered. The first group of variables
varies discretely, according to a defined set of possible val-
ues (assortment of rolling profiles). The presence of discrete
design variables caused researchers to choose meta-heuristic
optimization methods for solving the optimization problem
of castellated beams [8]. At the same time, convergence to
the global optimum is not always achieved, which required
researchers to devise a significant number of modifications
to meta-heuristic optimization methods.

Work [9] provides an overview of various statements
of optimization problems for the considered class of struc-
tures and optimization algorithms based on meta-heuristic
methods. At the same time, the desired parameters are set
both on numerical sets and on finite sets of an arbitrary
nature. The search strategy in such algorithms is based on
the calculation and comparison of the values of some evalu-
ation function of project solutions at the points of the search
space under consideration. At the same time, requirements
regarding unimodality, continuity, and differentiability of
such a function are not put forward. This makes it possible
to use meta-heuristic methods for a wide class of functions of
the optimality criterion and constraints of the mathematical
model, including for functions that do not have an analytical
description.

In paper [10], which considers the problem of finding
optimal cross-sectional dimensions of a castellated beam,
the authors used a hybrid optimization algorithm. This
made it possible to avoid obtaining local optima during the
optimization search. Work [11] reports a new meta-heuristic
optimization method based on colliding bodies, which is
used to solve problems of optimizing the dimensions of the
cross-section of a castellated beam. The authors developed
its modification, which improves the speed of convergence
to the optimal solution and reduces the number of static
analyses of the structure during the search for the optimal
point. For the considered class of problems, the particle
swarm method and its modifications were proposed in pa-
pers [12, 13], which allowed the authors to obtain a better

convergence to the optimum. At the same time, only the
height of the opening, the angle of inclination of the cut-
ting line to the axis of the beam, and the distance between
the openings were considered as design variables of the
optimization problem [13]. And the dimensions of rolled
I-beam profiles, from which a castellated beam was made,
were taken as fixed and did not change during the search
for the optimum point. Paper [14] considers the problem of
minimizing the cost of manufacturing a castellated beam
structure using the charged system search algorithm. At
the same time, design code constraints are considered in the
mathematical model of the optimization problem. For the
class of problems under consideration, the gray wolf pack
optimization algorithm was also successfully applied in [15].
However, the authors of works [14, 15] did not consider cas-
tellated beams of monosymmetric cross-section, when in the
compressed zone the cross-section elements of the beam have
a greater thickness (for them, a more powerful rolled I-beam
is used) than in the tensioned zone. Castellated beams of a
monosymmetric cross-section are characterized by a higher
load-carrying capacity provided that the local stability of
the cross-section elements is ensured.

In addition, when applying the meta-heuristic methods
listed above, despite their high efficiency and productivity,
the authors obtained design solutions for structures that are
only close to optimum [16]. This allows us to state that it is
expedient to conduct a study aimed at finding a global opti-
mum for problems of optimizing castellated beams, stated in
a mixed space of design variables.

On the other hand, a critical review of the works proved
that the issue related to determining the optimal size ratio
and geometric characteristics of cross-sections of castellated
beams remained unresolved. Given this, it is advisable to
analyze the obtained optimal solutions and develop rec-
ommendations for the optimal distribution of material in
cross-sections of castellated beams.

3. The aim and objectives of the study

The purpose of our study is to develop a procedure for
optimizing castellated beams and to study the properties
of such beams with optimal parameters. This will make it
possible to compile recommendations for designers regard-
ing the optimal distribution of material in cross-sections of
castellated beams.

To achieve the goal, the following tasks were set:

— to state the optimization problem of castellated beams
in the presence of continuous and discrete design variables
and propose a method for its solution;

— to solve the problems of optimizing the cross-sections
dimensions of castellated beams for different steel grades
and different distributed loads on the beams;

— to develop recommendations for the optimal distribu-
tion of material in cross-sections of castellated beams.

4. The study materials and methods

The object of our research is castellated beams, which
are investigated for the purpose of finding the optimal de-
sign solution in a mixed (continuous and discrete) space of
variables. At the same time, the number of rolled I-beam
profiles from the specified range of I-beams and the width



of the hexagonal opening in the beam web are considered as
design variables.

The presence of holes in the web causes a changed pat-
tern of the stress state in the beam web. While the distri-
bution of normal stresses o, (directed along the axis of the
beam) in the beam flanges in the middle of the opening is
close to linear (Fig. 1, cross section 1-1), then in the corner
zones of the openings the normal stress diagrams o, are
curvilinear, which is due to the concentration of stress-
es (Fig. 1, cross-section 2-2). Some curvilinearity of the di-
agram of normal stresses o, is also observed in the web-post
zone (Fig. 1, cross-section 3-3). At the same time, normal
stresses o, appear in the butt weld of the beam web-post,
oriented perpendicular to the axis of the beam, which are
also caused by the concentration of stresses in the vicinity
near the holes (Fig. 1, cross-section 4-4). The influence of
stress concentrators on the load-carrying capacity of castel-
lated beams is in most cases covered by reserves of plasticity
of the material. However, under cyclic and shock loads and
impacts, especially under conditions of low temperatures,
when the development of plastic deformations is complicat-
ed, cracks may appear in the corners of the holes due to the
existing stress concentrators [17].

1 2 3

ol

Fig. 1. Stress distribution on the section of a castellated beam

The design cross-section of a castellated beam is two
T-sections beams (the upper and lower flanges of the beam),
the joint operation of which is enabled by the existing web-
post between the holes. Top and bottom Tees of the castel-
lated beam, located within the opening, work both on the ac-
tion of the bending moment in the beam, which occurs under
the action of the transverse load, and on the action of shear
forces, which cause additional bending of the flanges. At the
same time, the limit state of the beam Tees is characterized
by a significant development of plastic deformations, which
permeate almost its entire cross-section in the corners of the
openings. The beam web-post behaves mainly in shear, and
its load-carrying capacity is determined by local buckling.
In the limit state, the cross-sectional elements (web/flange)
of the compressed Tee of the beam may also subjected to
local buckling.

There are several approaches to the calculation of cas-
tellated beams, from simple engineering calculation models
in the elastic region without taking into account stress
concentrators near the holes to complicated elastic compu-
tation models based on the finite element method [18]. There
were also attempts to evaluate the load-carrying capacity
of castellated beams according to the limit equilibrium
criterion [19] or according to the criterion of limited plastic
deformations [20].

A castellated beam, according to its calculation scheme,
is many times a statically indeterminate system. This struc-
tural form occupies an intermediate place between a con-
tinuous beam and a truss without diagonals (Vierendeel
girder). However, the performed theoretical and experimen-
tal studies showed that without a significant decrease in
the accuracy of the calculation, the castellated beam can be
considered a regular Vierendeel girder. Such a girder con-
sists of horizontal members the beam flanges of T-section,
and vertical members — beam web-posts. At the same time,
it is assumed that there are points with zero moments in the
middle of the web-posts and on the sections of the Tees in
the sections in the middle of the opening. Thus, it is possible
to imagine that at these points there are conventional hinges
in which only shear and axial forces act. Such a model of
a castellated beam made it possible to devise a method of
approximate calculation of its load-carrying capacity by the
Vierendeel method, which is used in the design standards of
these structures — DBN V.2.6-198:2014 “Steel structures.
Design norms” and EN 1993-1-13:2024 “Eurocode 3 — De-
sign of steel structures — Part 1-13: Beams with large web
openings”.

Thus, the current work uses an approximate estimation
of the load-carrying capacity of a castellated beam by the
Vierendeel method. It is assumed that the material of the
beam works in the zone of elastic deformations of steel, ex-
cluding the area in the vicinity of the web opening, where
plastic deformations can develop. At the same time, the
physical and mechanical properties of the beam material
were assumed to be the same in all directions. Deforma-
tions in the fibers of the beam cross-sections were assumed
to be much smaller than its dimensions. When the beam
is deformed under load, the hypothesis of plane sections is
fulfilled.

In our work, the problem of optimal design of castellated
beams is stated as a problem of nonlinear programming in
the presence of design variables of continuous and discrete
types. To solve such a problem, the method of exhaustive
search is used, the choice of which is determined by the
presence of a mixed search space. The software implemen-
tation of the exhaustive search method for the optimization
problem of a castellated beam is performed in the MS Visual
Studio 2022 environment by the C# language.

3. Results of optimization of cross-sectional dimensions
of castellated beams

5. 1. Statement of the optimization problem

On the one hand, increasing the load-carrying capac-
ity of the beam for bending requires developing the beam
cross-section in height as much as possible by forming open-
ings in the beam (hexagonal cutouts) of the maximum possi-
ble size. However, too large openings in the beam web lead to
premature exhaustion of its load-carrying capacity under the
condition of ensuring strength under normal stresses at the
design points at the top and bottom of the opening. At the
same time, normal stresses occur in the extreme fibers of the
beam cross-section, which are much smaller than the yield
strength of steel. Given this, it is considered appropriate to
state the task of optimizing the cross-section dimensions of
the beams under study.

The task to optimize cross-section dimensions of a cas-
tellated beam of a monosymmetric cross-section was stated



as the search for the optimal number
of profiles for the upper and bottom
Tees and the optimal width of the web c
opening. At the same time, as part of the

system of constraints, the conditions for

ensuring the necessary load-carrying
capacity of the beam in accordance with
the design code requirements were con-
sidered. The criterion of optimality was
the minimum volume of the material
from which the beam was made. The
following were considered as the initial
data for performing the optimization
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calculation:

1) the predefined range of I-beam
hot-rolled profiles, from which profile
numbers were chosen for the upper and
lower flanges of the beam;

2) steel grade from which the beam was made;

3) beam span;

4) the shape of the opening is a regular hexagon;

5) beam load scheme — the load applied to the upper
flange of the beam as uniformly distributed along the entire
beam span;

6) the value of the design loads for verifications of the
load-carrying capacity of the beam according to the ultimate
and serviceability limit states.

The stated optimization problem was represented in
terms of a nonlinear programming problem [21] as a search
for unknown values of the variable parameters of the beam
structural member:

X={x), =N (1)
which provide the lowest value of the optimality criterion:
S =f(X)=min f(X); &)

in the area of admissible decisions, which is defined by the
system of constraints:

o(X)={6,(X)<0In=1N,c}; 3)

where X is a vector of design variables (unknown design
parameters); Nx — the total number of design variables;
/, @ — some functions of the vector argument; X~ — optimal
design solution of the beam or optimum point (vector of op-
timal values of variable parameters of the structure); /* is the
optimal value of the objective function (criterion of optimal-
ity); Njc is the number of constraints-inequalities @n()?),
which determine the area of admissible design solutions 3.

The vector of design variables X includes parametric
design variables of continuous (real) and discrete (inte-
ger) types [22]. The width of the hexagonal opening a in
the beam web was considered as a parametric continuous
variable that varies continuously within some defined in-
terval of possible values. Parametric discrete variables vary
according to a defined finite set of possible values. As such
variables, the ordinal numbers (indexes) of the profiles in
the defined (considered) range of hot-rolled I-beam profiles
were considered, namely N; — for the top Tee and N, — for the
bottom Tee:

X={(N,N, a}. 4)

Fig. 2. Diagram of the castellated beam section

In the design cross-section of a castellated beam, the
material is concentrated on the line of the beam flanges
and represents two T-shaped sections that behave to-
gether (Fig. 2). The total height of the calculated beam
cross-section /2 and the height of the top 4, , and bottom £,
Tees of the beam depend on the vector of design variables
X={N, N, a}Tand are considered as state variables. Their
value is determined by the section height of the original
I-beams with variable numbers N; and N», which are used,
respectively, for the top and bottom Tees of the beam, and
the variable width a of the hexagonal opening.

The system of constraints (3) of the mathematical model
involved strength checks of the castellated beam according
to the level of normal stresses, formulated for the cross-sec-
tions located in the middle of each hexagonal opening. At the
same time, the number of openings 7 in the form of regular
hexagon with side a was calculated as a integer from divid-
ing the constant span of the beam L by the hole pitch s=3a.

The design constraints-inequalities were formulated for
four design cross-section points located at a distance of 0.5a
from the middle of the hole under consideration (Fig. 2):

— at design point 1 (according to the level of maximum
normal stresses occurring in the extreme fiber of the upper
flange of the beam):

L (Mh Qa1 ) )
R.’/NCL]!/Z,ner ZW%U“RX va1+11/*2

—at design point 2 (according to the level of normal
stresses occurring at the top of the hole):

t (Myd, Qa1 ]130; (6)
Ry, k Iy,E,neL 2Wy,1,min Iy,1 + [y,Z

—at design point 3 (according to the level of maximum
normal stresses occurring in the extreme fiber of the lower
flange of the beam):

L(Mp, Qo L ]—uo; M
R_yZYcL Iy,E,net 2Wy,2,max Iy,1+1y,2

—at design point 4 (according to the level of normal
stresses occurring at the bottom of the hole):

v, (Mydr, Qe Lo |, ®)
Ru2yr va):,nef 2Wyv2,mi" va1+]y*2



4,2 are the second moments of area of the upper

here I,y and ],
and lower T—sectlons of the beam relative to its own axis of

inertia parallel to the flanges; I, 5, — second moment of
area of the beam cross-section minus the opening relative
to the y-y bending axis, which is perpendicular to the beam
web; Wy, max and W, 1 min are, respectively, the largest and
smallest elastic section modulus of the upper T-beam sec-
tion; Wy 2 max and Wy, 2 min are, respectively, the largest and
smallest elastic section modulus of the lower T-beam section;
Ry1, Ru1 — design resistance of rolled steel for the upper
T-shaped section of the beam; Ry, R,» — design resistance
of rolled steel for the lower T-shaped section of the beam;
Y is the coefficient of beam operating conditions; M,,; and
Q. jare the bending moment and shear force that occur in the
jth design section of the beam and are calculated depending
on the location of this section and the scheme and magnitude
of the external load; d;, dy — distances from the center of
mass of the beam cross-section to the hole edge, respectively,
along the top and bottom of the hole; A4, 5 are the distanc-
es from the center of mass of the beam cross section to the
extreme fibers of the beam along the upper and lower flange,
respectively (Fig. 2).

The system of constraints (3) also included strength
checks of a castellated beam based on the level of shear
stresses, which were formulated as:

S
. — )
0.58dtm,1h;;Ry1Y(; ( )
wpS -1<0, {10

0.58at,, h LR,

where t,1 and ¢, are web thicknesses of rolled I-beams, from
which the upper and lower flanges of the castellated beam
are made, respectively, depending on the variable numbers of
profiles Ny and No; k3 is the distance between the centers of
mass of the upper and bottom Tees of the beam (Fig. 2), Wthh
depends on the vector of design variables X = {N,, N, a} ;
Qsup is the shear force acting in the cross section of the beam
located at a distance t=c+2.5a from the support, here c is the
width of the end-post or distance from the support section of
the beam to the edge of the first hole (Fig. 2), the value ¢ was
calculated depending on the variable a of the opening width,
the variable number of holes # and the constant span of the
beam L.

The local buckling verification of the web of the upper com-
pressed Tee in the area of the opening was formulated in accor-
dance with the design code requirements DBN V.2.6-198:2014
“Steel structures. Design norms” as:

b
1.0--LL<0; a1
wl
b
1 .
L _1<0; 12
2h,, a2
h1 Rtﬂ
w 1/;—130, 13
5 (13)

b
0.498[1+0.25 2—}/1]tw1
wl

where £, is the design height of the top Tee web of the upper
(compressed) zone, h,, =h, ,~t;, —1; bp,tp and ry are, respec-

tively, the flange width, the flange thickness, and the radius of

the flange-to-web junction of the top Tee of the beam, which
depend on the variable number of the profile Ny chosen for it.

The local buckling checks of cross-section elements, as
regulated by the codes, are derived from the assumption
that each cross-section element is considered as a long thin
plate properly restrained along one of the free edges. Such
supporting of the plates is provided by adjacent cross-section
elements. In view of this, conditions (11) and (12) must be
fulfilled for the T-shaped cross-section. Otherwise, it would
mean that either the width of the flange is insufficient to
provide adequate web restraining, or the web height is insuf-
ficient to provide adequate support for the flange.

Checking the end-post local stability of a beam end-post
with a perforated web is performed for unevenness in accor-
dance with DBN B.2.6-198:2014 “Steel structures. Design
norms:

h R

ef Y, max

2.5¢t, . E

@,min

~1<0, (14)

here £y is the design height of the web section of the beam web-
post, which is calculated as: s/~h—t;—r1—tp—19; h is the full
height of the developed section of the castellated beam, which
depends on the design variables vector; t;mni, is the smaller
of the web thicknesses of rolled I-beams, which are used to
manufacture the top and bottom Tees, tymin=min{ty1, two};
Ry max is the larger of the design resistances of the material of
rolled I-beams, Ry max—max{Ryi, Ry»}. Inequality (14) was not
included in the system of constraints (3) in the mathematical
model. In the event that the condition of ensuring local stabil-
ity of the beam web-post (14) is not fulfilled, the beam web is
strengthened with one-sided stiffeners, arranged in a checker-
board pattern in each web-post of the beam.

It should be noted that the verification of the later-
al-torsional buckling of the castellated beam was also not
considered as part of the system of constraints (3). It is
assumed that the compressed flange of a castellated beam
is restrained by the necessary number of shear ties, which
prevent horizontal displacements of the compressed flange
from the beam bending plane.

As part of the system of constraints (3), the stiffness
limitation of a castellated beam was considered at the level
of the maximum deflection in the middle of the beam span,
which was stated as for a beam loaded with a uniformly dis-
tributed load:

5 qul
384 0.95EI

y.Z.netJ ult

~1<0, (15)

here E is the modulus of elasticity of steel, E=2.06-10° MPa;
Jfuir — the limit deflection of the beam, which was taken in
accordance with the requirements of DSTU B V.1.2-3:2006
as f.=L/250; 0.95 is a coefficient that makes it possible to
take into account some increase in the deflection of the beam
due to the shear deformations of the web and the bending of
the top and bottom Tees of the beam [23].

The optimality criterion (2) considered was the volume
of material required for the manufacture of a castellated
beam:

I :f(X*)zgi?N V(N,N,,a). (16)

Finally, the task of optimizing the cross-section dimen-
sions of a castellated beam was stated as the search for the



optimal numbers of profiles Ny and N, for the beam top
and bottom Tees, as well as the optimal width a of the web
opening. At the same time, the criterion of optimality con-
sidered was the minimum volume of material (16). As part

of the system of constraints,
the conditions for ensuring
the necessary load-carry-
ing capacity of the beam
were considered in terms of
strength (5) to (8), local
stability (11) to (13), and
stiffness (15).

It should be noted that
as part of the mathematical
model of the stated optimi-
zation problem, it would also
be possible to consider ad-
ditional constraints that re-
flect the structural require-
ments for the construction
of such beams [24]. These
conditions can easily be ex-
pressed in the form of con-
straints on the upper and/or
lower bounds for the design
variables values.

The  dimensionality
of the parametric optimi-
zation problem consisted
of 3design variables and
8 constraints in the form
of inequalities. Taking into
account the small size of the
stated parametric optimiza-
tion problem, it was solved
by the method of exhaustive
search (full search) using
software developed in the
C# language in the MS Vi-
sual Studio 2022 environ-
ment [25].

5. 2. Results of opti-
mizing the cross-section
sizes of castellated beams
for different classes of
steel and load

As a result of the optimi-
zation calculation, castellat-
ed beams were obtained with
optimal cross-sectional di-
mensions depending on the
steel grade, the beam span
and the magnitude of uni-
formly distributed load act-
ing on the beam. The search
for optimal dimensions of a
castellated beam was car-
ried out for an assortment
of normal hot-rolled I-beams
with parallel flanges accord-
ing to GOST 26020-83. At
the same time, beam spans
of 12 m, 15 m, and 18 m were

considered at different values of transverse uniformly distrib-
uted load and different steel grades. The results of the optimi-
zation calculation of a castellated beam with a span of 18 m for
steel grades C235, C295, and C345 are given in Tables 1-3.

Table 1

Results of optimizing the cross-section dimensions of a castellated beam with a span of 18 m and
grade of steel C235

Uniform Thge?%gﬁilgaﬁoégfl;im_ Optimal dimensions I-beam with a solid Efficiency of
load g, - - web of the required | web openings
kN/m Top N; Bottom N, Qpenmg Beam height load-carrying capacity | application, %
width @, mm h, mm
5 45B1 40B1 225 612 50B2 21.942
10 50B1 50B1 260 717 60B1 17.220
15 55B1 55B1 290 798 70B1 17.369
20 60B1 60B1 325 874 70B2 12.791
25 70B1 60B2 365 960 80B1 7.129
30 70B2 70B2 396 1,040 90B1 10.015
40 80B1 80B1 443 1,175 90B2 7.440
50 90B1 90B1 496 1,323 100B2 9.704
55 90B1 90B1 480 1,309 100B3 18.728
65 100B1 100B1 536 1,454 100B4 9.556
70 100B3 100B1 540 1,466 - -
75 100B2 100B2 533 1,460 - -
80 100B3 100B2 500 1,436 - -
85 100B3 100B3 520 1,456 - -
90 100B4 100B3 500 1,443 - —
95 100B4 100B4 516 1,460 - -
Table 2

Results of optimizing the cross-section dimensions of a castellated beam with a span of 18 m
and grade of steel C295

The optimal profile num-

Uniform ber for beam flanges Optimal dimensions I-beam with a splid Efﬁciency of
load g, - - web of the required | web openings
kN/m Top N Bottom N, Qpenlng Beam height load-carrying capacity | application, %
width @, mm h, mm
5 45B1 40B1 225 612 50B2 21.94244
10 50B1 50B1 260 717 60B1 17.21991
15 60B1 50B1 325 824 70B1 17.82288
20 60B1 55B1 325 851 70B2 19.64315
25 60B2 60B2 325 878 80B1 14.69566
30 70B1 60B2 366 961 80B2 16.68309
35 70B1 70B1 391 1,030 90B1 18.46128
40 70B2 70B2 383 1,029 90B1 10.47703
45 80B1 70B2 406 1,096 90B2 13.22791
50 80B1 80B1 437 1,169 100B1 14.4004
55 80B2 80B2 431 1,171 100B1 6.048207
65 90B1 90B1 484 1,312 100B2 9.966547
75 90B2 90B2 472 1,309 100B3 7.814641
80 100B1 90B2 488 1,368 100B4 13.941
85 100B1 100B1 520 1,440 100B4 10.0247
90 100B1 100B1 509 1,431 - -
95 100B2 100B2 523 1,451 - -
100 100B2 100B2 513 1,442 - -
105 100B3 100B3 515 1,452 - -
110 100B3 100B3 506 1,444 - -
115 100B3 100B3 495 1,435 - -
120 100B4 100B4 507 1,452 - -
125 100B4 100B4 497 1,443 - -




Table 3

Results of optimizing the cross-section dimensions of a castellated beam with a span of 18 m and
grade of steel C345

Uniform The og;rgslir;g;r;:mber Optimal dimensions i\;:l(jaor?t\gg?ezz)rlég Efficiency of
load g, Opening | Beam height | load-carrying webppe}nngﬂs
kN/m Top N Bottom N, width @, mm 7. mm capacity application, %
5 45B1 40B1 225 612 50B2 21.94244
10 50B1 50B1 260 717 60B1 17.21991
15 60B1 50B1 325 824 70B1 17.82288
20 60B1 55B1 325 851 70B2 19.64315
25 70B1 55B1 382 950 80B1 17.11609
30 70B1 60B1 377 968 80B2 19.51083
35 70B1 70B1 404 1,041 90B1 18.0199
40 70B2 70B1 391 1,033 90B1 14.39022
45 80B1 70B2 419 1,107 90B2 12.74789
50 80B1 70B2 404 1,094 100B1 19.62236
55 80B1 80B1 437 1,169 100B1 14.4004
60 90B1 80B1 466 1,246 100B1 8.331669
65 90B1 80B2 453 1,238 100B2 14.37432
70 90B1 90B1 487 1,315 100B2 9.900444
75 90B1 90B1 475 1,304 100B3 18.82932
80 100B1 90B1 504 1,378 100B3 8.692654
85 100B1 90B2 494 1,373 100B4 13.76608
90 100B1 100B1 528 1,447 100B4 9.790021
95 100B1 100B1 517 1,438 — -
100 100B2 100B2 532 1,459 - -
105 100B2 100B2 522 1,450 — -
110 100B3 100B2 518 1,451 - -
115 100B3 100B3 516 1,453 — —
120 100B3 100B3 507 1,445 - -
125 100B4 100B4 518 1,462 — -
130 100B4 100B4 510 1,455 - -
135 100B4 100B4 503 1,449 — -

Tables 1-3 demonstrate that the use of a web openings
expands the scope of application of hot-rolled I-beams. The
technology of manufacturing castellated beams makes it pos-
sible to increase the beam section modulus to 35.48...50 %.
At the same time, the effectiveness of the use of the web
openings, which is estimated by the volume of material re-

quired for the manufacture of the beam,
reaches 23.19 %.

5. 3. Recommendations for the opti-
mal distribution of material in cross-sec-
tions of castellated beams

Our results of the optimization calcu-
lations have made it possible to plot the
dependence of the optimal height of the
beam depending on the ratio of the max-
imum bending moment occurring in the
beam to the yield point of steel (required
elastic section modulus). Fig.3-5 show
plots of the optimal height of a castellated
beam for different beam spans (12 m, 15 m,
and 18 m) and different steel grades (C235,
C255, C295, C325, and C375).

In addition, during the optimization
calculations, the problem of finding the
optimal width of the web opening in the

Beam optimal height, cm

beam was solved. After all,
increasing the load-carry-
ing capacity of the beam
for bending requires de-
veloping the section of the
beam in height as much as
possible by forming web
openings in the beam of
the maximum possible size.
At the same time, too large
web openings in the beam
lead to the premature ex-
haustion of its load-carry-
ing capacity under the con-
dition of ensuring strength
under normal stresses at
the design points at the top
and bottom of the opening,
while the extreme fibers of
the beam section remain
understressed.

Our results of optimiza-
tion calculations of castellat-
ed beams have made it pos-
sible to plot the dependence
of the optimal width of the
web opening in the beam de-
pending on the ratio of the
maximum bending moment
occurring in the beam to the
yield strength of steel. Thus,
Fig. 6-8 show plots of the
optimal width of the opening
in the beam web for differ-
ent beam spans (12 m, 15 m,
and 18 m) and different steel
grades (C235, C255, C295,
C325, and C375).

The above dependences of the optimal height of the cas-
tellated beam (Fig. 3—5) and the optimal width of the web
opening (Fig. 6—8) on the required elastic section modulus
of the beam cross section can serve as recommendations for
designers. According to these plots, it is possible to select the
dimensions of the cross-sections of castellated beams.
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Fig. 3. Plotting the optimal height of a castellated beam with a span of 12 m
depending on the required elastic section modulus of the beam
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Fig. 4. Plotting the optimal height of a castellated beam with a span of 15 m depending on the required elastic section modulus
of the beam
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Fig. 5. Plotting the optimal height of a castellated beam with a span of 18 m depending on the required elastic section modulus
of the beam
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Fig. 6. Plotting the optimal width of the hexagonal opening for a castellated beam with a span of 12 m depending on the required
elastic section modulus of the beam



The peculiarity of the proposed ap-
52 proach in comparison with existing ones
5 MQM is the simultaneous variation in the search
gﬁ 47 N D %~ =] for the optimum point of both the discrete
s / cross-section sizes of rolled I-beam profiles
=42 from which the beam is made, and the con-
E W tinuous size of the width of the hexagonal
g 37 o ——C235 | opening in the beam web. Thus, unlike [13],
% —=—(255 in Which. onl'y th.e height of the': ope.m'ng, the
= 35 | é 295 angle of inclination of the cutting line to the
g (325 axis of the beam, and the distance between
3 / the openings were considered as design vari-
s 2 ——C375 [ ables of the optimization problem, the vector
TQ of design variables with variables of discrete
= 22 // and continuous types proposed in this work
o makes it possible to obtain a better design
17 beam solution.

Required elastic section modulus, cm?

Fig. 7. Plotting the optimal width of the hexagonal opening for a castellated beam
with a span of 15 m depending on the required elastic section modulus of the beam
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It should be noted that it is not possible
to compare our results of optimization cal-
culations with the optimal design solutions
of castellated beams known and described in
the literature since the latter were obtained
for other design conditions (other calcula-

35 tion schemes and other design standards).
g . m However, the difference of this work com-
:ﬁ 50 SR VAV /e S/ NN pared to similar well-known studies (such
5 W as, for example, [15]) is obtaining the de-
8 45 G pendences of the optimal height of the cas-
° [X% tellated beam and the optimal width of the
< | N N .
£ 40 ——(C235 || web opening depending on the ratio of the
o0 y maximum bending moment in the beam to
E €255 the yield strength of steel. The specified
“ 35 / V4 C295 [ dependences are of practical value and could
= /7"Z/ / —— (325 be used in engineering design practice to
-E 30 — select cross-sectional dimensions of castel-
= /// ——C375 lated beams.
£ 95 It should be noted that the reported
g // results rgga?ding the optimal distribution

2 of material in cross-sections of castellated

Required elastic section modulus, cm?

Fig. 8. Plotting the optimal width of the hexagonal opening for a castellated beam
with a span of 18 m depending on the required elastic section modulus of the beam

6. Discussion of results of cross-sectional size
optimization of a castellated beam

Our results of the optimization calculations (Tables 1-3)
are primarily explained by the type of cross-section of the
structural member and its stress-strain state. This obviously
causes the presence of stress concentration in the corners
of the openings in the beam web and affects the obtained
optimal dimensions of the opening width. The reliability of
the optimization results of cross-section dimensions for cas-
tellated beams (Tables 1-3) is confirmed by the following:

— the rigor and correctness of the mathematical model of
the optimization problem of the investigated class of struc-
tures;

—the stability of the resulting numerical solutions in
relation to the initial data and the analysis of convergence of
the iterative search process.

0 2000 4000 6000 8000 10000 12000 14000 16000

beams (Tables 1-3, Fig. 4-9) have certain
application limits. In particular, they are
valid only for the range of normal I-beam
profiles and only for the case of an uniformly
distributed load acting on the beam when
the compressed beam flange is sufficiently
restrained from the bending plane and the
beam web has openings in the form of reg-
ular hexagons. It is under such conditions that our results
can be implemented in practice both at the stage of selecting
cross-sections of the studied class of structures, and at the
development of effective assortments of castellated beams.
However, the proposed methodology for finding the optimal
dimensions of the cross-sections of castellated beams could
be applied both for other conditions of loading and lateral
restraining of beams, and for other assortments of I-beam
profiles.

7. Conclusion

1. We have stated and solved the problem of finding the
optimal cross-section dimensions of castellated beams. In
this case, the vector of design variables contained variables
of continuous and discrete types, and the system of problem



constraints included load-carrying capacity constraints in
accordance with the code-based requirements.

2. As a result of the optimization calculation, castellated
beams were obtained with optimal cross-sectional dimen-
sions depending on the steel grade, the beam span, and the
magnitude of uniformly distributed load. Our optimiza-
tion calculations proved that the elastic section modulus
of the beam could be increased to 35.48...50.0 % due to
the use of a openings in the web. Castellated beams with
optimal cross-sectional dimensions at the same load-car-
rying capacity are characterized by lower steel consump-
tion (up to 23.19 %) compared to I-beams with a solid web.

3. Recommendations for the optimal distribution of mate-
rial in cross-sections of castellated beams have been devised.
These recommendations are represented in the form of plots
of the optimal beam height and the optimal width of the web
opening of the beam depending on the ratio of the maximum
bending moment occurring in the beam to the yield strength of
the steel. In this case, the average ratio of the optimal width of
the hexagonal opening in the beam web to the optimal height of
the beam was 0.34...0.37. The average ratio of the optimal beam
height to the optimal beam web thickness was 80.95...84.1.
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