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1. Introduction

Modern advances in digital technology have led to a 
significant increase in the power and functionality of digital 
devices. Processors, microcontrollers, graphics cards, and 
other electronic components are becoming larger and more 
powerful, which poses serious challenges for thermal man-
agement. High levels of heat generation lead to significant 
temperature gradients, which cause unwanted overheating, 
reduced performance, and reduced lifespan of digital devic-
es. Temperature fields in structural heat-active assemblies 
and elements of digital devices are one of the important 
reasons that lead to this. For example, a large number of 
electronic components placed on a limited board area creates 
a large difference in heat transfer and heat generation capac-
ity. This creates non-uniform thermal fields that require de-
tailed analysis and optimization to enable stable and reliable 

device operation. Research shows that thermal management 
is a critical aspect of achieving optimal performance and lon-
gevity of digital devices. Modern modeling and simulation 
technologies make it possible to analyze temperature fields 
in detail, evaluate the influence of various factors and devise 
effective cooling strategies. Heat sources in digital devices 
contain electronic components that consume power and 
generate heat during their operation. These sources can be of 
various types, in particular, processors, graphics processors, 
memory, logic gates, etc. Each of these components has its 
own power, which is determined depending on the operat-
ing frequency, voltage, and other functional parameters. To 
simulate heat sources in digital devices, thermal component 
models are designed. These models contain information 
about the thermal properties of the components, in particu-
lar, power, thermal resistance, and temperature coefficient of 
resistance. Such models make it possible to analyze the ther-
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and analysis of temperature fields in individual elements and 
nodes of electronic devices during local heating, taking into 
account thermal sensitivity.

2. Literature review and problem statement

Determination of temperature regimes in both homoge-
neous and heterogeneous structures attracts the attention 
of many researchers. Temperature plays an important role 
in determining the physical and chemical characteristics of 
materials. This effect becomes particularly significant when 
there are significant temperature fluctuations, as observed 
in heat conduction processes. Temperature differences lead 
to certain changes in material properties, which makes it 
difficult to determine the distribution of temperature and 
thermal stress. As a result, determining the thermoelastic 
state of structures becomes much more difficult.

In [1], the thermoelastic problem of an elliptical cavity in 
an infinite medium was investigated using the generalized 
complex variable method. As a result of the analysis of the 
thermoelastic state of the medium, the temperature depen-
dence of the coefficient of thermal conductivity, modulus 
of elasticity, and coefficient of thermal expansion are taken 
into account. Analytical expressions for temperature, heat 
flow, and thermoelastic fields were built taking into account 
these dependences. There are no studies on the influence 
of temperature dependence of thermoelastic parameters on 
temperature distribution, heat flow, and thermoelastic fields.

Analytical solutions of the distribution of temperature, 
displacements, and stresses in layered rectangular plates 
with a simple support, which are subjected to thermome-
chanical loads, are given in [2]. The material properties of 
the layers depend on the temperature. As a result of the 
analysis, it was found that it is not possible to determine the 
analytical solution of the boundary value problem for local 
thermomechanical loads.

Paper [3] investigated the thermoelastic parameters of 
functionally graded porous plates with different material 
distribution and found that thermal stresses are more sen-
sitive to material distribution than temperature and defor-
mations. It was established that the unsolved problem is the 
lack of an analytical solution of the boundary value problem 
for the structure under consideration, which would make it 
possible to determine the influence of thermal stresses on the 
distribution of material in the environment.

In work [4], research is aimed at determining the influ-
ence of the temperature dependence of material properties 
and indicators of the compositional gradient in functionally 
graded rectangular plates in relation to temperature, defor-
mations, and stresses. It was found that the indicators of the 
composite gradient were determined by a numerical method, 
which does not allow the computer algorithm to automati-
cally form composite materials.

The solution for the steady-state reaction of thick cylin-
ders subjected to pressure and external heat flow on the in-
ner surface is given in [5]. The influence of the temperature 
gradient on the deformations of the environment is not taken 
into account, which significantly worsens the accuracy of 
the model.

A thermal analysis of cylinders of different thickness, 
made of functionally graded materials, which are under the 
influence of non-uniform heat flows concentrated on the in-
ner and outer layers [6, 7], was performed. The above studies 

mal effects of individual components and their interaction in 
the system. In addition to modeling heat sources, an import-
ant aspect is the placement of components on the board. The 
distance between components and their placement can affect 
heat distribution in an electronic device. Optimal place-
ment reduces thermal interaction and enables more efficient 
heat transfer. Some digital devices contain dynamic heat 
sources that depend on operating conditions and tasks. For 
example, processors can change their frequency and power 
depending on the load. Modeling of dynamic heat sources 
requires taking these changes into account and analyzing 
the impact on temperature fields. For numerical modeling of 
temperature fields, it is necessary to take into account heat 
sources in the heat conduction equations. This requires the 
introduction of terms, which reflect the thermal generation 
in the relevant regions of the device. At the same time, the 
constant or variable nature of heat sources should be taken 
into account. In modern mechanical engineering, precision 
instrument manufacturing, and automobile manufacturing, 
in particular, for the mechanisms of automated control over 
production processes, separate nodes of structures and their 
elements are widely used in the form of spatial thermally ac-
tive structures with internal and external local heating. The 
design and development of such mechanisms involves not 
only expanding their capabilities and improving operational 
characteristics but also ensuring stable operation, high reli-
ability, and thermal stability. The increase in the capacities 
of such mechanisms and their integration into the system 
significantly complicates the problem of thermal resistance 
to thermal loads of their structures, which partially or com-
pletely fail due to thermal overloads.

The first step in the analysis of temperature regimes 
is to determine the thermal power of the device. Thermal 
power reflects the amount of energy that a device emits or 
gives to the environment, which is achieved by measuring 
the current and voltage that pass through the device, as 
well as using software tools for modeling thermal processes. 
The second step is to determine the thermal resistance of 
the device, which the device inflicts on the heat flow. This 
is achieved by measuring temperature gradients at differ-
ent points of the device. The third step is to determine the 
temperature regime of the device. The temperature mode 
displays the temperature of the device after a certain period 
of operation. This is achieved by measuring the temperature 
of the device after a long time of operation or using software 
tools for modeling thermal processes. Based on the results of 
analysis of thermal modes, decisions are made regarding the 
installation of additional measures to prevent overheating of 
the device. One of the ways to reduce the temperature of the 
device is to use fans or heat sinks to remove heat from its indi-
vidual components and elements. Materials with high thermal 
conductivity are also used to reduce the temperature of the 
device. An important aspect of the analysis of temperature 
regimes is the consideration of environmental factors, such 
as temperature, humidity, and atmospheric pressure. These 
factors can affect the temperature regime of the device and the 
need to use additional measures to reduce the temperature. In 
modern digital devices, temperature regimes play an import-
ant role in ensuring their stable and reliable operation. As a 
result, when designing and manufacturing digital devices, it 
is necessary to take into account the operating temperature 
conditions in order to prevent their overheating.

Therefore, it is a relevant task to carry out studies on the 
construction of mathematical models for the determination 
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Much of the effort in electronics thermal management 
has focused on developing cooling solutions that provide 
steady-state operation. However, electronic devices are 
increasingly used in applications with time-varying work-
loads. These include microprocessors (especially those used 
in portable devices), power electronic devices, and arrays of 
powerful semiconductor laser diodes. Transient solutions for 
temperature management are becoming essential to enable 
the performance and reliability of such devices. New require-
ments for temperature control in transient processes are de-
fined in [12], and cooling recommendations described in the 
literature for such applications are given, focused on the time 
scales of the thermal response. Management of temperature 
regimes is carried out experimentally, which significantly 
limits the establishment of optimal values of the temperature 
field for the effective functioning of electronic devices.

Paper [13] analyzed the features of the temperature field 
distribution and the reaction of the heat-conducting material 
as a function of its polishing parameters. Polishing of rails is 
widely used as a technique for re-profiling the surfaces of rails 
in case of wear, as well as for eliminating missing damage. 
However, polishing can lead to burn-out of the surface and 
the formation of a white etching layer (WEL). Taking into 
account the position of the rail surface, the result of the 
study was the construction of an analytical thermal model 
based on an unevenly distributed heat source for predicting 
the temperature field during the polishing process. The 
temperature as a result of the rail polishing experiment was 
measured using special thermocouples. At the same time, 
the reaction of the rail material was analyzed in detail from 
the point of view of surface heating and the white etching 
layer. The results show that at a polishing temperature of 
about 400 °C, WEL starts to appear on the rail surface. Re-
mains of austenite were found on the polished surfaces of the 
rails, which indicates the existence of martensite as a result 
of the effect of a combination of thermal and mechanical 
interactions. In order to describe the relationship between 
polishing temperature, surface burn-out and WEL, suitable 
diagrams have been built for use in real production. To ob-
tain a high-quality surface of the rails during polishing, it 
would be advisable to construct a mathematical model of the 
heat conduction process, which would significantly increase 
the accuracy of determining temperature gradients.

The features of temperature field inversion of heat source 
systems (Temperature Field Inversion of Heat-Source Sys-
tem, TFI-HSS) through neural networks with physical 
information are considered. It was found that the inversion 
of the temperature field of heat source systems with limited 
observations is important for monitoring the performance of 
the system. Although some methods, in particular interpo-
lation, have been proposed to solve the TFI-HSS problems, 
when using such methods, the interaction between data 
constraints and physical constraints is ignored, which causes 
their low calculation accuracy. A method of inversion of the 
temperature field based on a neural network was developed 
to perform the TFI-HSS task, a method for selecting the po-
sition of observations based on the number of conditions of 
the matrix of coefficients for choosing the optimal position of 
observations for noise was devised. For the TFI-HSS prob-
lem, the PINN-TFI method allows encoding the constraint 
terms into the loss function, and the problem formulated in 
this way turns into a loss function minimization problem. 
At the same time, it was found that noise observations 
significantly affect the reconstruction performance of the 

do not make it possible to analyze the thermal state of the 
cylinders for local thermal disturbance.

Work [8] gives the solution to the non-stationary problem 
of thermal conductivity and thermoelasticity for functional 
gradient thick spheres. Thermophysical and thermoelastic 
parameters of materials, with the exception of Poisson’s 
ratio, are arbitrary functions of the radial coordinate. The 
axisymmetric stationary problem of thermal conductivity 
and thermoelasticity for hollow functional gradient regions 
relative to the heat source was considered. The boundary 
value problem is simplified since the temperature distribu-
tion is determined only by one spatial coordinate.

Thermal modeling of electronic devices is one of the most 
important tools for assessing their reliability under various 
operating modes. In [9], a thermal model of electronic devic-
es is presented, which is based on experimental temperature 
measurement data obtained by an infrared camera. These 
data are input to the mathematical model built, which is 
based on the method of finite differences and some known 
physical dependences. The model constructed was verified 
by comparing simulation data with experimental data. It can 
be used to study the thermal behavior of the device under 
various operating conditions. The temperature distribution 
is determined experimentally, which introduces an error 
into the developed mathematical model based on the finite 
difference method. Consequently, the results contain signif-
icant errors.

In most portable electronic devices, in addition to the 
temperature of several heat sources, i.e., the junction tem-
perature, the body temperature, i.e., the skin temperature, 
must also be monitored to protect the user. Thus, building 
a compact device-level thermal model to predict skin tem-
perature will not only improve the efficiency of thermal 
design at an early stage but also help devise a model-based 
temperature control strategy. In paper [10], dynamic com-
pact thermal models of two portable electronic devices, 
including a smartphone and a laptop, were built based on 
the convolution method. Under the assumption of linear 
time invariance of the system, the skin temperature for the 
two test devices can be quickly determined after the step 
response of each heat source is obtained. The constructed 
model is experimental and does not allow determining the 
temperature regimes for more than two portable electronic 
devices.

The increase in specific power of electronic devices, due 
to high performance and miniaturization requirements, 
has prompted researchers to search for new and alternative 
methods of temperature control. Most electronic devices 
are frequently subjected to high frequency power cycles. 
Cooling systems must be able to manage transient thermal 
profiles to delay the temperature response and reduce tem-
perature gradients within the device that can lead to ther-
mal stresses. In the long run, this can lead to the failure of 
the electronic device. The integration of phase change mate-
rials (PCM) in heatsinks for electronic devices represents an 
interesting technical system to increase the thermal inertia 
of the cooling system while providing a more stable operat-
ing temperature in the electronic components. Paper [11] 
discusses recent research trends in this field, with a special 
focus on electric batteries, power electronics, and portable 
device applications. In the studies, the value of the work-
ing temperature is determined experimentally. The errors 
contained in these values significantly affect the efficient 
operation of electronic device components.
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PINN-TFI method. To reduce the need for noise observa-
tions, it is recommended to use the CMCN-PSO method to 
find optimal positions, in which the number of observation 
conditions is used to estimate certain positions. The results 
demonstrate that the use of the PINN-TFI method makes it 
possible to significantly increase the accuracy of forecasting, 
and when applying the CMCN-PSO method, a more con-
venient technique for obtaining a reliable temperature field 
can be found [14]. The results contain large errors, which 
prompts the construction of mathematical models for deter-
mining temperature gradients using modern analytical and 
numerical methods.

The authors of [15] report the results of an experimental 
and numerical study of the reconstruction of the tempera-
ture field based on acoustic tomography. They argue that 
obtaining a high-quality measurement of the temperature 
distribution is crucial for optimal control over the com-
bustion process in the boiler. At the same time, acoustic 
tomography (AT) is used to measure the temperature dis-
tribution by multi-beam acoustic time of flight (TOF). The 
reconstructed model and the TOF measurement model are 
crucial for the practical application of AT measurement. 
The temperature field is represented in the form of a recon-
struction model based on the approximation of the radial 
basis function with polynomial reproduction for solving the 
inverse problem. In such a reconstructed model, the effect 
of refraction of sound wave paths in a non-uniform tem-
perature field is taken into account. To improve the quality 
of temperature field reconstruction and protect it from 
noise, the Truncated Singular Value Decomposition Re-
construction (TSVDR) method was used. In addition, the 
generalized cross-correlation with the second correlation is 
applied to estimate TOF in order to effectively avoid inter-
ference from noise. Numerical modeling and experimental 
studies were carried out to evaluate the effectiveness of 
the given method of temperature field reconstruction. The 
results indicate that the model developed by the authors, 
taking into account the refraction effect, makes it possible 
to reconstruct the temperature distribution with higher ac-
curacy and better anti-noise ability compared to other ex-
isting methods. Experimental results were compared with 
thermocouple measurements. It was found that taking into 
account the refraction effect leads to better reconstruction 
characteristics. The value of the working temperature was 
obtained experimentally. Despite taking into account the 
effect of refraction, these values contain errors. Research 
results will be more effective if a mathematical model for 
determining the temperature distribution in the environ-
ment is developed.

Existing methods have been improved and new ap-
proaches have been devised to construct mathematical 
models that allow analyzing heat exchange in piecewise 
homogeneous media [16, 17]. Planar and spatial models of 
heat exchange are given, in which the differential equa-
tions contain coefficients dependent on the thermophysi-
cal properties of the phases and the geometric structure. 
Approaches for determining analytical and analytical-nu-
merical solutions of boundary value problems of thermal 
conductivity are presented in [18]. Heat exchange pro-
cesses occurring in homogeneous and layered structures 
with foreign inclusions of canonical form were analyzed 
in [19, 20]. In those works, the models in which local 
heating is taken into account remained little studied. The 

use of classical analytical and numerical methods does 
not make it possible to effectively take into account the 
local thermal heating of individual elements and nodes 
of electronic device structures. Therefore, a technique for 
building mathematical models of thermal conductivity, 
which take into account external and internal local heat-
ing of media, is given.

3. The aim and objectives of the study

The purpose of our study is to construct linear and 
nonlinear mathematical models of thermal conductivity for 
isotropic spatial heat-active media that are subject to inter-
nal and external local heating. As a result, there is an oppor-
tunity to increase the accuracy of determining temperature 
fields, which will further affect the effectiveness of methods 
for designing modern electronic devices.

To achieve this goal, the following tasks must be solved:
– to build a linear mathematical model for determining 

the temperature field with a locally concentrated heat flow;
– to construct a non-linear mathematical model for de-

termining the temperature field with a locally concentrated 
heat flow;

– to build a linear mathematical model for determining 
the temperature field with internal heating of structures;

– to construct a non-linear mathematical model for 
determining the temperature field with internal heating of 
thermosensitive structures.

4. The study materials and methods

The object of our research is the heat conduction process 
for isotropic media heated by internal and external heat 
sources.

Hypothesis: the study was carried out within the frame-
work of the classical theory of thermal conductivity.

Accepted assumptions and simplifications in the re-
search process: media are not anisotropic, i. e., when their 
thermophysical parameters change in spatial directions and 
the heat conduction process is stationary since the change 
in the temperature field is determined only by spatial co-
ordinates.

The theory of generalized functions was used to build 
linear and nonlinear mathematical models for determining 
the temperature field and analyzing temperature regimes 
in spatial environments with internal and external thermal 
heating. This makes it possible to effectively describe the lo-
cal concentration of heat sources, which leads to the solution 
of boundary value problems of heat conduction, which con-
tain differential equations and boundary conditions with a 
singular right-hand side. The Kirchhoff transformation was 
used to linearize nonlinear mathematical models of thermal 
conductivity.

An isotropic layer assigned to the cylindrical coordinate 
system (Orjz) is considered. On the boundary surface of 
the layer L+={(r, ϕ, h): 0≤r≤R, 0≤ϕ≤2p} the given structure 
is heated by a concentrated heat flux, the surface density 
of which is q0=const, and on the other surface of the layer 
L–={(r, ϕ, –l): 0≤r<∝, 0≤ϕ≤2p} convective heat exchange 
occurs with the environment with a constant temperature 
tc=const according to Newton’s law (Fig. 1).
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Fig.	1.	Section	of	an	isotropic	layer	with	a	plane	φ=0,	which	
is	heated	by	a	heat	flow

In the given structure, it is required to determine the 
temperature distribution t (r, z) according to the spatial 
coordinates r, z, which is obtained by solving the heat con-
duction equation [16–20]:

( )  = 
1

div grad , 0,r T r z
r

   (1)

with boundary conditions containing a discontinuous right 
part:

( ) ( )
=−

=−
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where T(r, z)=t(r,z)–tc; λ ‒ thermal conductivity coefficient 
of the layer;

α ‒ coefficient of heat transfer from the boundary surface 
of the layer L–;
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ζ = ζ =
 ζ <



1, 0,
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S

where S± (ζ) are asymmetric unit functions [16–20].
In the case of constructing a nonlinear mathematical 

model for determining the temperature field with a locally 
concentrated heat flow, the case when the isotropic layer 
is thermosensitive (thermophysical parameters depend 
on temperature) is considered. Taking into account the 
thermal sensitivity, the temperature distribution t(r, z) 
according to the spatial coordinates r, z in the given struc-
ture is obtained by solving the nonlinear heat conduction 
equation [16–20]:

( ) ( ) λ = 
1

div grad , 0,r t t r z
r

 (3)

with boundary conditions containing a discontinuous right 
part:
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where λ(t) is the coefficient of thermal conductivity of the 
thermosensitive layer.

An isotropic layer assigned to the cylindrical co-
ordinate system (Orjz) is considered in the region 
Ω0={(R,φ,h):0≤φ≤2π}, which has uniformly distributed 
internal heat sources with a specific power q0=const. On the 
boundary surface of the layer L+={(r, ϕ, h): 0≤r<∝, 0≤ϕ≤2p} 
there is convective heat exchange with the environment 
with a constant temperature tc=const according to Newton’s 
law, and the other surface of the layer L–={(r, ϕ, –l): 0≤r<∝, 
0≤ϕ≤2p} is thermally insulated (Fig. 2).

Fig.	2.	Section	of	an	isotropic	layer	with	a	plane	φ=0,	
which	is	heated	by	internal	heat	sources	concentrated	in	the	

region	Ω0

In the given structure, it is necessary to determine the 
temperature distribution t(r, z) according to the spatial 
coordinates r, z, which is obtained by solving the thermal 
conductivity equation with a discontinuous right-hand 
side [16–20]:

( ) ( ) ( )− −  = − −  λ
01

div grad , ,
q

r T r z S R r S z
r

 (5)

and boundary conditions:

( ) ( )
=

=

∂ α=
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,
, ,

z h
z h

T r z
T r z

z

 ( )
=−

∂
=

∂
,

0.
z l

T r z

z
 (6)

In the case of building a nonlinear mathematical model 
for determining the temperature field with internal heating 
of thermosensitive structures, the case when the isotropic 
layer is thermosensitive was considered. Then the tempera-
ture distribution t(r, z) along the spatial coordinates r, z in 
the given structure for this case is obtained by solving the 
nonlinear heat conduction equation with a discontinuous 
right-hand side [16–20]:
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( ) ( ) ( ) ( )− − λ = − −  0

1
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r
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and boundary conditions:
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5. Results of research into the process of constructing 
mathematical models of thermal conductivity for isotropic 

spatial heat-active media

5. 1. Linear mathematical model for determining the 
temperature field with locally concentrated heat flow

Henkel’s integral transformation along the r coordinate 
was applied to equation (1) and boundary conditions (2), 
and as a result, a second-order ordinary differential equation 
with constant coefficients was built:
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– Bessel function of the first kind of the ν-th order; ξ is a 
parameter of Henkel’s integral transformation.

The general solution to equation (10) is defined as:

( ) ξ −ξ= +1 2 ,z zT z c e c e

where the integration constants c1 and c2 are found using the 
boundary conditions (11). As a result, it is obtained:
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Here:

( ) ( ) ( ) ( ) ( )−ξ + ξ += λξ − α + λξ + α ,� z l z lE z e e

( ) ( ) ( ) ( )ξ + −ξ += λξ + α − λξ − α .h l h lE e e

The inverse Henkel integral transformation was ap-
plied to relation (12) and the following result was ob-
tained:

( ) ( ) ( )
∞

= ξ ξ ξ∫ 0
0

, d .T r z J r T z  (13)

As a result, the desired temperature field in the layer 
caused by external local heating (heat flow is concentrated 
on the boundary surface in the local area) is expressed by 
formula (13), from which the temperature value at an arbi-
trary point of the structure can be obtained.

5. 2. Nonlinear mathematical model for determining 
the temperature field with locally concentrated heat flow

The Kirchhoff transformation is considered:

( )
( )

( )
,

0
0

1
, d ,

t r z

r zϑ = λ ζ ζ
λ ∫   (14) 

where λ0 is the reference thermal conductivity coefficient of 
the layer material.

Expression (14) was differentiated in terms of the vari-
ables r and z, and as a result, we obtained:

( ) ( ) ( ) ( ) ( ) ( )∂ϑ ∂ ∂ϑ ∂
λ = λ λ = λ

∂ ∂ ∂ ∂
0 0, , , ,

, .
r z t r z r z t r z

t t
r r z z

 (15)

Taking into account expressions (15), the original equa-
tion (3) will take the following form for the function ϑ(r, z):

∆ϑ = 0,  (16) 

where ∂ ∂ ∂ ∆ = + ∂ ∂ ∂ 

2

2

1
r

r r r z
 is the Laplace operator in the cy 

lindrical coordinate system.
Boundary conditions (4) using relation (14) are trans-

formed to the following form:

( )ϑ → ∞ =, 0,r z r  

( )∂ϑ
=

→ ∞∂
,

0,
r z

rr  

( )
=−

∂ϑ
=

∂
,

0,
&z l

r z

z

( ) ( )−
=

∂ϑ
= −

∂ λ
0
0

,
.

&z h

r z q
S R r

z
  (17)

Using the Kirchhoff transformation (14) made it possible 
to reduce the nonlinear boundary value problem (3), (4) to 
a linearized differential equation with partial derivatives of 
the second order (16) and boundary conditions with a dis-
continuous right-hand side (17).

Henkel’s integral transformation along the r coordinate 
was applied to equation (16) and boundary conditions (17), 
resulting in a second-order ordinary differential equation 
with constant coefficients:

ϑ − ξ ϑ =
2

2
2

0,
d
dz

  (18) 

and boundary conditions:

( ) ( ) ( )
=− =

ϑ ϑ
= = ξ

λ ξ
0

10
0, ,

& &z l z h

d z d z Rq
J R

dz dz
 (19)
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where: 

( ) ( ) ( )
∞

ϑ = ϑ ξ∫ 0
0

, dz r r z J r r ,

– the transformant of the function ϑ(r ,z).
The general solution to equation (18) is defined as:

( ) ξ −ξϑ = +1 2
z zz c e c e ,

and using boundary conditions (19), the constants of inte-
gration c1 and c2 are found. As a result, the solution to prob-
lem (18), (19) was obtained:

( ) ( ) ( )
( )

ξ +
ϑ = ξ

λ ξ ξ +
0

10 2

ch
.

sh

z lRq
z J R

h l
 (20)

The inverse Henkel integral transformation was ap-
plied to relation (20) and as a result the expression for 
the linearizing function ϑ(r, z) was determined in the 
following form:

( ) ( ) ( )
∞

ϑ = ξ ξ ϑ ξ∫ 0
0

, d .r z J r z  (21)

The desired temperature field t(r, z) for the given struc-
ture can be obtained using the resulting nonlinear algebraic 
equation using relations (14), (21), after substituting specific 
expressions of the dependence of the coefficient of thermal 
conductivity of the structural material of the layer on tem-
perature.

5. 3. Internal heating of structures and a linear mathe-
matical model for determining the temperature field

Henkel’s integral transformation along the r coordinate 
is applied to equation (5) and boundary conditions (6). As a 
result, a transition to an ordinary differential equation of the 
second order with constant coefficients and a discontinuous 
right-hand side was performed:

( ) ( )
−

−

−− ξ = − ξ
λξ

2
2 0

12
,

Rqd T
T J R S z

dz   (22)

and boundary conditions:

( )
−

=−

= 0,

z l

d T z

dz  
( ) ( )

−
−

=
=

α=
λ

.
z h

z h

d T z
T z

dz
 (23)

The general solution to equation (22) is determined by 
the method of variation of constants:

( ) ( )( ) ( )ξ −ξ
−= + − ξ ξ −

λξ
0

1 2 13
ch 1 .z z Rq

T z c e c e J R z S z

Using boundary value conditions (23), a partial solution 
to problem (22), (23) is obtained in the form:

( ) ( ) ( )= − ξ
ξ

0
13

,
Rq

T z J R B z   (24)

where: 

( ) ( ) ( ) ( )−= ξ − +ch 1 ,B z z S z BE z  

( )
( ) ( ) ( )ξ + −ξ

λξ ξ − α ξ −
=

λξ − α − λξ + α2

sh ch 1
,

l h h

h h
B

e e

( ) ( )ξ + −ξ= +2 .z l zE z e e

The inverse integral Henkel transform is applied to rela-
tion (24) and the following is obtained:

( ) ( ) ( )
∞

= ξ ξ ξ∫ 0
0

, d .T r z J r T z  (25)

As a result, the desired temperature field in the layer 
caused by internal local heating (internal heat sources are 
concentrated in the volume of the cylinder Ω0) is expressed 
by formula (25), from which the temperature value at an 
arbitrary point of the structure can be obtained.

5. 4. Internal heating of thermosensitive structures 
and a nonlinear mathematical model for determining the 
temperature field

Taking into account expressions (14) and (15), the origi-
nal equation (7) is transformed into the following form:

( ) ( )− −∆ϑ = − −
λ

0
0

.
q

S R r S z  (26)

and boundary conditions (8), (9) according to relation (9) 
are transformed as follows:

( )ϑ → ∞ =, 0,r z r  ( )∂ϑ
=

→ ∞∂
,

0,
r z

rr
 

( )
=−

∂ϑ
=

∂
,

0,
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z
 (27) 

( ) ( )
=

=

∂ϑ α= −
∂ λ0 &

&

,
.

z h

z h

c

r z
t t

z
  (28)

Using the Kirchhoff transformation (14) made it possible 
to reduce the nonlinear boundary value problem (7) to (9) to 
a linearized second-order partial differential equation with a 
discontinuous right-hand side (26), linearized boundary condi-
tions (27), and a partially linearized boundary condition (28).

t(r, h) is approximated by a piecewise constant function:

( ) ( ) ( )
−

+ −
=

= + − −∑
1

1 1
1

, ,
m

l l l
l

t r h t t t S r r    (29)

where rl∈(0;∞); r1≤r2≤…≤rl-1; l is the number of interval 
divisions (0;R*); ( )1,lt l m=  – unknown approximate tem-
perature values t(r, h); R* is the value of the radial coordinate 
for which the temperature value t(r, h) almost reaches the 
ambient temperature tc (it is found from the corresponding 
linear boundary value problem).

A linear boundary condition was obtained as a result of 
substituting expression (29) into relation (28):

( ) ( )
=

−

+ −
=

 ∂ϑ α= + − − − ∂ λ  
∑

1

1 10
1&

.
z h

m

i i i c
i

t t t S r r t
z

   (30) 

Henkel’s integral transformation along the r coordinate was 
applied to equation (26) and boundary conditions (27), (30) 
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and as a result a second-order ordinary differential equation 
with constant coefficients with a discontinuous right-hand side 
was obtained:

( ) ( )−
ϑ − ξ ϑ = − ξ

λ ξ

2
2 0

12 0
,

Rqd
J R S z

dz
  (31) 

and boundary conditions:

=−

ϑ =
&
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z l

d
dz

 

=
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where: 
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m c i i i i
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A t t r J r t t  
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ζ
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dS

d
. 

– asymmetric Dirac delta functions [16–20].
The general solution to equation (31) is defined as:

( ) ( )( ) ( )ξ −ξ
−ϑ = + − ξ ξ −

λ ξ
0

1 2 10 3
ch 1 ,z z Rq

z c e c e J R z S z

and using the boundary conditions (32) the constants of 
integration c1 and c2 are found. As a result, the solution to 
problem (31), (32) is obtained:

( ) ( ) ( ) ( ) 
ϑ = α − ξ ξ λ ξ 

0
1 0 2

1
,

q
z AP z RJ R A z   (33)

where: 
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The inverse Henkel integral transformation was applied 
to relation (33) and the expression for the Kirchhoff func-
tion ϑ(r, z) was determined in the following form:

( ) ( ) ( )
∞

ϑ = ξ ξ ϑ ξ∫ 0
0

, d .r z J r z  (34)

After substituting the expression of the temperature 
dependence of the coefficient of thermal conductivity of the 
material of the layer into ratios (9), (34), after performing 
certain transformations, it is possible to obtain a system of 
nonlinear algebraic equations for determining the unknown 
approximate values ti ( )1,i m=  of the temperature t(r, h) at 
the boundary surface of the layer.

The desired temperature field t(r, z) for the given struc-
ture can be determined using the obtained nonlinear alge-
braic equation applying relations (14), (34), after substitut-
ing into them a specific expression of the dependence of the 
coefficient of thermal conductivity of the structural material 
of the layer on temperature.

The dependence of the thermal conductivity coefficient 
on temperature was considered in the form of a ratio:

( )λ = λ −0 1 ,kt
 
 (35)

where k is the temperature coefficient of thermal conductiv-
ity of the material of the layer.

Taking into account expressions (9), (16), (34), and (35), 
the relationship for determining the temperature t(r, z) in the 
layer region is obtained:

( ) ( )( )= − − ϑ1
, 1 1 2 , .t r z k r z

k
  (36)

Formula (36) fully describes the temperature field in the 
thermosensitive layer both during internal local heating and 
external heating.

According to formulas (6) and (36), numerical calculations 
of the temperature field were performed and its behavior in the 
environment was given depending on the spatial radial r and 
axial z coordinates for the following initial data: q0=200 W/m2; 
l=0.1 m; h=0.075 m; R=0.05 m; α=17.64 W/(m2·degree); the 
material of the medium is silicon, for which the coefficient 
of thermal conductivity λ=67.9 W/(degree·m) at a tempera-
ture of 27 °C (Fig. 3). For a heat-sensitive environment, the 
material of which is silicon, in the temperature range [0 °C; 
1127 °C] relation (35), as a partial case, as a result of the 
performed interpolation will be as follows:

( ) ( )( )67.9 W/ degree m 1 0.0005 t / degree .tλ = ⋅ −  (37)
 

 

 

b 

Fig.	3.	Dependence	of	temperature	T(r,	z)	on:	a	–	axial	z	for	
r=0.05;	b	–	radial	r	for	z=0.0375	coordinates

a
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The results show that the temperature, as a function of 
spatial coordinates, is smooth and monotonic, which con-
firms the adequacy of the constructed mathematical models 
to the real physical process.

The results obtained for the selected material (silicon) 
for the linear dependence of the coefficient of thermal con-
ductivity on temperature are almost no different from the 
results obtained for a constant coefficient of thermal con-
ductivity. Their insignificant difference is explained by the 
fact that the value of the temperature coefficient of thermal 
conductivity for silicon in the given temperature range, as 
shown by relation (37), is small enough.

6. Discussion of results of investigating the mathematical 
models built for determining temperature fields  

in spatial environments

The boundary value problems of thermal conductivity 
are stated according to how a real physical process is carried 
out in the given environments. As a result, differential equa-
tions of heat conduction and boundary conditions rigorously 
describe mathematical models of the stationary process of 
heat conduction, which correspond to the corresponding 
physical models. The shape of the curves in Fig. 3, which 
are built on the basis of numerical values of temperature as 
a function of spatial coordinates, obtained using analytical 
solutions of boundary value problems, testifies to the cor-
respondence of the results to the physical process. This is 
confirmed by the smoothness of the temperature function 
along the spatial coordinates and the fulfillment of the 
given boundary conditions on the boundary surfaces of the 
medium.

In our studies, the theory of generalized functions was 
used, which made it possible to effectively describe local 
temperature disturbances, as a result of which the resulting 
differential equations and boundary conditions contain dis-
continuous right-hand parts. For the complete linearization 
of the nonlinear boundary value problem (7) to (9), one of 
the approaches is given, in particular, the piecewise linear 
approximation of the temperature on the boundary surface 
of the medium by the spatial coordinate relation (29). This 
approach made it possible to effectively obtain the linear 
boundary value problem (26), (27), (30) for determining the 
linearizing function, which subsequently makes it possible 
to obtain the temperature distribution according to formu-
la (36) for a certain dependence of the thermal conductivity 
coefficient of the medium material on temperature.

It should be noted that the above cited works did not 
consider the local heating process, which is important to 
consider in modern mobile digital devices, when individual 
nodes and their elements are small enough, but emit signifi-
cant thermal energy. The use of generalized functions for the 
construction of the above mathematical models made it pos-
sible to investigate the effect of local heating on the tempera-
ture distribution in the environment by spatial coordinates.

Our studies consider only the stationary process of heat 
conduction; the studies were performed for homogeneous 
media. Consequently, such studies can be continued for 
heterogeneous media, for non-stationary heat conduction 
processes, as well as for anisotropic media.

Since in the architecture of modern electronic devices 
individual thermally active nodes and their individual ele-
ments are concentrated in the form of composite materials, 

consequently there is a need to build linear and nonlinear 
mathematical models of the heat conduction process for 
the media of the composite structure. As a result, the given 
mathematical models of heat conduction are simplified, but 
they make it possible to construct more complex mathemat-
ical models of the heat conduction process for composite 
media based on them.

On the basis of our analytical solutions to both linear 
and nonlinear boundary value problems of heat transfer, it is 
proposed to develop computational algorithms and software 
tools for their numerical implementation. This will make it 
possible to carry out research for a number of materials used 
in the process of designing digital electronic devices, regard-
ing the effect of their thermal sensitivity on the temperature 
distribution.

It is proposed to take into account the thermal sensitiv-
ity of structural materials, which significantly complicates 
the process of solving the relevant nonlinear boundary value 
problems of thermal conductivity. The sought-after solutions 
of these problems describe the temperature behavior as a 
function of spatial coordinates somewhat more adequately 
to the real physical process.

7. Conclusions 

1. A linear mathematical model for determining the tem-
perature field, and subsequently for the analysis of thermal 
regimes in the structures of electronic devices as a result of 
their heating by a locally concentrated heat flow, has been 
constructed. An analytical solution to the boundary value 
problem was obtained in the form of a improper integral, and 
based on this, the behavior of temperature as a function of 
spatial coordinates in the given structure was determined 
graphically.

2. A nonlinear mathematical model was built for de-
termining the temperature field, and subsequently for the 
analysis of thermal regimes in thermosensitive structures 
of electronic devices as a result of their heating by a locally 
concentrated heat flow. The linearization of this model was 
performed and the analytical solution to the boundary value 
problem with respect to the linearizing function in the form 
of an improper integral was obtained. With the use of this 
solution and the given dependence of the coefficient of ther-
mal conductivity of the medium material on temperature, 
it became possible to derive a nonlinear algebraic equation 
for determining the temperature field. The case of linear 
dependence of the coefficient of thermal conductivity for the 
selected medium material (silicon), obtained by the method 
of interpolation, was considered.

3. A linear mathematical model for determining the tem-
perature field, and subsequently for the analysis of thermal 
regimes in the structures of electronic devices as a result of 
their heating by locally concentrated internal heat sources, 
has been constructed. An analytical solution to a linear 
boundary value problem in the form of a improper integral 
was obtained, which can be used to develop computational 
algorithms, software tools for determining the behavior of 
temperature as a function of spatial coordinates in the given 
environment.

4. A nonlinear mathematical model was built for de-
termining the temperature field, and subsequently for the 
analysis of thermal regimes in thermosensitive structures of 
electronic devices due to their heating by locally concentrat-
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ed internal heat sources. An analytical solution to the non-
linear boundary value problem was obtained in the form of a 
improper integral, using which and the given dependence of 
the thermal conductivity coefficient of the medium material 
on the temperature, the desired temperature field can be 
determined. As a result of the linearization of the nonlinear 
boundary value problem using the Kirchhoff transformation, 
it was not possible to linearize one of the boundary condi-
tions. In this regard, the temperature on the boundary sur-
face of the medium was approximated by one of the spatial 
coordinates by a piecewise constant function, and as a result, 
fully linearized boundary conditions were obtained.
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