
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

6

MATHEMATICS AND CYBERNETICS – APPLIED ASPECTS

Copyright © 2024, Authors. This is an open access article under the Creative Commons CC BY license

DEVELOPMENT
OF A NON-

STANDARD
SYSTEM FOR
SIMPLIFYING

BOOLEAN
FUNCTIONS

M y k h a i l o S o l o m k o
PhD, Associate Professor
Department of Computer

Engineering
National University of Water and

Environmental Engineering
Soborna str., 11, 	

Rivne, Ukraine, 33028
E-mail: doctrinas@ukr.net

The object of this study is models of low-power digital logic circuits. The
problem being solved is the effectiveness of the technique for simplifying
Boolean functions to obtain optimal structures of logic circuits. A new theo-
rem of a non-standard system of simplification of Boolean functions has been
formulated, according to which in order to obtain a minimal function it will
suffice to perform all non-redundant operations of simple and/or super-gluing
of variables, which ultimately provides a minimal function in the main basis
without using an implicant table. Thus, the problem of simplifying Boolean
functions to the simplest normal equivalent is solved in one step. The inter-
pretation of the result is that the properties of 2-(n, b)-design combinatorial
systems make it possible to reproduce the definition of logical operations of
super-gluing variables, to represent logical operations in a different way, and
vice versa. This, in turn, ensures the establishment of the locations of equiva-
lent transformations on the binary structure of the truth table and the implica-
tion of a systematic procedure for simplifying Boolean functions by an analy
tical method. Special feature of the results is that unambiguous identification
of the locations of equivalent transformations is possible even when different
intervals of the Boolean space containing the 2-(n, b)-design systems have
common modules.

It has been experimentally confirmed that the non-standard system
improves the efficiency of simplifying Boolean functions, including partially
defined ones, by 200–300 % compared to analogs.

In terms of application, a non-standard system for simplifying Boolean
functions will ensure the transfer of innovations to material production: from
conducting fundamental research, expanding the capabilities of digital com-
ponent design technology to organizing serial or mass production of novelties

Keywords: simplification of Boolean functions, non-standard system,
intervals of Boolean space, location of equivalent transformations

UDC 519.718
DOI: 10.15587/1729-4061.2024.305826

How to Cite: Solomko, M. (2024). Development of a non-standard system for simplifying boolean functions. Eastern-European

Journal of Enterprise Technologies, 3 (4 (129)), 6–34. https://doi.org/10.15587/1729-4061.2024.305826

Received date 01.04.2024

Accepted date 06.06.2024

Published date 28.06.2024

1. Introduction

The digital industry implies a management system (road
map), which represents the unity of theoretical, production,
and economic processes and connections in the movement of
production funds. This process is continuous and purposeful,
so the management system must be controlled and managed.
For example, the technology of manufacturing microcircuits
becomes more expensive with each new reduction in the size of
semiconductor elements. Even when Moore’s law ceased to be
relevant due to the fact that the reduction of silicon transistors
approached physical limits, it turned out that improving the
KMON technology remained more profitable than looking for
something fundamentally new.

GlobalFoundries is rebuilding its advanced FinFET road-
map to serve the new wave of customers that will adopt the
technology in the coming years. The company will shift deve
lopment resources to make its 14/12 nm FinFET platform more
relevant to these customers by providing a range of innovative
IT solutions and features. To support this transition, GF is sus-
pending its 7 nm FinFET program indefinitely and restructur-
ing research teams to support its expanded portfolio initiatives.

The race to physically reduce the size of transistors for
digital devices has stopped but the performance of chips is in-
creasing. This, in particular, is due to the use of 3-dimensional
integration, photonic crystals, including the results of de-
signing based on logical functions. Measures to simplify logic

functions for the design of digital circuits will always be used
since low power supply, cheapness, and speed of calculation
are important, and are universal and relevant parameters,
regardless of the dynamics of the industry, when design stan-
dards are reduced, or production programs are introduced
that are implemented outside the boundaries of Moore’s law.

The logical operations of the analytical method for the
equivalent transformation of Boolean functions are neither
systematic nor suitable for computer implementation. In ad-
dition to the above, this technique takes more time to simplify.

Possible measures to overcome the problem of imple-
menting the simplification of Boolean functions by an analy
tical method are the use of hermeneutics [1, 2], metadata [3],
established locations of equivalent transformations [4], im-
plication of the algorithm of simplification of Boolean func-
tions. As a result, verbal procedures of algebraic transforma-
tions are replaced by equivalent figurative transformations.

The figurative form of information, in particular, in the
form of combinatorial objects, passes possibly accidentally
from the tendency of causality into the necessary-valid tenden-
cy of the sequence of a non-standard procedure, which in the
end should provide more chances to determine the algorithm
for simplifying Boolean functions when they are represented
in a visual matrix form. The combinatorial objects in this
case will be 2-dimensional complete 2-(n, b)-design, and/or
incomplete 2-(n, x/b)-design systems with repetition and are
actually combinatorial images. The model of non-standard

Mathematics and Cybernetics – applied aspects

7

simplification of Boolean functions, which needs to be rep-
resented, admits the peculiarity that there is some analogy
of the algorithm, which transforms the «messy» complexity
of the simplification procedure by the analytical method into
a complex order of figurative transformations.

Given this, a topical aspect of theoretical scientific re-
search on the non-standard system of simplification of Boolean
functions is studies aimed, in particular, at:

– obtaining a new result when simplifying Boolean functions;
– measurement and evaluation of the results of the im-

plementation of a non-standard simplification system in the
real synthesis of digital components with their further appli-
cation in digital technologies;

– cost optimization of the technology of minimization of
Boolean functions;

– ensuring the reliability of the obtained minimal forms
of Boolean functions using a non-standard system of simpli-
fying functions.

2. Literature review and problem statement

A new method for simplifying Boolean functions based
on a directed selection of possible minimization paths ac-
cording to the criteria of a necessary and sufficient condition
is represented in [5]. It is noted that the proposed method is
an improvement of the methods of simplification by parts,
parallel decomposition, and other methods. The considered
method was developed on the basis of a new way of recording
individual Boolean functions in the form of indices of signi
ficant rows of the truth table. The advantage of the method is
the two-stage simplification of the specified functions, which
makes it possible not to use the directed sorting criterion
directly. When implementing the method, only single vari-
able values are processed in the columns of the truth table,
which reduces the amount of data processing. The machine
implementation of the method uses the parallelization of
the function simplification procedure. To confirm the theo-
retical statements of the reported method [5], it is advisable
to represent the results of the simplification of the Boolean
function in a demonstration example.

A new algorithm for finding simple implicants, which
uses the ideas of Quine and McCluskey in a more thorough
implementation, is considered in [6]. The algorithm has
a complexity of O(3nn) bit operations on any function of
n variables, which is further reduced by implementing a bit-
fragment style that makes maximum use of processor re
gisters. A new implementation based on the bit slicing
technique is proposed, which is particularly applicable in the
implementations and designs of symmetric key cryptograph-
ic primitives such as block ciphers and is called DenseQMC.
The idea is that processor instructions operate on entire
registers rather than individual bits. The most common size
of the general register is ω = 64 bits, although there are even
vector expansions handling more bits at once. In essence, you
can perform a bitwise operation on a register, such as OR,
AND, NOT ω bits in parallel using a single instruction. All
such bit streams are always aligned by the least significant
bit of the register and complemented to the size of the re
gister. When these bit streams are stored in memory, they are
called modules. Unused bits in modules are not used (that is,
wasted). Therefore, it is desirable to choose a block size equal
to a small multiple of the register size, close to the maximum
capacity. Best practice is 256-bit modules. For this block size,

only 5 % of memory is wasted. This is a small multiple of the
64-bit register size provided by modern high-performance
CPUs and also corresponds to the bit size of the AVX2
vector extension. These bitwise operations require, however,
a regular data structure.

The new approach expands the possible number of n
input variables of the function to n = 23 when performing
the task on a laptop and to n = 27 when working on a server
equipped with 1 TiB of RAM. The efficient solution of the
first step of the Quine-McCluskey algorithm opens up a pros-
pect for fast heuristic approximate methods for the second
step of the algorithm.

Work [6] gives a description of a common error in imple-
mentations of the Quine-McCluskey algorithm, which leads
to a quadratic slowdown of calculations. A corrected imple-
mentation of the Quine-McCluskey algorithm in the form of
a classical approach – SparseQMC – is also presented and
freely available.

The general problem of calculating the smallest simple
representation of a non-clausal propositional formula, which
is called formula simplification, is considered in [7]. In addi-
tion to the above, the paper proposes a new, fully SAT-based
approach to the problem of formula simplification. In this
regard, the original problem posed by the Quine-McCluskey
procedure can be considered as a special case of the problem
discussed in this paper. Experimental results demonstrate
that the SAT-based approach to formula simplification is
a viable alternative to existing implementations of the Quine-
McCluskey procedure.

A typical Quine-McCluskey implementation starts by
computing all prime implicants of the CNF formula or DNF,
and then implements a cover with the minimum number of
prime implicants equivalent to the original function. A more
general scenario is when the original formula is non-clausal.
Obviously, it is still possible to generate all the implicants
of the formula, then generate all the prime implicants, and
then do the minimal cover. However, in practice, there may
be a number of implications far greater than the number
of simple implicants. Here I can add that the apparatus for
simplifying the non-clausal formula is sufficiently developed,
in addition to the implementation of optimal coverage.
It should also be noted that work [7] does not provide an
acceptable demonstration example. This makes it impossible
to quickly compare and evaluate the method from [7] with
other simplification methods.

The analysis of three possible (practical) approaches to
solving the problem of obtaining minimal propositional for-
mulas in conjunctive normal format (CNF) or in disjunctive
normal format (DNF) for their use in hardware design is con-
sidered in paper [8]. First, the use of brute force (Quine-Mc-
Cluskey algorithm). To do this, all possible formulas are
generated in increasing size and checked whether they are
equivalent to the original formula. Second, generation of
Zeitin coding for all formulas and verification of equivalence
with the original using SAT solvers. Third, encoding the prob-
lem as a Quantitative Boolean Formula (QBF) using a QBF
solver. The results show that the QBF approach significantly
outperforms the other two. Therefore, QBF solvers represent
a state-of-the-art solution for Boolean minimization.

The comparison criterion represents the average and me-
dian time required for the three algorithms relative to the size
of the original formula and the resulting minimized formula.
Paper [8] also notes that although in most cases (given the me-
dian) the three algorithms minimize the formula in less than

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

8

one second, for function sizes less than 20 (variables), only
a few cases force the SAT basis to require an average about
1 hour of time when the function size is close to 20 (variables).

The practice of hardware design of digital devices, how-
ever, involves a management system that represents the unity
of production and economic processes and connections in the
movement of production funds. This process is continuous and
purposeful, so the management system must be controlled and
managed. The algorithm for simplifying Boolean functions
belongs to the project and production management system.
Let some algorithm simplifies the function faster by 1 hour.
For strategic management, this gives a temporary advantage
because the competitive pressing after 1 hour will catch up
with the production and make it uncontrollable, and therefore
the management system will not be continuous and focused.
A fast algorithm becomes a fakir for 1 hour. In contrast to the
execution time of the algorithm, the criterion of optimal sim-
plification of the function directly affects the area of the chip,
power consumption, and heat generation of the digital device.
In this regard, the quality criterion of simplification provides
an innovative process, and therefore forms a stable unity of
production and economic processes for hardware design.

Work [8] does not provide an acceptable demonstration
example, which does not make it possible to quickly compare
and evaluate the accuracy of the simplification of logical for-
mulas by the presented method with other methods.

A new heuristic technique for simplifying Boolean func-
tions is reported in [9]. In general, the exact Boolean simpli-
fication problem is NP-complex, even – complete. Therefore,
with an increase in the bitness of the function, exact ap-
proaches quickly become infeasible. Therefore, simplification
methods in this area are often a compromise between the
quality of the result and the execution time. With the help
of algebraic coding, the minimization problem is transferred
to the algebraic domain, in which the algorithms for calcu-
lations are applicable on the Graebner basis. An equivalent,
more compact version of the Boolean formula is reconstruc
ted in the Graebner basis. It is noted in [9] that the consid-
ered approach is the first one that uses the Graebner basis
for simplifying Boolean functions. Given an input formula
in DNF, the method encodes it as a system of equations. The
resulting Graebner basis can thus again be interpreted as an
empirically smaller equivalent Boolean formula. The method
is especially suitable for formulas that contain many XOR
operations. It is also noted in [9] that currently the consid-
ered algorithm can process functions of up to 20 input bits,
while exact synthesis can only process up to 8 input bits. Em-
pirically, the algorithm produces smaller formulas compared
to two-level minimization by the ESPRESSO algorithm.

The method for simplifying the terms of a Boolean
function in the context of a formal, axiomatically defined
theory is considered in [10]. The key idea of the method is
to represent large, even infinite sets of terms using special
data structures, which makes it possible to apply axioms to
sets as a whole, rather than to individual terms. In this case,
the terms can be simplified (i.e., minimized) in linear time.
The method is demonstrated for Boolean terms with a small
number of variables. Also, in [10], a «targeted» algorithm is
proposed, which calculates only small parts of the underlying
theory in order to simplify a specific term. Simplifying a term
means choosing the simplest term in the equivalence class.
It is shown that the algorithm is able to simplify Boolean
terms with a much larger number of variables, but optimality
can no longer be certified. Considering the presented method,

it is obvious that the results of simplification [10] will be
similar to the results of applying the heuristic technique for
simplifying Boolean functions.

Obtaining all simple implicants of the Boolean function
by expanding and simplifying the format of the product of
the sum of literals is demonstrated in [11]. This gives a new
method for generating all prime implicants. A simple algo-
rithm for obtaining one minimal set of simple implicants
from all possible simple implicants without using minterms is
presented. Examples are given to illustrate the method. The
new approach has two important advantages:

1) it can use any form of representation of the underlying
basis function (no minterms or maxterms are required, which
are usually too many);

2) it makes it possible to break a large function into smaller
functions and manipulate them.

After all simple implicants are generated, the next task is
to obtain one minimal set of them so as to cover all the min-
terms of the function. The presented method is noticeably
different from many known methods for simplifying Boolean
functions, in particular, not all rules of Boolean algebra are
used here. The specified feature of the method can reduce
the entropy of the recommendations regarding the rational
search for minimal dead-end forms of Boolean functions by
the analytical method.

Paper [12] considers the use of parallel computing for
the implementation of the Quine-McCluskey algorithm. The
Quine-McCluskey algorithm has naturally parallel parts
that can be implemented on a SIMT architecture, and thus
on a GPGPU, to find simple implicants. The parallel part of
the algorithm concerns the process of combining strings. The
problem calculated by this algorithm is NP-complex, and the
execution time of the algorithm increases exponentially with
the increase in the number of variables. The goal is to prove
that the parallel implementation of the Quine-McCluskey
algorithm on graphics processors (GPUs) gives a signifi-
cant acceleration of the computational process. Algorithm
parallelization is implemented using Compute Unified De-
vice Architecture (CUDA), which is a parallel computing
platform and programming model created by NVIDIA and
implemented by the graphics processing unit (GPU).

The synthesis of partial specifications of logical cir-
cuits (LSFPS) is presented in [13]. LSFPS is the problem
of finding a hardware implementation of partially defined
Boolean functions. Logical Synthesis from Partial Specifica-
tions (LSFPS) introduces the additional concept of «don’t
know» to terms that are not in specifications. The exact
solution to LSFPS is the optimal size logic scheme of the cor-
responding problem in which the undefined sets of variables
are invalid. In practice, specification information may not be
sufficient to determine exact functionality, so the goal becomes
maximizing the accuracy of the scheme over the available
subset of uncertain sets. Therefore, to the traditional goal of
minimizing the size of the scheme, the goal of maximizing the
accuracy of the scheme when evaluated by a subset of uncer-
tain sets is added. The problem is relevant because effective
solutions can lead to hardware-friendly machine learning
models that do not rely on black-box approaches. LSFPS
directly addresses the problem of automatically generating
optimal topologies for binary neural networks. In addition,
the combination of an exact solution with modern methods
for logical synthesis unlocks unprecedented opportunities for
optimization. Previous works have proven the effectiveness of
approximate logic synthesis (ALS) for designing circuits with

Mathematics and Cybernetics – applied aspects

9

sufficient accuracy. However, these methods sacrifice specifi-
cation accuracy, which excludes them from being legitimate
candidates for LSFPS. Paper [13] proposes the restoration
of accuracy, which involves the procedure of comparing an
approximate version of the scheme with a new one that satis-
fies the exact functionality of the specifications. Experimental
testing showed a reduction in the number of gates by 17.38 %
and a reduction in the depth of the logic circuit by 12.02 %.
The use of the procedure for restoring the accuracy of
the scheme based on the decomposition gives an accuracy
of 95.73 %, which exceeds the current level of ALS at which
the accuracy is 92.76 %.

Given the extensive research on logic synthesis for high-per-
formance systems, its potential role in the development of hard-
ware-aware machine learning techniques needs to be explored.
It is worth noting that some machine learning tasks allow for-
mulation as a fundamental problem of logical synthesis.

The problem of finding an approximate Boolean scheme
from a set of examples is considered in [14]. Many computer
programs are inherently error-tolerant. This makes it possi-
ble to reduce the precision of calculations to achieve greater
efficiency for chip area, computational performance, and/or
power consumption. In recent years, a number of automated
methods for approximate calculations have been proposed;
however, most of these methods require full knowledge of
the exact or «golden» description of the circuit. At the same
time, there is considerable interest in the synthesis of calcu-
lations based on examples, a form of supervised learning. Pa-
per [14] presents the relationship between supervised learn-
ing of Boolean schemes and existing work on the synthesis
of incompletely defined Boolean functions. When viewed
through the lens of machine learning, the latter work has
been shown to provide good training accuracy but low test
accuracy. The paper compares with previous work from the
1990s that uses mutual information to guide the search pro-
cess, aiming for good generalization. By combining this early
work with the current approach to learning logic functions,
a scalable and efficient machine learning approach for Boolean
circuits can be achieved in terms of area/delay/test-error
trade-off. The results of the study indicate that the proposed
method has the potential to generate Boolean schemes with
high accuracy from large training sets of examples with
a large amount of primary input data. However, this method
is limited to only 1-bit output. New research is needed that
will take into account word-level searches that will help effi-
ciently search logic values of a circuit with many bit outputs.

The method for minimizing Boolean functions, which is
based on nonlinear mixed integer programming, is reported
in [15]. Experimental results show that the method gives the
same or better results compared to other methods available
in the literature. However, other methods do not guarantee
obtaining a minimal solution. The main advantages of the pro-
posed method for minimization are that the presented method
guarantees obtaining a minimum function and can also be
used to minimize incompletely defined Boolean functions.

To confirm the theoretical statements of the reported
method [15], it is advisable to present a demonstration exam
ple of the simplification of a partially defined Boolean func-
tion by at least 4 variables.

In [15], it is also stated that all experimental examples
were run on the NEOS server with free access, which im-
plements deterministic algorithms. However, the NEOS
free access service limits the maximum calculation time to
8 hours, which is not enough to complete some of the examples.

Therefore, for such examples, the final solution is not found,
but instead the best solution is found.

The methods for simplifying Boolean functions, which
are considered in the literature [5–15], mainly demonstrate
the use of an additional mathematical apparatus for solv-
ing the Boolean problem, such as the DenseQMC cut bit
technique; a fully SAT-based approach to the problem of
simplifying a non-clausal propositional formula; checking
equivalence with the original using QBF solvers; transfor-
mation of the problem from the domain of Boolean algebra to
the classical algebraic domain, in which algorithms for calcu-
lations are applicable on the Graebner basis; the technique of
simplifying the terms of a Boolean function in the context of
a formal, axiomatically defined theory; parallel calculations
for the implementation of the Quine-McCluskey algorithm
implemented by a graphics processor (GPU). A mandatory
technological point for the implementation of the specified
algorithms and methods is the automation of calculations.

But additional mathematical apparatus complicates the
method. In turn, the increase in the complexity of the simpli-
fication of Boolean functions is accompanied by positive and
negative factors that can affect the innovative capacity of the
simplification technology in the future.

The problem is the «trigger causality» of the possible
consequence of the complication of the method, which is im-
portant for any IT production in any situation, in particular:

1) gradually increasing the potential of the innovation
process and transforming it into an innovation;

2) an additional mathematical apparatus complicates the
method to the point of self-denial, when only a mathematical
technique remains, unable to solve the Boolean problem in
practice.

In other words, is there a life cycle for a complex innova-
tion after methods for simplifying functions based, in parti
cular, on the use of:

– transfer of the minimization problem to the algebraic
domain, in which algorithms for calculations are applicable
on the Graebner basis [9];

– simplification of the terms of the Boolean function in
the context of a formal, axiomatically defined theory [10];

– machine learning techniques [13];
– techniques for finding approximate Boolean schemes, large

training sets of examples with a large number of primary input
data, methods for restoring the accuracy of a logical scheme [14];

– nonlinear mixed integer programming [15], and others.
The non-standard Boolean simplification system is based on

binary systems with repetition, 2-(n, b)-design, 2-(n, x/b)-de-
sign, which are both combinatorial objects that can be defined,
set, and logical operations, which can be carried out. Such pro
perties of the 2-(n, b)-design, 2-(n, x/b)-design systems ensure
the unambiguous identification of the locations of equivalent
transformations and the implication of a systematic procedure
for simplifying Boolean functions. This, in turn, makes it pos-
sible to reduce the complexity of simplification without loss
of functionality, compared to the algorithms and methods for
simplifying Boolean functions considered in works [5–15]. The
non-standard simplification system uses the visual-matrix form
of the analytical method [16] and does not exclude the manual
method for simplifying Boolean functions.

Thus, algorithms and methods, software tools created for
them [5–15] and a non-standard system for simplifying Boolean
functions have excellent approaches (principles). And so they
see different prospects regarding the possibility of algorithmic
simplification of Boolean functions.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

10

And this is a reason to believe that the software-techno-
logical base, which is represented by algorithms and methods
with additional mathematical apparatus for solving the
Boolean problem [5–15], is insufficient for conducting theo-
retical research on the optimal simplification of Boolean func-
tions. This predetermines the need to carry out research using
a non-standard system for simplifying Boolean functions.

In terms of application, a non-standard system for sim-
plifying Boolean functions could ensure the development
of the innovation process and the transfer of innovations to
material production: from decision-making, conducting fun-
damental research, expanding the capabilities of digital com-
ponent design technology based on Boolean functions in the
main {∨, ∧, ¬} and polynomial {∧, ⊕, 1} bases, construction of
prototypes, their testing, to the organization of serial or mass
production of novelties and their implementation.

3. The aim and objectives of the study

The aim of my work is to extend the non-standard system
for the simplification of disjunctive normal forms (DNF),
conjunctive normal forms (CNF) and polynomial normal
forms (PNF) of partially and fully defined Boolean func-
tions. This will make it possible to simplify and increase the
productivity of simplifying Boolean functions in the basic,
polynomial, and other bases, using their algebraic apparatus.

To achieve the goal, the following tasks must be solved:
– to demonstrate the property of combinatorial sys-

tems with repeated 2-(n, b)-design to the ability to repro-
duce (represent) the definition of logical super-gluing opera-
tions of variables in the form of changing their own definition
in the process of interaction with them;

– to establish the implication between combinatorial
objects, 2-(n, b)-design, 2-(n, x/b)-design, of the truth table
and equivalent transformations with a non-standard system
of simplification of Boolean functions;

– to state a theorem of a non-standard system for simpli-
fication of Boolean functions;

– to define the thesaurus of a non-standard system of
simplifying Boolean functions;

– to conduct a comparative analysis of the results of the
simplification of Boolean functions by a non-standard sys-
tem and examples of the simplification of functions by the
evolutionary method, genetic, swarm algorithms, and the
method for directed sorting in order to compare the cost of
implementing the minimum function.

4. The study materials and methods

The object of my research is models of optimal logic circuits
with a small chip area, power supply, and low heat generation.

It should be expected that the regular and constant
application of the visual-matrix form of the analytical
method for the simplification of Boolean functions
will make it possible to provide a one-step simpli-
fication procedure and formulate the correspond-
ing theorem.

The term «Binary combinatorial systems with
repetition, 2-(n, b)-design, 2-(n, x/b)-design» is
shortened to «combinatorial systems, 2-(n, b)-design,
2-(n, x/b)-design», «2-(n, b)-design, 2-(n, x/b)-design
systems».

Boolean. Some given set A implies the Boolean M(A),
which is the set of all subsets of the set A. Мk (A) shall denote
the Boolean, which is the set of all subsets of A containing
k elements. Let А = {a, b, c, d, e}, then:

M A

a b c d e a b a c a

a e b c b

() =

{ } { } { } { } { } { } { } { }
{ } { }

, , , , , , , , , , ,

, , , , ,

d

d{{ } { } { } { }
{ } { } { } { } {

, , , , , , ,

, , , , , , , , , , , , ,

b e c d c e

d e a b c a b a b ad e c d}}
{ } { } { } { } { }
{ }

,

, , , , , , , , , , , , , , ,

, , , , , ,

a a d

a b

c e e b c d b c e b d e

c d e c d{{ } { } { }
{ } { }{ } ∅



, , , , , , , ,

, , , , , , , , , .

a b a

a b b c a b

c e c d,e

d,e d,e c d,e































.

M A
a b a c a a b c

b b c c
2 () =

{ } { } { } { } { }
{ } { } { } {

, , , , , , , , , ,

, , , , , , ,

d e

d e d e}} { }










, ,
.

d e

M A
a b c a b a b a a

a d3 () =
{ } { } { } { } { }
{ }

, , , , , , , , , , , , , , ,

, , , , ,

d e c d c e

e b c dd b c e b d e c d e{ } { } { } { }










, , , , , , , , ,
.

The number of all k-element subsets of a set of n elements is:

N M A C
n

k n kk n
k()() = =

−()
!

! !
.

There is also equality:

Cn
k

k

n
n

=
∑ =

0

2 .	 (1)

Since Cn
k is the number of k-element subsets of a set of

n elements, the sum in the left part of expression (1) deter-
mines the number of all subsets, the set А = {a, b, c, d, e}. Thus,
the number of all subsets of set A will be:

N M A C C C C C C()() = + + + + + =

= + + + + + = =
5
0

5
1

5
2

5
3

5
4

5
5

51 5 10 10 5 1 32 2 .

Boolean configuration. The set А = {a, b, c, d, e}, in addition
to enumerating its elements, can also determine the numbers
of the positions where the element α is located. For example,
a can define the first position, b the second position on the
set А = {a, b, c, d, e}, etc. Subsets of the set А = {a, b, c, d, e},
in this case, are the subsets containing the element α in
k positions, k = 0, …, n, where n is the number of positions in
the set A. In the general case, the element α can occupy se
veral positions in the set A, which means that the element α
is repeated in the set A.

The positions in which the element α is present are
denoted by one (α = 1). Positions in which the element α
is missing are marked with zero (α = 0). Then the Boolean
configuration of the set А = {a, b, c, d, e} will take the form:

0 ,0 ,0 ,0 ,0 ; 0 ,1 ,0 ,0 ,0 ;

0 ,0 ,0 ,0 ,1 ; 0 ,1 ,0
1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2

() ()
() 33 4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4

,0 ,1 ;

0 ,0 ,0 ,1 ,0 ; 0 ,1 ,0 ,1 ,0 ;

0 ,0 ,0 ,1 ,1

()
() ()

55 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1

() ()
() ()

; 0 ,1 ,0 ,1 ,1 ;

0 ,0 ,1 ,0 ,0 ; 0 ,1 ,1 ,0 ,0 ;

0 ,,0 ,1 ,0 ,1 ; 0 ,1 ,1 ,0 ,1 ;

0 ,0 ,1 ,1 ,0 ; 0 ,1 ,1
2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3

() ()
() ,,1 ,0 ;

0 ,0 ,1 ,1 ,1 ; 0 ,1 ,1 ,1 ,1 ;

1 ,0 ,0 ,0 ,0

4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

()
() ()

(() ()
() ()

; 1 ,1 ,0 ,0 ,0 ;

1 ,0 ,0 ,0 ,1 ; 1 ,1 ,0 ,0 ,1 ;

1 ,

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 00 ,0 ,1 ,0 ; 1 ,1 ,0 ,1 ,0 ;

1 ,0 ,0 ,1 ,1 ; 1 ,1 ,0 ,
2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3

() ()
() 11 ,1 ;

1 ,0 ,1 ,0 ,0 ; 1 ,1 ,1 ,0 ,0 ;

1 ,0 ,1 ,0 ,1

4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

()
() ()
()) ()
() ()

; 1 ,1 ,1 ,0 ,1 ;

1 ,0 ,1 ,1 ,0 ; 1 ,1 ,1 ,1 ,0 ;

1 ,0

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 22 3 4 5 1 2 3 4 5,1 ,1 ,1 ; 1 ,1 ,1 ,1 ,1() ().

	 (2)

Mathematics and Cybernetics – applied aspects

11

From an examination of the configuration of Boolean (2),
it follows that it forms a complete combinatorial system with
the repetition of the element α, which I denote by:

2-(n, b)-design,

where n is the bit rate of the system block; b is the num-
ber of modules of the complete system, which is determined
by the formula b = 2n, the number 2 in front of the brackets
means the binary structure of the configuration (2). For
example, 2-(5, 32)-design is a complete binary combinatorial
system with repetition consisting of 5-bit modules, the num-
ber of modules is 32.

In the general case, the configuration of the truth table of
a given Boolean function, in addition to the submatrix of the
complete combinatorial system with repetition, 2-(n, b)-de-
sign, also contains the submatrices of the incomplete combi-
natorial system with repetition:

2-(n, x/b)-design.

In this case, x is the number of modules of an incom-
plete combinatorial system with repetition. For example,
2-(3,7/8)-design is an incomplete binary combinatorial sys-
tem with repetition consisting of 3-bit modules, the number
of modules is 7. Properties of an incomplete combinatorial
system with repetition 2-(n, x/b)-design also makes it pos-
sible to set rules that, in the general case, ensure effective
minimization of Boolean functions.

Visual matrix form. On the Boolean configuration (2),
I shall replace the variables:

– replace 1n with xn;
– 0n is replaced by xn .
Here, n is an index that determines the number of bits

of the literal «xn» or « »xn in a logical function minterm.
After replacing the variables with Boolean configura-
tions (2), I get the visual-matrix form of the 5-bit Boolean
function:

It should be noted that the visual-matrix form (4) rep-
resents the complete perfect disjunctive normal form (PDNF)
of a 5-bit Boolean function. Therefore, the PDNF of the
Boolean function (4) uniquely defines a complete combi-
natorial system with the repetition, 2-(n, b)-design (2), and
vice versa [17].

It is known that the reduction of a complete PDNF
of logical function always gives unity. For example, the
reduction of a 3-bit full PDNF of Boolean function takes
the form:

x x x x x x x x x x x x

x x x x x x x x x x x x
1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

+ + + +
+ + + + =

= xx x x x x x x x

x x x x x x x x

x x x

1 2 3 3 1 2 3 3

1 2 3 3 1 2 3 3

1 2 1

+() + +() +

+ +() + +() =

= + xx x x x x

x x x x x x x x
2 1 2 1 2

1 2 2 1 2 2 1 1 1

+ + =

= +()+ +() = + = .	 (5)

Considering (5), the operation of super-gluing variables
in the analytical representation can take the following form,
for example:

x x x x x x x x x x x x x x x x

x x x x x x x x x x
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1

+ + + +
+ + + 22 3 4 1 2 3 4

4
1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1

x x x x x x

x
x x x x x x x x x x x x

x x x x x

+ =

=
+ + + +

+ + 22 3 1 2 3 1 2 3

4

1 2 3 3 1 2 3 3

1 2

x x x x x x x

x
x x x x x x x x

x x x

+ +






=

=
+() + +() +

+ 33 3 1 2 3 3

4 1 2 1 2 1 2 1 2

4 1

+() + +()










=

= + + +() =

=

x x x x x

x x x x x x x x x

x x xx x x x x x x x x2 2 1 2 2 4 1 1 4+()+ +()() = +() = .

An interval of the Boolean space. The concept of a ternary
vector and an interval of a Boolean space is presented in [18]:

x x x x x x x x x x x1 2 3 4 1 2 3 4 1 3 4

0011

3

0111

+ =





















 7

,

0 11

3 7

−







,

.

x x x x x x x x1 2 3 1 2 3 1 3

100 110

 8,9

12,13

+ =
−









−






.




− −









 8

1 0

9 12 13, , ,
.

«Binary and decimal numbers in parentheses below the
sum indicate the rows of the truth table for which the corre-
sponding terms take the value of one. A binary expression in

which a dash occurs represents two binary
numbers formed by replacing the dash with
a «0» and then a «1». Similarly for a binary
expression, in which two dashes represent the
corresponding four binary numbers, formed
by replacing two dashes by entries «0» and
«0», «0» and «1», etc.» [18].

The decimal equivalent of the analytic
notation of the Boolean function is also given
in [18]:

T =
() ()
() () ()













∑
0 1 2 3 7 15 23 31

29 31 22 23 14 15

, , , , , , , ,

, , , , ,
.

T x x x x x x x x x x

x x x x x x x x

= + + +

+ +
5 4 3 3 2 1 5 4 3 1

5 4 3 2 5 4 3 2.

An ordered set of Boolean variables (x1, x2, …, xn) form
an n-component Boolean vector. The set consisting of 2n of
these vectors is called a Boolean space, which I denote by M.
Each vector from the set M is an argument of the Boolean
function f(x1, x2, …, xn), which returns the value 0 or 1 for
each set of variables (x1, x2, …, xn).

The easiest way to specify a Boolean function is to use
a truth table, which lists all possible sets of argument values
and their corresponding function values.

x x x x x x x x x x x x x x x x x x1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2, , , , ; , , , , ; , , , , ; , ,() () () 33 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4

, , ;

, , , , ; , , , , ; , , , ,

x x

x x x x x x x x x x x x x x x

()
() () 55 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1

() ()
() ()

; , , , , ;

, , , , ; , , , , ;

x x x x x

x x x x x x x x x x x ,, , , , ; , , , , ;

, , , , ; , ,

x x x x x x x x x

x x x x x x x x

2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3

() ()
() ,, , ; , , , , ; , , , , ;

, , , ,

x x x x x x x x x x x x

x x x x x

4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

() () ()
(() () () (); , , , , ; , , , , ; , , , , ;

,

x x x x x x x x x x x x x x x

x

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 xx x x x x x x x x x x x x x x x x2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3, , , ; , , , , ; , , , , ; , , ,() () () xx x

x x x x x x x x x x x x x x x

4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

, ;

, , , , ; , , , , ; , , , ,

()
() () ()) ()
() ()

; , , , , ;

, , , , ; , , , , ; ,

x x x x x

x x x x x x x x x x x x

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 22 3 4 5 1 2 3 4 5, , , ; , , , ,x x x x x x x x() ().

	 (4)

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

12

The representation of the function f(x1, x2, …, xn) can
be compressed if I limit myself to the enumeration of the
elements of its characteristic set, that is, those elements of
the space M on which the function f(x1, x2, …, xn) returns the
value 1. This set is denoted by M f

1 .
The compactness of the representation of the characte

ristic set M f
1 can be improved if you use ternary vectors, the

components of which can take as their values, in addition to
the symbols «0» and «1», also the symbol «–».

I shall interpret the ternary vector as a set of all Boolean
vectors obtained from it by all possible substitutions of the
values «0» and «1» instead of the value «–». It is worth
noting that carrying out all possible substitutions of the
values «0» and «1» instead of the value «–» is the process
of synthesis of a complete combinatorial system, 2-(n, b)-de-
sign, with its parameters. If the ternary vector has k va
lues «–», then it generates 2k Boolean vectors that form
the interval I(α, β) in the Boolean space, the minimum
element (α) of which is determined by substituting zeros
instead of «–», the maximum (β) – substitution of units [19].

For example, the ternary vector 11–0– in this interpre-
tation is considered as an interval of the space I(α, β) of five
Boolean variables formed by the following terms:

I Iα β, , .() = () =11000 11101

11000

11001

11100

11101

The components along which the boundaries (and, there-
fore, all the vectors of the interval) coincide are called the
external components of the interval, the rest are internal. The
external components form an implicant of rank (r), and the
number of internal components gives the bit rate of the in-
terval (n) [20]. The set of internal components of the interval
I(α, β) form a combinatorial system, 2-(n, b)-design, for this
example, 2-(2, 4)-design.

Numerical conjunct term. The correspondence between the
Boolean vectors α = x1x2… xn and the numbers N ∈{0,1,…,2n–1}
is established by the following relation:

N xi
n i

i

n

= × −

=
∑ 2

1

,	 (6)

where n is the bit rate of the Boolean vector, the components
of the vector x1x2…xn represent the binary numbers 0 and 1.

Let the Boolean vector α = 1010 be given. Substituting
its components into formula (6), I get the number N = 1×23+
+0×22+1×21+0×20 = 8+2 = 10.

The given number is N = 14. Expanding it into the sum of
powers of two: 14 = 8+4+2 = 1×23+1×22+1×21+0×20, I get the
Boolean vector α = 1110.

If I arrange the Boolean vectors α = x1x2…xn in lexico-
graphic order, then the integers Ni will correspond to the
numbers of the sets of variables (x1,x2,…,xn) in the truth table
of the Boolean function.

A conjunct term (minterm, constituent of a unit) is a term
that unites all Boolean variables in a direct or inverse code
with a conjunction sign. The minterm is denoted as follows:

F

x x x

i

n

=

()1 1 2, if the number of setting

is equal to

, ,...,

0, if the number of setting

is not equ

N ,

, ,...,x x xn1 2()
aal to N.











Example, F x x x x1 1 2 3 4= , F x x x2 1 2 3= .
The rank of the term r is determined by the number of

logical variables included in this term. For example, for min-
term F x x x x1 1 2 3 4= , the rank is r = 4, for minterm F x x x2 1 2 3= ,
the rank is r = 3.

In [21, 22] it is proposed to consider the numerical con-
junct term θr of rank r (i.e., a set of glued numerical minterms)
of the Boolean function f (x1, x2, …, xn) as a set-theoretic ele-
ment of a preformed set of conjunct terms of all ranks r (r = 0, 1,
2, ..., n), called a conjunct term field, namely: of rank n (subfield
of mingerms θn), ranks (n–1), (n–2), ..., 2, 1 (subfields of impli-
cants θn–1, θn–2, ..., θ2, θ1) and rank 0 (constant function 1–θ0).

In [23], a method for constructing the conjunct term field
of the Boolean function f(x1, x2, …, xn) is proposed, the essence
of which is the formation of subfields P P Pn

n
n
n

n
− −1 2 1, ,..., using the

matrices Ln
r of the literal masks l ∈{0, 1} and the simple im-

plementation of the recurrent procedure for their formation.
As a result, for a certain mask of literals of rank r, it is

possible to obtain 22n–r pseudo-ternary numbers. Then, if
instead of the symbol «–» I substitute all its possible values 0
and 1, then for a certain conjunct term of rank r it is possible
to obtain 2r numerical (decimal) minterms.

The transition from the analytical notation of the con-
junct term to its decimal equivalent, as an ordered set of
numerical minterms, is possible by filling the symbols «–»
in the pseudo-ternary code with the values 0 and l, starting
from the smallest, that is, the symbols «–» are replaced by the
system of 2-(n, b)-design illustrating an example:

x x x2 3 5 01 1

0 0 1 0 1

0 0 1 1 1

1 0 1 0 1

1 0 1 1 1

5 7 21 23⇒ − −() ⇒ ⇒ (), , , .

The technique for constructing a conjunct term field can
be successfully used to find a set of simple conjunct terms
when solving the problem of minimizing not only complete
but also partially defined Boolean functions, as well as their
systems specified by DNF [23].

5. Results of a non-standard system for simplifying
Boolean functions

5. 1. Determining logical operations for super-gluing of
variables by 2-(n, b)-design combinatorial systems

The relationship between the PDNF of the logical func-
tion and the complete combinatorial system with repetition,
2-(n, b)-design (2), and vice versa, is provided by the visual ma-
trix form (4). Therefore, the latter can be considered as an ab-
stract class, a superclass. An abstract class can only be an ancestor
class. Then instances of this class will be objects with attributes:

– perfect disjunctive normal form (PDNF) of the Boolean
function;

– a complete combinatorial system with repeated 2-(n, b)-
design.	 (7)

To reproduce (represent) the determination of the logical
operation for super-gluing of variables by combinatorial systems
with repetition, 2-(n, b)-design, a mechanism for providing poly-
morphism will also be needed. The literal meaning of this term
translated from Greek means «the presence of many forms». In
other words, polymorphism is the property of some object to
take different forms depending on the situation. In object-ori-
ented programming, this term is used in relation to a method.

Mathematics and Cybernetics – applied aspects

13

Properties of polymorphism make it possible to define
a class, which is a general description of some group of simi
lar objects of actual reality. But very often, describing such
a class, it is impractical or even impossible to specify the im-
plementation of some methods common to the entire group.
In this case, the methods are described as abstract, and their
implementation is not indicated.

In UML – the Unified Modeling Language – a class is
represented as a rectangle divided into three parts. The first
part contains the name of the class, the second – attributes, the
third – methods (Fig. 1).

Visual-matrix form
- perfect disjunctive normal form (PDNF);
- complete combinatorial system with repeated 2-(n, b)-design
- logical operation of super-gluing of variables ()
- logical operation of super-gluing of variables ()

 Fig. 1. Mapping a class to a UML diagram

Since the complete combinatorial system with repeated
2-(n, b)-design is a variant of the matrix representation of the
Boolean function, the logical operation of super-gluing variables
for the 2-(n, b)-design system will have the correct meaning.

The determination of the logical operation of super-glu-
ing the variables by the 2-(n, b)-design combinatorial system
is based on the presence of the same methods (logical opera-
tions of super-gluing the variables) in different objects from
the list of instances of the abstract class (7).

Given that full PDNF of the function:
– uniquely defines a complete combinatorial system with

repetition, 2-(n, b)-design (2), and vice versa [17];
– reduction of the full PDNF function always gives a unit (5),
this then gives reason to represent the logical operation

of super-gluing the variables by a complete combinatorial
system with repetition, 2-(n, b)-design, according to the fol-
lowing verbal concept:

2 1 2 1 2 1 2 3

1 2

 designn b x x x x x x x x x

x x x x

n n

n

,

...

() ≡ + + + =

= + nn n n

n n n n

x x x x

x x x x x x x x

() + +() +

+ + +() = + +−

1 2

1 2 1 1 1

...

... −−

− −

=

= +() + =
1

1 1 1 1x x xn n... 	 (8)

Thus, the 2-(n, b)-design system represents a logical ope
ration of super-gluing the variables (n > 1, b > 3).

For n = 1, b = 2, the combinatorial system, 2-(n, b)-design,
provides a logical operation of simple gluing of variables:

2 21 11 1 design() ., ≡ + =x x

Then the visual-matrix form (4) for the operation of su-
per-gluing the variables may take the following form, for example:

– the first rule of super-gluing for a 4-bit Boolean function:

x x x x
x
x
x
x
x
x
x
x

x

1 2 3 4

4

4

4

4

4

4

4

4

4

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

= .	 (9)

The literals repeated in the variable sets of the PDNF of
function (9) are simple implicants for the reduced form of the
Boolean function. Therefore, x4 is a simple implicant in the
shortened form of the Boolean function (9).

The general rule of gluing on the intervals of the Boolean
space containing combinatorial 2-(n, b)-design systems can
be formulated as follows: the sets of variables subject to glu-
ing are the number that is a power of 2. The new elementary
product obtained (prime implicant) is defined as the product
of variables that do not change their value on all sets that are
glued together. The number m of variables remaining in the
elementary product is determined by the formula:

m n M= − log ,2

where n is the number of function variables; M is the number
of sets to be glued. Therefore, for function (9), the number m
is m n M= − = − =log log .2 24 8 1

The ternary vector of the visual matrix form (9) repre-
senting the interval of the Boolean space I (0001, 1111) takes
the form:

(– – – 1).

The decimal equivalent of the analytical record of the
first rule (9) takes the following form:

x4 1

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

1 3 5 7 9 11 1

⇒ − − −() ⇒

⇒ ⇒ , , , , , , 33 15, ;()

– the second rule of super-gluing for a 4-bit Boolean
function:

x x x x

x x

x x

x x

x x

x x

1 2 3 4

3 4

3 4

3 4

3 4

3 4

0 0

0 1

1 0

1 1

= .	 (10)

The number m for function (10) is m n M= − = − =log log .2 24 4 2
m n M= − = − =log log .2 24 4 2

The ternary vector of the visual matrix form (10) repre-
senting the interval of the Boolean space I (0011, 1111) takes
the form:

(– – 11).

The decimal equivalent of the analytical record of the
second rule (10) takes the following form:

x x3 4 11

0 0 1 1

0 1 1 1

1 0 1 1

1 1 1 1

3 7 11 15

⇒ − −() ⇒

⇒ ⇒ (), , , ;

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

14

– the third rule of super-gluing for a 4-bit Boolean function:

x x x x

x x x

x x x

x x x
1 2 3 4

2 3 4

2 3 4

2 3 40

1

= .	 (11)

The number m for function (11) is m n M= − = − =log log .2 24 2 3
m n M= − = − =log log .2 24 2 3

The ternary vector of the visual matrix form (11) repre-
senting the interval of the Boolean space I (0111, 1111) takes
the form:

(– 111).

The decimal equivalent of the analytic notation of the
third rule (11) is as follows:

x x x2 3 4 111
0 1 1 1

1 1 1 1
7 15⇒ −() ⇒ ⇒ (), .

The first rule of super-gluing the variables uses the
2-(3, 8)-design system. The second rule uses a 2-(2, 4)-de-
sign system. The third rule uses a 2-(1, 2)-design system.
Rule (11) manifests itself as a simple gluing of variables and
is a partial case of rules (9) and (10).

The variables forming a complete combinatorial system
with repetition, 2-(n, b)-design, can occupy any bits of the
logical function.

The decimal equivalents of analytical entries (9) to (11)
directly represent the necessary intervals of the Boolean
space for carrying out equivalent figurative transformations
when simplifying Boolean functions.

The following examples demonstrate verbal and figura-
tive ways of simplifying Boolean functions, which represent
standard and non-standard implementations of their simpli-
fication algorithms.

Example 1. It is required to simplify the perfect disjunc-
tive normal form (PDNF) of a Boolean function using the
analytical method [24]:

f x y z xyz xyz xyz xyz xyz, , .() = + + + + 	 (12)

Solution.
When moving out of parentheses in the first pair of mint-

erms of function (12) xy, in the last pair xy, I obtained:

f x y z xy z z xyz xy z z, , .() = +() + + +()

It is obvious that z z+ = 1. Then function (12) takes
the form:

f x y z xy xyz xy, , .() = + + 	 (13)

When rearranging the term in (13) and taking out the
variable y out of parentheses, the following is obtained:

f x y z xy xyz xy y x x xyz y xyz, , .() = + + = +() + = + 	 (14)

The law of distributivity is applied to expression (14):

f x y z y xyz y x y y y z, , .() = + = +() +() +() 	 (15)

A simplification of expression (15) has been carried out:

f x y z y xyz y x y z, , .() = + = +() +() 	 (16)

Once again, the law of distributivity is applied to ex
pression (16):

f x y z y x y z y xz, , .() = +() +() = + 	 (17)

Further simplification of the logical expression (17) is
no longer possible. Thus, the minimum function is obtained:

f x y z y xz, , .() = + 	 (18)

The simplification of the function f(x, y, z) (12) using
the visual-matrix form of the analytical method takes the
following form:

f x y z

x y z

x y z
y xz, , .() = = = +

No.
2
3
5 1 0 1
6
7 1 1

1 1

0 1 0
0 1 1

1 1 0
1

1 	 (19)

In the first matrix of expression (19), the following ac-
tions are performed:

– to modules 2, 3, 6, 7, which contain the complete com-
binatorial system, 2-(2, 4)-design, and the common literal
«y», the super-gluing operation of variables is applied [17];

– to modules 5, 7, which contain the complete combina-
torial system, 2-(1, 2)-design, and common literals «y», «z»,
a simple variable gluing operation is applied.

The seventh block of variables «111» is common to two
systems – Σm(2,3,6,7), Σm(5,7) and two operations of super-
and simple gluing of variables, the localization of which is
determined by combinatorial systems, 2-(2, 4)-design, and
2-(1, 2)-design [4]. As a result, the minimal function (19) is
obtained, which coincides with the minimal function (18).
The result is the same, but the non-standard implementation
of the simplification algorithm is simpler.

Example 2. It is required to simplify the switching circuit
in Fig. 2 (x – on, x – off) [24].

Fig. 2. Switching circuit

Solution.
The switching circuit in Fig. 1 corresponds to a logical

function:

f x y z xyz xyz xyz xyz, , .() = + + + 	 (20)

In the second and third minterms of the function (20), the
common factor xy, is taken out in parentheses, and I obtained:

f x y z xyz xy z z xyz, , .() = + +() +

Mathematics and Cybernetics – applied aspects

15

It is obvious that z z+ =1. Then function (20) takes the form:

f x y z xyz xy xyz, , .() = + + 	 (21)

Expression (21) is transformed as follows:

f x y z xyz xy xyz xyz x y yz, , .() = + + = + +()

When applying the law of elementary absorption, the
following is obtained:

f x y z xyz x y yz xyz xy xz, , .() = + +() = + + 	 (22)

The elementary absorption operation was also performed
on the first two terms of expression (22):

f x y z xyz xy xz y xz x xz

y z x xz yz xy xz

, ,

.

() = + + = +() + =

= +() + = + +

Once in the law of generalized gluing of variables,
x is taken instead of x, then the following will be obtained:

f x y z xz yz xy xz yz, , .() = + + = +

Answer: the minimal function is:

f xz yz= + .	 (23)

Accordingly, a simplified switch diagram will look like
this (Fig. 3).

Fig. 3. Simplified switch diagram

The simplification of the function f(x, y, z) (20) using
the visual-matrix form of the analytical method takes the
following form:

f x y z

x y z
x y z

xz yz, , .() = = = +

No.
1
2 0 1 0
3
6 1 1 0

1 0

0 0 1

0 1 1
0 1 	 (24)

In the first matrix of expression (24), the following ac-
tions are performed:

– the location of logical operations is determined by the
place of 2-(1, 2)-design combinatorial systems in the truth
table of the given function;

– to modules 1, 3, and 2, 6, each of which contains a com-
plete combinatorial system, 2-(1, 2)-design, and common
literals «z» and «y», « »x respectively, a simple variable gluing
operation is applied.

As a result, the minimal function (24) is obtained, which
coincides with the minimal function (23).

Contemplating examples 1 and 2, it is important to note
that the sequence of the standard (verbal) procedure of
minimization of Boolean functions is necessarily determin-
istic in its own determination of the steps of representation

of the analytical method. In turn, a non-standard system
implies a simplification algorithm through the detection of
2-(n, b)-design systems in the truth table, and therefore de-
fines the appropriate, necessary and sufficient logical opera-
tions for the equivalent transformation of Boolean functions.

5. 2. Identifying the locations of equivalent trans-
formations with a non-standard system for simplifying
Boolean functions

Analytical method has no established recommendations
for the rational search for minimal dead-end forms of Boolean
functions. The success of minimization depends on the level of
knowledge of axioms, the laws of algebra of logic, and the skills
of their application. For functions with the number of variables
four or more, this method involves multi-pass combinations
of logical transformations that must be performed during
simplification. The process of simplification is time-consuming
and does not provide any guarantees of obtaining the required
minimum, since neither the axioms nor the laws of the algebra
of logic give a direct indication of the achievement of the mini
mal dead-end form. The existence of a minimal form can be
determined only in simple cases, when the number of variants
of the search procedure does not exceed two to three, and the
depth of the completed search is limited to approximately the
same number of steps. These estimates largely depend on the
engineering experience of the performer.

A non-standard minimization system has innovative
reserves for reducing the complexity of simplifying logical
functions. Let’s consider it in detail.

Assertion 1. The 2-(n, b)-design, 2-(n, x/b)-design sys-
tems have two implementations:

– an object, the position of which can be determined,
established;

– method, logical operation that can be performed, car-
ried out.

Assertion 2. Each combinatorial system, 2-(n, b)-design,
2-(n, x/b)-design, implies its logical operation:

– 2-(n, b)-design – super- and/or simple gluing of variables;
– 2-(n, x/b)-design – incomplete super-gluing of vari-

ables [17], in particular in the case when different intervals
of the Boolean space containing the systems, 2-(n, b)-design,
2-(n, x/b)-design, partially coincide, have an intersection.

Assertion 3. Each combinatorial system, 2-(n, b)-design,
2-(n, x/b)-design, implies an algorithm for simplifying logi
cal functions according to the principle of their probable,
free possibility.

This «reduction a priori» to the experience of things is in
itself an event of synergistic «self» organization – the formation
of a binary matrix structure in hyperparametric tendencies.
Self-organization is not a cause since it is not random, but
regular; it is not a consequence since there is no consequence if
there is no cause.

The formal basis for this reduction of the visual-matrix form
is the algebraic simplification of the corresponding complete
and/or incomplete PDNF of Boolean functions, such as (5).

Assertion 4. The beginning (principle) of a non-standard
system for simplifying Boolean functions is the search for
intervals in the truth table containing combinatorial systems,
2-(n, b)-design, 2-(n, x/b)-design, and not multi-pass logical
transformations, which must be performed when simplifying
the function by an analytical method.

The self-organization of the intervals of the Boolean
space, containing the 2-(n, b)-design, 2-(n, x/b)-design sys-
tems, in the truth table gives the possibility of free selection of

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

16

simplification variants, in the «optimal variant form». Having
turned into its own opposite, as required by the dialectic of
the formation of the «new modern» disclosure of «old» (laby-
rinth) problems, from a possible-temporal probability forecast
into a possible – necessary one, it provides an unambiguous
identification of the locations of equivalent transformations.
These herparic manifestations of synergistic self-organization
of the binary matrix structure, accumulating, give a qualitative
jump! Mutually unambiguous correspondence between the
PDNF of the Boolean function and the combinatorial system,
2-(n, b)-design, gives a hyperparameter in the form of a fixed
location, a place of equivalent transformations. In turn, this
implies the algorithm of the non-standard system of simpli-
fying Boolean functions. The problem of the algorithm for
simplifying Boolean functions by analytical metol solves itself!

Only the fundamental non-standard nature in principle
solves the problem of the laboriousness of the procedure for
simplifying analytical functions when they are represented in
a visual-matrix form.

Unambiguous identification of the locations of equiva-
lent transformations with a non-standard simplification sys-
tem is also possible when different intervals of the Boolean
space containing the 2-(n, b)-design systems have common
modules, intersections. The use of intersection preempts
a possible subsequent semi-gluing operation of variables.

The intersection of modules of 2-(n, b)-design systems
has its own model in the form of an algebraic analog, which is
demonstrated by an example of simplifying a Boolean func-
tion in the main basis.

Let the PDNF function of three variables be given [25]:

f x x x x x x x x x x x x x x x3 2 1 3 2 1 3 2 1 3 2 1 3 2 1, , .() = + + +

Here, to simplify the function f(x3,x2,x1), the min
term x x x3 2 1 must be written three times:

f x x x x x x x x x

x x x x x x x x x x x x

3 2 1 3 2 1 3 2 1

3 2 1 3 2 1 3 2 1 3 2 1

, ,() = +() +

+ +() + +(() =

= +()+ +() + +() =

= + +

x x x x x x x x x x x x

x x x x x x
3 1 2 2 3 2 1 1 2 1 3 3

3 1 3 2 2 1.

Contemplating this elementary example, it is clear that
the analytical method is quite complex due to the laborious-
ness of searching for neighboring minterms [25].

The technique for simplifying the logical function f(x3, x2, x1),
using the visual-matrix form of the analytical method, by focus-
ing, makes it possible to simultaneously represent the system of
relations between the individual variables of the problem. As
a result, verbal procedures of algebraic transformations are re-
placed by equivalent figurative transformations. This significant-
ly reduces the complexity of searching for neighboring minterms:

f x x x

x x x
x x x

x x x x

DNF 3 2 1

3 2 1
3 2 1

3 1 3 2

0 0 0
1

0 0
0

1 1 0
1 0

0
0 1 1

0 1

, ,() =

= = = + + xx x2 1.

The detection of the locations of equivalent transforma-
tions using 2-(n, b)-design combinatorial systems is demon-
strated by the following example.

Example 3. Use a non-standard system to simplify the
function f(x1, x2, x3, x4) in the Reed-Muller basis given in the
canonical form [26]:

f x x x x1 2 3 4 0 3 5 6 7 8 9 10 12 15, , , , , , , , , , , , .() = ()∑ 	 (25)

Solution.
The beginning of the simplification of function (25) is

carried out in the basic logical basis:

f x x x x

x x x x f

MDNF

No.

1 2 3 4

1 2 3 4

0 1
3 1
5 1
6 1
7

0 0 0 0
0 0 1 1

0

0 1 0 1
0 1 1 0

, , ,() =

= 11
0 1 1

1 0 11 1
8 1
9 1

10 1
12 1
15 1 1 1 1 1

1

0 0 0

0

1 1 0 0

0

1 0 1 0

0
1 0 0 1

0 1 1

1 2 3 4

=

x x x x

11
1 0 0
1 0 0
1 0 0

1 1 1

.	 (26)

In the first matrix of expression (26), the following ac-
tions are performed:

– to modules 0, 8; 3.7; 5.7; 6.7; 8,9; 8,10; 8,12; 7,15, each of
which form a complete combinatorial system of 2-(1, 2)-de-
sign [17] and contain corresponding common literals, the
operation of simple gluing of variables is applied.

The seventh block of variables «0111» is common to four
systems – Σm(3,7), Σm(5,7), Σm(6,7), Σm(7,15) and four ope
rations of simple gluing of variables, the location of which is
determined by the corresponding intervals of the Boolean
space containing combinatorial 2-(1, 2)-design systems.

The eighth block of variables «1000» is common to four
systems – Σm(0,8), Σm(8,9), Σm(8,10), Σm(8,12) and four
operations of simple gluing of variables, the location of which
is determined by the corresponding intervals of the Boolean
space containing combinatorial 2-(1, 2)-design systems.

The minimal function in disjunctive normal form (DNF)
takes the form:

f x x x x x x x x x x x x x

x x x x x x x x

MDNF 1 2 3 4 2 3 4 1 3 4 1 2 4

1 2 3 1 2 3 1 2

, ,() = + + +

+ + + xx x x x x x x4 1 3 4 2 3 4+ + . 	 (27)

To obtain the minimum function in the polynomial nor-
mal form (PNF), three extensions are possible using:

– singular function [2];
– Zhegalkin polynomial [2];
– Reed-Muller polynomial [2].
Consider the first two extensions. The procedure for ob-

taining a singular function takes the form [2]:

f x x x x

x x x x x

Singular 1 2 3 4

1 2 3 4

0 0 0
0 1 1
0 1 1
0 1 1
1 0 0
1 0 0
1 0 0

1 1 1

, , ,() =

= =

11 2 3 4

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 0 0

1 1 1

x x x

.	 (28)

Mathematics and Cybernetics – applied aspects

17

Simplification of the singular function (28) in the Reed-
Muller basis:

f x x x x

x x x x

MPNF 1 2 3 4

1 2 3 4

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 0 0

1 1 1

, , ,() =

= ==

x x x x1 2 3 4

0 0 0

0 0 1

0 1 1

0 1 1

1 0 1

1 0 1

1 0 0

1 1 1

.	 (29)

In the first matrix of expression (29), the following trans-
formations are carried out:

x x x x x x x x x x x x x x

x x x x x x x x

1 2 3 4 1 2 3 4 1 2 3 4 3 4

1 2 3 4 1 2 3 4

⊕ = ⊕() =

= ⊕() = ⊕() == ⊕x x x x x x1 2 3 1 2 4;

x x x x x x x x x x x x x x

x x x x x x x x x

1 2 3 4 1 2 3 4 1 2 3 4 3 4

1 2 3 4 1 2 3 1 2

⊕ = ⊕() =

= ⊕() = ⊕ xx4;

x x x x x x x x x x x x x x

x x x x x x x x x

1 2 3 4 1 2 3 4 1 2 3 4 3 4

1 2 3 4 1 2 3 1 2

⊕ = ⊕() =

= ⊕() = ⊕ xx4.

f x x x x

x x x x
x x x

MPNF 1 2 3 4

1 2 3 4
1 20 0 0

0 0 1

0 1 1

0 1 1

1 0 1

1 0 1

1 0 0

1 1 1

, , ,() =

= =

33 4 1 2 3 4

0 0 0

0 1

0 1 1

0 1 1

1 0 1

1 0 0

1 1 1

0 0 0

0 1

1 1

0 1 1

1 1

1 0 0

1 1 1

x x x x x

= .	 (30)

In the second matrix of expression (30), the following
transformations are carried out:

x x x x x x x x x x x

x x x x x x x

1 2 4 1 2 4 4 1 2 1 2

4 1 2 1 4 2 4

⊕ = ⊕() =

= ⊕() = ⊕ .

f x x x x

x x x x
x x x x

MPNF 1 2 3 4

1 2 3 4
1 2 3 40 0 0

0 1

1 1

0 1 1

1 1

1 0 0

1 1 1

0 0 0

, , ,() =

= =
00 1

0 1 1

1 1

1 0 0

1 0 1

0 0 0

1

1 1 1

1

1 1 0

1 0 1

1 2 3 4

=

x x x x

.	 (31)

In the first matrix of expression (31), a logical operation
of polynomial absorption of variables [2] is carried out:

x x x x x x x x2 4 2 3 4 2 3 4⊕ = .

In the second matrix of expression (31), two logical opera-
tions of polynomial semi-gluing of variables [2] are carried out:

x x x x x x x x x x x x

x x x x x x x x

2 3 1 2 3 3 2 1 2 3 1 2

3 1 2 3 1 2 3 11

⊕ = ⊕() = +() =

= = ⊕() = ⊕ xx x2 3.

x x x x x x x x x x x x

x x x x x x x x

1 4 1 3 4 1 4 3 4 1 3 4

1 3 4 1 3 4 1 11

⊕ = ⊕() = +() =

= = ⊕() = ⊕ xx x3 4.

f x x x x

x x x x
x x x x

MPNF 1 2 3 4

1 2 3 4
1 2 3 4

0 0 0

1

1 1 1

1

1 1 0

1 0 1

0 0 0

1

1 1 1

, , ,() =

= =
11

1 0 1 0

1 1 1 0

1 0 1

0 0 0

1

1

1 0 1 0

1 1 1 1

1 0 1

0 0

1

1

1 0 0 0

0 1

1 2 3 4 1 2 3 4

=

= =

x x x x x x x x

11 1

1 1

0

1

1

1 0 0 0

0 1 1 1

1

1 2 3 4

=

=

x x x x

.

The dead-end function in PNF is as follows:

f x x x x

x x x x x x x x x x x

The dead end PNF 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3

, ,() =

= ⊕ ⊕ ⊕ ⊕ ⊕ xx4,	 (32)

it contains 12 literals, which is two literals less compared to [26]:

f x x x x x

x x x x x x x x x

= ⊕ ⊕ ⊕

⊕ ⊕ ⊕











1 2 2 3 4

1 3 4 1 2 3 1 2 4

.

For TPNF (32), it is possible to continue the simplifica-
tion using the following transformations [27]:

x x x x x x x x x x x x

x x x x x x x x x

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 1 3

⊕ ⊕ ⊕ ⊕ ⊕ =

= ⊕ ⊕ ⊕ ⊕ ⊕() ⊕() 11 4⊕()x .	 (33)

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

18

As a result, a 3-level logical expression was also obtained,
but one containing 10 literals. Further simplification of ex-
pression (33) gives the following result:

x x x x x x x x x x

x x x x x x x

1 2 3 4 1 2 1 3 1 4

2 3 1 2 1 3 1

⊕ ⊕ ⊕ ⊕ ⊕() ⊕() ⊕() =

= ⊕ ⊕ ⊕() ⊕() + ⊕⊕()()x4 . 	 (34)

The minimal function (34) represents a 4-level logical
expression containing 8 literals.

For function (26), the Zhegalkin polynomial takes the form:

P x x x x x x x x x x x

x x x x x x x x x
1 2 3 4 2 3 4 1 2 1 3

1 4 1 2 3 1 2 4 1

1, , ,() = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ xx x x x x3 4 2 3 4⊕ .

Simplifying P(x1, x2, x3, x4) gives the minimal Boolean
function in the mixed basis:

f x x x x

x x x x x x x x x x x x

x x x

MPNF 1 2 3 4

1 2 1 3 1 4 1 2 3 1 2 4

1 3 4

1

, , ,() =
= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕⊕ ⊕ ⊕ ⊕ =

= ⊕ = ⊕

x x x x x x2 2 3 4 3 4

1

1 1
1 1
1 1
1 1 1
1 1 1
1 1 1

1
1 1 1

1
1

1

1 1
1 0 1
1 0 1
1 1 1

1
1 11 1

1
1

1

1

1 2 1 2 3 4 1 2 3 4

2 3 4 1 2

1

=

= ⊕ ⊕ ⊕()⊕ ⊕() ⊕

⊕ ⊕ ⊕ = ⊕ ⊕

⊕

x x x x x x x x x x

x x x x x

x xx x x x x x x

x x x x x x x x x x

x x

2 3 4 1 2 3 4

1 2 1 2 1 2 1 2 3 4

1

1

⊕()⊕ ⊕() =

= ⊕ ⊕ ⊕ ⊕ ⊕()⊕

⊕ ⊕ 22 3 4 1 2 1 2

1 2 3 4 1 2 3 4

1 2

1

1

() = ⊕ ⊕ ⊕ ⊕

⊕ ⊕()⊕ ⊕() =

= ⊕ ⊕

x x x x x x

x x x x x x x x

x x x

()

11 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1

1

x x x x x x x

x x x x x x x x

x x

⊕()⊕ ⊕() =

= ⊕ + ⊕()()⊕ ⊕() =

= 22 3 4 1 2 3 4+ ⊕()()⊕ ⊕() +()x x x x x x . 	 (35)

The minimum function (35), compared to (34), also con-
sists of 8 literals, but has two logical XOR operations less,
which can give technological advantages in the manufacture
of a digital circuit.

5. 3. Theorem of the non-standard system of simplifica-
tion of Boolean functions

Simplification of Boolean functions is carried out by
equivalent transformations, in particular, with the help of the
following logical operations:

– simple gluing of variables:

xy xy y+ = ;

x y x y y+() +() = .	 (36)

– super-gluing of variables:

xyz xyz xyz xyz x x yz x x yz

yz yz y y z z

+ + + = +() + +() =

= + = +() = ;

x y z x y z x y z x y z

y z y z z

+ +() + +() + +() + +() =

= +() +() = . 	 (37)

Theorem. (without proof) Once all operations of simple
and/or super-gluing variables (36), (37) are carried out in
the perfect disjunctive normal form of the Boolean function,
the minimum DNF of the given function will be obtained
as a result.

Note. Operations of gluing variables (36), (37) may
be redundant. This means the presence in the binary
structure of the truth table of other minimal DNFs of the
given function. Therefore, to obtain a minimal function, all
non-redundant operations of simple and/or super-gluing of
variables must be performed. This will ensure that the min-
imum function is obtained in the main basis without using
the implicant table.

A reduced DNF is determined by means of a disjunctive
combination of conjunct terms under the condition that all
sets of variables of the truth table of a Boolean function con-
taining 2-(n, b)-design systems completely cover that part
of the set of sets on which the Boolean function returns one.
At the same time, the intersection of the sets of variables
holding the 2-(n, b)-design systems is allowed.

Example 4. Using a non-standard system, obtain the mini
mum Boolean function of four variables f(x1, x2, x3, x4) given
by the perfect disjunctive normal form [28]:

f x x x x

x x x x x x x x x x x x

x x x x x x x

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3

, ,() =

= + + +

+ + xx

x x x x x x x x x x x x

x x x x x x x x x x x x

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3

+

+ + + +

+ + + 44. 	 (38)

Solution:

f x x x x

x x x x

MDNF

No.

1 2 3 4

1 2 3 4

1

2

4

5

6

8 1

0 0 0 1

0 1 0 1

0 0 1 0

0

0 1 0 0

1 1 0

, , ,() =

=
00 0 0

9 1

12 1

13 1

14

15

1 00 0 1

0 1

0 1

1 0

1 0

1 0

0

1

1 1

1 1 1 1

1 1

0 1 0

1 2 3 4

1

= =

=

x x x x

x x22 1 3 2 4 1 3 4 3 4+ + + +x x x x x x x x x . 	 (39)

Mathematics and Cybernetics – applied aspects

19

In the first matrix (39), which represents the PDNF of
f(x1, x2, x3, x4), the following actions are performed:

– to modules 1, 5, 9, 13; 4, 6, 12, 14; 8, 9, 12, 13; 12, 13,
14, 15, each of which forms a corresponding interval of the
Boolean space containing the complete 2-(2, 4)-design com-
binatorial system, the super-gluing operation of variables is
applied [17].

– to modules 2, 6, which form the corresponding interval
of the Boolean space containing the combinatorial system
2-(1, 2)-design and contain the common literal «x2», a simple
variable gluing operation is applied.

The results of non-redundant logical operations of
gluing variables are written to the second matrix of ex-
pression (39).

The decimal equivalent of the analytical notation of the
minimal function (39) takes the form:

f x x x x1 2 3 4

1 5 9 13 4 6 12 14

8 9 12 13 12 13 1

, , ,

, , , , , , , ,

, , , , , ,

()
() ()
()

=

=
44 15 2 6, , ,

.
() ()












	 (40)

The structure of the decimal counterpart (40) accom-
modates the necessary intervals of the Boolean space con-
taining the 2-(n, b)-design, 2-(n, x/b)-design systems. This
implies all operations of simple and/or super-gluing of
variables (36), (37), which according to the theorem gives
a minimal function.

The sixth block of variables «0110» in the first matrix of
expression (39) is common to two systems – Σm(4,6,12,14),
Σm(2,6) and one operation of simple gluing of variables, the
localization of which is determined by the corresponding
intervals of the Boolean space, containing combinatorial
2-(2, 4)-design and 2-(1, 2)-design systems.

The twelfth block of variables «1100» in the first
matrix of expression (39) is common to three systems –
Σm(4,6,12,14), Σm(8,9,12,13), Σm(12,13,14,15) and one
operation of super-gluing variables, the localization of
which is determined by the corresponding intervals of
the Boolean space containing combinatorial systems of
2–(2, 4)-design.

The thirteenth block of variables «1101» in the first
matrix of expression (39) is common to three systems –
Σm(1,5,9,13), Σm(8,9,12,13), Σm(12,13,14,15) and one
operation of super-gluing variables, the localization of
which is determined by the corresponding intervals of
the Boolean space containing combinatorial systems of
2-(2, 4)-design.

The fourteenth block of variables «1110» in the first
matrix of expression (39) is common to two systems –
Σm(4,6,12,14), Σm(12,13,14,15) and one super-gluing oper-
ation of variables, the localization of which is determined by
the corresponding intervals of the Boolean space containing
combinatorial 2-(2, 4)-design systems.

As a result, in one step, without using the implicant table,
the minimal function (39) is obtained, which is two literals
smaller compared to the reduced function [28] f x x x x x x x x x x x x x2

1 3 4 3 4 2 3 2 4 1 2 1 3= + + + + +().
f x x x x x x x x x x x x x2

1 3 4 3 4 2 3 2 4 1 2 1 3= + + + + +().
Example 5. Using a non-standard system, obtain the min-

imum Boolean function of four variables f(x1, x2, x3, x4) given
in PDNF [29, 30]:

f x x x x1 2 3 4 0 1 2 5 7 10 14 15, , , , , , , , , , .() = ()∑ 	 (41)

Solution.
I simplify the function f(x1, x2, x3, x4) (41) in the conjunc-

tive normal form (CNF):

f x x x x

x x x x

MCNF

No.

1 2 3 4

1 2 3 4

3 0 0 1 1

4 0 1 0 0

6 0 1 1 0

8 1 0 0 0

9 1 0 0 1

11

, , ,() =

=

11 0 1 1

12 1 1 0 0

13 1 1 0 1

3

4

6

8

9

11

1 1 0 0

0 1

1 0 1 1

1 0 0 1

0 1 1 1

0 1 1 0

1 2 3 4

=

No. x x x x

00 0

1 0 0

12

13

0 0 1 1

0 0 1 0

0 1

1 0 1

1 2 3 4

1 3 1 2 4 2 3

=

= =

= +() + +() + +

x x x x

x x x x x x x xx4(). 	 (42)

The decimal equivalent of MCNF (42) is:

fMCNF(x1, x2, x3, x4) = 

= {(3,11),(4,6),(8,9,12,13)} = {3,4,6,8,9,11,12,13}.

In the first matrix of expression (42) according to the
Nelson method, I invert the values of the variables [1]. In
the second matrix of expression (42), which represents the
DCNF of f(x1, x2, x3, x4) (41), the following actions are per-
formed:

– to modules 8, 9, 12, 13, which form the interval of the
Boolean space containing the complete combinatorial system
2-(2, 4)-design, the super-gluing operation of variables is
applied [17];

– to modules 3, 11; 4, 6, which form the corresponding
intervals of the Boolean space, containing combinatorial
systems 2-(1, 2)-design, the operation of simple gluing of
variables is applied.

The results of logical operations of gluing the variables
are written to the third matrix of expression (42). As a re-
sult, the minimal function (42) in the conjunctive normal
form, which is four literals smaller than the reduced func-
tion in the disjunctive normal form [29, 30], was obtained
in one step:

YMDNF =
() () () (){ }
() () ()

1 0 1 2 10 5 7 14 15

2 0 2 1 5 7 15 1

. . , . , , , ,

. , , , , , , 00 14,
.

(){ }


















Example 6. Using a non-standard system, obtain the
minimum Boolean function of four variables f(x1, x2, x3, x4),
specified in PNF [29]:

f x x x x1 2 3 4 0 1 2 5 7 10 14 15, , , , , , , , , , .() = ()∑

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

20

Solution:

f x x x x

x x x x

min , , ,1 2 3 4

1 2 3 4

0 0 0 0

0 0 1 0

0 0 0 1

0 1 0 1

0 1 1 1

1 1 1

1 0 1 0

1 1 1 0

() =

=

11

1 1 1

0 0 0

0 0 1

1 1 0

0 0 0 0

0 0 1 0

0 0 1

1 1 1

1 1 0

1 2 3 4

1 2 3 4 1 2 3

= =

= =

x x x x

x x x x x x x x44

1 2 3 4 1 2 3 4

0 1 0 0

0 1 1 0

0 0

1 1 1

1 0

0 1 0

0 0

1 1 1

1 0

0 1 0

0 0

0 1 1

1

=

= = =

=

x x x x x x x x

x11 3 1 2 4 2 3 4

1 3 1 2 4 2 3 4

1 3 1 2 41

+()⊕ ⊕ =

= ⊕ ⊕ =

= ⊕ ⊕ ⊕

x x x x x x x

x x x x x x x x

x x x x x x22 3 4

1 3 1 2 4 2 3 4

1 3 1 2 4 2 3 4

x x

x x x x x x x x

x x x x x x x x

=

= ⊕ ⊕ =

= ⊕ + +()⊕ . 	 (43)

A minimal function (43) in a mixed basis containing two
fewer inversions is obtained compared to [29]:

Y DNF =

=

() ()
() ()
() ()
()

0000 0001

0010 0101

0111 1010

1110 111

, ,

, ,

, ,

, 11

1 0

0 1 1

0 1 0()

























⇒

− − − −
− −

−
−
























DNF

PNF



.

Simplification of symmetric Boolean functions is provid-
ed by the polynomial basis algebra [27]. However, after the
first equivalent transformation of a symmetric function in
a polynomial basis, it becomes possible to simplify it in the
main basis as well.

Example 7. Using a non-standard system, obtain the
minimum Boolean function of four variables f(x1, x2, x3, x4),
specified in PDNF [29]:

f x x x xPDNF 1 2 3 4 0000 0011 1111, , , , , .() = () () (){ } 	 (44)

Solution.
Function (44) is symmetric [27]. For the sake of sim-

plicity (44), I apply the procedure of inserting identical
conjunct terms, followed by the operation of super-gluing
the variables:

f x x x xmin , , ,1 2 3 4

0 0 0 0

0 0 1 1

1 1 1 1

0 0 0 0

0 0 0 1

0 0 0 1

0 0 1 0

0 0 1 0

0 0 1 1

0 1

() =

= =

00 0

0 1 0 0

0 1 0 1

0 1 0 1

0 1 1 0

0 1 1 0

0 1 1 1

0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 1

1 0 0 1

1 0 1 0

1 0 1 0

1 0 1 11

1 0 1 1

1 1 0 0

1 1 0 0

1 1 0 1

1 1 0 1

1 1 1 0

1 1 1 0

1 1 1 1

1

0 0 0 1

0 0 1 0

0 1 0 0

0 1 0 1

0 1 1 0

0

= ⊕
11 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1

0 0 0 1

0 0 1 0

0 1

1 0

1 1 0 1

1 1 0 0

1 1

=

= ⊕

11 0

1 1 0

1

0 0 0 1

0 0 1 0

0 1

1 0

1 1 0 1

1

0 0 1

0 1 0

0 1

1 0

1 0

1 0 1

1

0 1

0 1 0

0 1

1 0

1 0

= ⊕ =

= ⊕ = ⊕ == ⊕ =

= + ⊕() + ⊕()

1

0 1

1 0

0 1

1 0

1 0

1 4 1 2 3 4x x x x x x . 	 (45)

The result of the first equivalent transformation in the
polynomial basis (the procedure of inserting the same con-
junct terms followed by the operation of super-gluing the
variables) is written to the third matrix of expression (45).
The function represented by the third matrix of expres-
sion (45) remains singular [2]. Therefore, for further simpli-

Mathematics and Cybernetics – applied aspects

21

fication in the third matrix, I switch to the main basis and
obtain the minimal function (45) in the mixed basis, which
has four literals less, compared to [29]:

Y DNF

DNF

PNF

=
()
()
()

















⇒

−()
−()

0000

0011

1111

1

000

00 1

,

,

.

,

,

11111

2

00 0

001

1111

3

0

()

















−()
−()

()

















PNF

PNF

.

,

,

.

0000

0 11

111

4

0000

011

1 11

()
−()

−()

















()
−()

−()






,

,

.

,

,

PNF




































































PNF

























.

Therefore, a minimal Boolean function of four variables
f(x1, x2, x3, x4) was obtained using a non-standard system,
which has four fewer literals compared to [29].

5. 4. Thesaurus of non-standard system of simplifica-
tion of Boolean functions

Binary systems with repetition, 2-(n, b)-design, 2-(n, x/b)-
design, which are part of the Boolean space in the form of
combinatorial structures of truth tables of Boolean functions,
represent logical operations of simple and/or super-gluing
variables. In this regard, establishing the placement of the
2-(n, b)-design, 2-(n, x/b)-design systems provides unambi
guous identification of the locations of equivalent trans-
formations, and hence the implication of the algorithm for
simplifying Boolean functions. Accordingly, the non-stan-
dard system for simplifying Boolean functions has its own
systematized composition of information (knowledge) and
settings, in the form of a thesaurus (Tables 1, 5), which pro-
vides orientation in this system.

Table 1

Thesauri of the basic concepts of the Quine-McCluskey
method and the non-standard system of simplification 	

of Boolean functions

No. of
entry

Thesaurus for simplifying
Boolean functions using
the Quine-McCluskey

method

Thesaurus of a non-standard
system for simplifying Boolean

functions

1 DDNF DDNF

2 Laws of logic algebra Laws of logic algebra

3
Constituents and implants
of logical functions

Intervals of the Boolean space
and their possible intersection
containing the 2-(n, b)-design,
2-(n, x/b)-design systems

4
Operations of incomplete
gluing and absorption of
variables

Location of equivalent trans-
formations

5
Abbreviated form of the
function

The minimal form of the
function

The division into groups of conjunct terms, according to
the Quine-McCluskey method, provides a logical operation
of only simple gluing of variables. This increases the amount
of computation and makes it difficult to simplify the function.

Example 8. Using a non-standard system, obtain the mini-
mum Boolean function of four variables f(x4, x3, x2, x1), given
in the canonical form [18]:

f x x x x4 3 2 1 0 1 2 5 6 7 9 10 11 13 14 15, , , , , , , , , , , , , , .() = ()∑ 	 (46)

Solution.
Option 1.
I choose the minimum number of intervals containing

combinatorial 2-(n, b)-design systems to cover the PDNF of
function (46) (Fig. 4).

No. x4 x3 x2 x1 f
0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 1
13 1 1 0 1 1
14 1 1 1 0 1
15 1 1 1 1 1

Fig. 4. Disjunctive normal form of 	

function f (x4, x3, x2, x1)

Table 2 gives the minimal sets of intervals containing
2-(n, b)-design systems for covering the PDNF of func-
tion (46) and the corresponding simple implicants.

Table 2

Minimal sets of intervals containing 2-(n, b)-design 	
systems for covering the PDNF of function (46) 	

and the corresponding simple implicants

No. of
entry

Minimal sets of intervals con-
taining 2-(n, b)-design systems

Simple implicants
of a minimal function

Variant 1

1 Σm(0,1) ¬x4 ¬x3 ¬x2

2 Σm(2,6,10,14) x2 ¬x1

3 Σm(5,7,13,15) x3 x1

4 Σm(9,11,13,15) x4 x1

Variant 2

1 Σm(0,2) ¬x4 ¬x3 ¬x1

2 Σm(1,5,9,13) ¬x2 x1

3 Σm(6,7,14,15) x3 x2

4 Σm(10,11,14,15) x4 x2

Contemplating Table 2 demonstrates that there are two
identical minimum functions:

f x x x x x x x x xMDNF1 = + + +4 3 2 2 1 3 1 4 1;

f x x x x x x x x xMDNF2 = + + +4 3 1 2 1 3 2 4 2.	 (47)

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

22

The result of simplification (47) coincides with [18], in
which the simplification of function (46) was carried out in
two steps by the Quine-McCluskey method.

Option 2.
I choose not the minimal set of intervals that hold the

2-(n, b)-design systems but one that covers the constituents
of the PDNF unit (Fig. 4) of function (46), for example,
as in Table 3.

Reviewing Table 4 reveals that simple implicants 000 –,
– –10, –1–1, 1– –1 cover (highlighted in green) all consti
tuents of the PDNF unit of function (46). Thus, the MDNF
of function (46) takes the form:

f x x x x x x x x xMDNF = + + +4 3 2 2 1 3 1 4 1.	 (48)

The results of the simplification of (47), (48) of example
8 coincide with [18], but the algorithm of their simplification
is significantly simpler.

Example 9. Using a non-standard system, obtain the mini-
mum Boolean function of four variables f(x1, x2, x3, x4), given
by the algebraic form [31]:

f x x x x

x x x x x x x x x x x x x x x x

x x x

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2

, , ,() =

= + + + +

+ 33 4 1 2 3 4 1 2 3 4 1 2 3 4x x x x x x x x x x x x x+ + + . 	 (49)

Solution.
Simplification of function f(x1, x2, x3, x4) (49) in DNF:

f x x x x

x x x x

MDNF

No.

1 2 3 4

1 2 3 4

3

5 0 1 0 1

7 0 1 1 1

8

10

1

0 0 1 1

1 0 0 0

1 0 1 0

, , ,() =

=

11

12

14

0 1 1

3

1 0 1 1

0 1 1

1 1 0 0

1 1 1 0

1 0

1 2 3 4

1 4 1 2 4 2 3 4

= =

= + + =

=

x x x x

x x x x x x x x

,, , , , , , ,

, , , , , , , .

11 5 7 8 10 12 14

3 5 7 8 10 11 12 14

() () (){ } =

= { } 	 (50)

In one step, the minimal function in DNF (50) is
obtained, which is six literals smaller than the reduced
function in [31], in which the Quine-McCluskey me
thod is used for simplification.

Simplification of the function f(x1, x2, x3, x4) in PNF:
since function (49) is singular [2], let’s move on to the
Reed-Muller basis:

f x x x x

x x x x

MPNF

No.

1 2 3 4

1 2 3 4

3
5 0 1 0 1
7 0 1 1 1
8

10
1

0 0 1 1

1 0 0 0
1 0 1 0

, , ,() =

=

11
12
14

0 1 1

0 0 1 1
1 0 1 1
0 1 1
1 0

1 0 1 1

0 1 1

1 1 0 0
1 1 1 0

1 0

1 2 3 4

1 2 3

= =

= =

x x x x

x x x x11 2 3

1 2 3 4

1 4 1 2 2 3

0 0 0 1
1 0 1 1
0 1
1 0

0 0 1
1 0 1

1
1

1

x x

x x x x

x x x x x x

=

= =

= ⊕ ⊕ ⊕() =

= xx x x x x

x x x x x

x x x x x

1 4 2 1 3

1 4 2 1 3

1 4 2 1 3

1⊕ ⊕ ⊕()() =

= ⊕ ⊕()() =

= ⊕ + ⊕()() =

= xx x x x x1 4 2 1 3⊕ + ⊕()(). 	 (51)

Table 3

A non-minimal set of intervals containing 2-(n, b)-design systems
for covering the PDNF of function (46) and the corresponding

simple implicants

No. of
entry

Combinatorial 2-(n, b)-design
systems

Simple implicants
of systems

A Σm(0,1) ¬x4 ¬x3 ¬x2

B Σm(1,5,9,13) ¬x2 x1

C Σm(2,6,10,14) x2 ¬x1

D Σm(5,7,13,15) x3 x1

E Σm(9,11,13,15) x4 x1

F Σm(10,11,14,15) x4 x2

Table 4

Implicant table of DNF of functions f(x4,x3,x2,x1) (46)

No. x4 x3 x2 x1 f 000 – – –01 – –10 –1–1 1– –1 1–1– fmin

0 0 0 0 0 1 • – – – – – 1

1 0 0 0 1 1 • • – – – – 1

2 0 0 1 0 1 – – • – – – 1

5 0 1 0 1 1 – • – • – – 1

6 0 1 1 0 1 – – • – – – 1

7 0 1 1 1 1 – – – • – – 1

9 1 0 0 1 1 – • – – • – 1

10 1 0 1 0 1 – – • – • 1

11 1 0 1 1 1 – – – – • • 1

13 1 1 0 1 1 – • – • • – 1

14 1 1 1 0 1 – – • – • 1

15 1 1 1 1 1 – – – • • • 1

Mathematics and Cybernetics – applied aspects

23

A minimal function in a mixed basis (51) is obtained,
which is nine literals less than the reduced function in
work [31].

Table 5

Thesauri of the main concepts of the Carnot map and the
non-standard system of simplifying Boolean functions

No. of
entry

Thesaurus of simpli-
fication of Boolean

functions by the
Carnot map

Thesaurus of a non-standard
system for simplifying Boolean

functions

1 DDNF, DCNF DDNF, DCNF

2 Laws of logic algebra Laws of logic algebra

3
Correct contours and
their possible inter-
section

Intervals of the Boolean space
and their possible intersection
containing the 2-(n, b)-design,
2-(n, x/b)-design systems

4
Rules for grouping
minterms (maxterms)
into correct contours

Location of equivalent transfor-
mations

5
Definition rules for
minimal function

The minimal form of the function

Disadvantages of the method for Carnot maps, Veitch
diagrams:

– the actual additional construction of Carnot maps,
Veitch diagrams with their structure according to the given
truth table of the Boolean function is necessary;

– it is necessary to unambiguously match the indices of
the bit of the binary code, using the Gray code, when placing
the terms of the given function in the cells of the Carnot
maps, Veitch diagrams;

– it is advisable to use Carnot maps and Veitch diagrams
when the number of variables does not exceed 5;

– the selection of the correct contours is carried out
intuitively and there is no algorithm that would provide the
best solution;

– after choosing the correct contours on the Carnot map,
the Veitch diagram, the control rules for determining the
minimum function must be followed.

Example 10. Use a non-standard system to simplify the
DNF of a partially defined function f(x1, x2, x3, x4) given by
the truth table (Fig. 5) [32].

No. x1 x2 x3 x4 f
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 –
3 0 0 1 1 1
4 0 1 0 0 –
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 1
10 1 0 1 0 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 –
14 1 1 1 0 1
15 1 1 1 1 1

Fig. 5. Truth table of function f (x1, x2, x3, x4)

Solution:

f x x x x

x x x x f

MDNF

No.

1 2 3 4

1 2 3 4

1 1
3 1
9 1

11 1
1

0 0 0 1
0 0 1 1
1 0 0 1
1 0 1 1

, , ,() =

= 22 1
14 1
15 1
2 0 0 1 0
4 0 1 0 0

13

1
1

0 0
1 1 0 0
1 1 1 0
1 1 1 1

1 1 0 1

1 1
0 1

1 2 3 4

−
−
−

=

x x x x f

11 1
1 0 1 1

1 2 2 4

−
−

=

= +x x x x . 	 (52)

The first matrix of expression (52) represents the truth
table of the partially defined DNF function f(x1, x2, x3, x4)
(Fig. 5). Modules 1, 3, 9, 11 and 12, 14, 15, 13 of the first ma-
trix of expression (52) were treated with the super-gluing op-
eration of variables [17]. The result of logical operations of the
first matrix is written to the second matrix of expression (52).

The minimum DNF takes the form:

f x x x x x x x xMDNF 1 2 3 4 1 2 2 4, , , .() = +

It is important to note that the undefined sets of vari-
ables 2, 4 were not used during the simplification of function
f(x1, x2, x3, x4) (Fig. 5) by the non-standard system. This
ultimately reduced the overall complexity of simplifying the
function (Fig. 5).

The result of simplifying the function f(x1, x2, x3, x4) (Fig. 5)
using the Carnot map in work [32] is f x x x x x x x xMDNF 1 2 3 4 1 2 3 4, , , .() = +

f x x x x x x x xMDNF 1 2 3 4 1 2 3 4, , , .() = + However, testing with code No. 1 – 0001, the
specified result of simplification does not give unity, as required
by the truth table of the function in Fig. 5.

Example 11. Simplify the Boolean function f(x1, x2, x3, x4),
represented by the algebraic form [32] with a non-standard
system:

f x x x x

x x x x x x x x x x x x x x x x

x x x

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3

, ,() =

= + + + +
+ xx x x x x x x x x x x x x4 1 2 3 4 1 2 3 4 1 2 3 4+ + + . 	 (53)

Solution.
Simplification of function f(x1, x2, x3, x4) (53) is to be

carried out in CNF:

f x x x x

x x x x

MCNF

No.

1 2 3 4

1 2 3 4

0 0 0 0 0
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0

, , ,() =

=

11 1 0
13 1 1 0 1
15 1 1 1 1

0
2
3
4 1
5 1 0 1 0
6

1 1 1 1
1 1 0

1 0 1

1 0 0 1

1
1 1 0 0

1 2 3 4

=

No. x x x x

113
15

1 0 1

0 0 1 0
0 0 0 0

0 0 0

1 1
1 1 0

1 2 3 4

1 4 1 2 3 1 2

= =

= +() + +() + +

x x x x

x x x x x x x xx x x x3 1 2 4

0 2 4 6 2 3 4 5 13 15 0 2 3 4 5

() + +() =

= () () () (){ } =, , , , , , , , , , , , , ,, , , .6 13 15{ } 	 (54)

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

24

In the first matrix of expression (54) according to the
Nelson method, I invert the values of variables [1].

In the second matrix of expression (54), which rep-
resents the DCNF of f(x1, x2, x3, x4), the following actions
are performed:

– to the modules 0, 2, 4, 6, which form the interval of the
Boolean space containing the complete combinatorial sys-
tem, 2-(2, 4)-design, the super-gluing operation of variables
is applied [17];

– to modules 2, 3; 4, 5; 13, 15, which form the correspond-
ing intervals of the Boolean space, containing combinatorial
systems, 2-(1, 2)-design, the operation of simple gluing of
variables is applied.

The results of logical operations of gluing variables are
written to the third matrix of expression (54). As a result, in
one step, the minimum function (54) in CNF was obtained,
which has one less inversion, compared to the simplification
of the function f(x1, x2, x3, x4) (52) in CNF using the Veitch
diagram [32] ((, , ,)f x x x xMCNF 1 2 3 4 == + + + + + + +()()()()).x x x x x x x x x x x1 4 1 2 3 2 3 4 1 2 4×
×= + + + + + + +()()()()).x x x x x x x x x x x1 4 1 2 3 2 3 4 1 2 4

5. 5. Comparison with the evolutionary method, gene
tic, swarm algorithms, and the directed selection method

Example 12. Simplify the Boolean function f(x1, x2, x3, x4)
by a non-standard system given in the canonical form [33]:

f x x x x1 2 3 4 7 10 11 13 14 15, , , , , , , , .() = ()∑ 	 (55)

Solution.
I simplify the function f(x1, x2, x3, x4) (55) in the disjunc-

tive normal form (DNF):

f x x x x

x x x x

MDNF

No.

1 2 3 4

1 2 3 4

7

10

11

13 1 1 0 1

14

0 1 1 1

1 0 1 0

1 0 1 1

1 1

, , ,() =

=

11 0

115 1 1

1 1 1

1

1 1 1

1 1

1 2 3 4

1 3 1 2 4 2 3 4

1 3 2 4

= =

= + + =

= +

x x x x

x x x x x x x x

x x x x x11 3+()x . 	 (56)

The decimal equivalent of MDNF (56) is:

fMDNF(x1, x2, x3, x4) = 

= {(10,11,14,15),(7,15),(13,15)} = 

= {7,10,11,13,14,15}.

In the first matrix of expression (56), the following ac-
tions are performed:

– to modules 10, 11, 14, 15, which form an interval of the
Boolean space containing the complete combinatorial system,
2-(2, 4)-design, the operation of super-gluing of variables is
applied [17];

– to modules 7, 15; 13, 15, which form an interval of the
Boolean space containing the complete combinatorial system,

2-(1, 2)-design, the operation of simple gluing of variables
is applied.

The fifteenth block of variables «1111» is common to
three systems – Σm(10,11,14,15), Σm(7,15), Σm(13,15) and
three operations of super- and simple gluing of variables,
the location of which is determined by the combinatorial
systems, 2-(2, 4)-design and 2-(1, 2)-design [4]. As a result,
a minimal function is obtained in one step:

f x x x x x x x x x xMDNF 1 2 3 4 1 3 2 4 1 3, , .() = + +() 	 (57)

The results of simplification of function (55) by a non-stan-
dard system and an evolutionary method are given in Table. 6.
Convergence with the optimal result was achieved at the
175th generation of the evolutionary method [33].

Table 6

The result of minimizing the function 	
f (x1, x2, x3, x4) (55)

Non-standard
system

Evolutionary
method

f x x x x x x x x x xMDNF 1 2 3 4 1 3 2 4 1 3, ,() ()= + + F bd c bdc amin = + +()()

Contemplating Table 6 reveals that the result of simpli-
fying the function f(x1, x2, x3, x4) (55) by a non-standard
system is a minimal function containing six literals. This is
one literal less compared to [33]. Decreasing the number of
literals gives a smaller depth of the logical scheme that im-
plements the minimal function (57) (Fig. 6).

1
&

1

&

&

x1x2x3x4 f(x1, x2, x3, x3)

Fig. 6. A logic circuit that implements 	
a minimum function (57) (circuit complexity 	

of 5 logical elements, circuit depth of 	
3 typical logic elements)

Fig. 7 shows the optimal variant of the logic scheme that
implements the DNF of the minimal function f(x1, x2, x3, x4) =  
= x1x3+x1x2x4+x2x3x4 (56).

&

&

&

1

x1
x2x3
x4

f(x1, x2, x3, x4)

Fig. 7. A logic circuit that implements the DNF (disjunctive

normal form) of the minimal function (56) (complexity of the
circuit is 4 logic elements, depth of the circuit is 2 typical

logic elements)

Fig. 8 shows a logical scheme designed on the basis of the
evolutionary method [33].

Mathematics and Cybernetics – applied aspects

25

Fig. 8. A logic scheme designed on the basis 	

of the evolutionary method (the complexity of the scheme
is 5 logical elements; the depth of the scheme is 4 typical

logical elements)

It should be noted that according to the diagram in Fig. 8,
the corresponding logical function will be of the form:

F bd c bdc amin .= +() +() 	 (58)

Continuing the simplification of the function (56), one
can achieve the result (57):

F bd c bdc a bdc abd bdc ac

abd bdc ac ac bd a c
min

.

= +() +() = + + + =

= + + = + +()

Thus, the transformation of the given logical function (55)
over 175 generations of the evolutionary method turned out to
be insufficient to obtain the optimal result of simplifying the
function.

Example 13. Simplify the Boolean function F(A, B, C, D) with
a non-standard system given by the truth table (Fig. 9) [34]:

No. A B C D F
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 0
12 1 1 0 0 0
13 1 1 0 1 1
14 1 1 1 0 0
15 1 1 1 1 1

Fig. 9. Truth table of function F (A, B, C, D)

Solution. I shall simplify the function F(A, B, C, D) (Fig. 9)
in PNF. Consider four dead-end forms of the given function

F(A, B, C, D) (Fig. 9). Depending on the technical condi-
tions for designing a logic circuit that implements simplified
functions, one of the considered dead-end forms may become
minimal.

The first dead-end form (DF).
Simplification of the function in PNF:

f A B C D

A B C D

The first dead end form

No.

− () =

=

, , ,

0 0 0 0 0

4

5

6

0 1 0 0

0 1 0 1

00 1 1 0

0 1 1 1
0 1

7

8

9

10 1 0 1 0

13

15

0 0 0

1 0 0
1 0 0 0

1 0 0 1

1 0 0

1 1 0 1

1 1 1 1

1 1 1

= =

A B C D

== = =

= ⊕ ⊕ ⊕ =

= ⊕ ⊕ ⊕

A B C D
A B C D

AD B ABC BC D

AD B BC A

0 0 0

1

1 0 0

1 0 0

1 1 0

0 0 0

1

1 0 0

1 0

DD

AD AD AD B BC A D

A D AD B BC A D

A D BC AD B

() =

= ⊕ ⊕ ⊕ ⊕ ⊕() =

= ⊕ ⊕ ⊕ ⊕ ⊕() =

= ⊕ +()⊕ ⊕ =

== ⊕ + +()⊕ ⊕A D B C AD B. 	 (59)

The results of simplifying the function F(A, B, C, D) (Fig. 9)
by a non-standard system and a genetic algorithm [34] are
given in Table 7. Convergence with the optimal result was
achieved in 400 generations of the genetic algorithm, the
total number of population members is 170 [34]. It is worth
noting that the problem of optimal stopping of the genetic
algorithm during the simplification of Boolean functions has
not been solved.

Contemplating Table 7, it can be seen that the dead-
end function (59) has one XOR less, which can give tech-
nological advantages when it is implemented by a logical
scheme (Fig. 10).

Table 7
Result of simplifying the function F(A, B, C, D) (Fig. 9)

Non-standard system Genetic algorithm

F A B C D A D B C AD B, , ,() ()= ⊕ + + ⊕ ⊕ F A D C B D A D= ⊕ + + ⊕ ⊕ +() () ()()
7 gates 7 gates

1 AND, 2 OR, 2 XORs, 2 NOT 1 AND, 2 OR, 3 XORs, 1 NOT

Number of connections – 13 Number of connections – 13

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

26

=1

1

&

1

=1 F

A

B
C

D
Fig. 10. A logic scheme designed by a non-standard 	

system to implement the dead-end form of 	
the function F(A, B, C, D) (59)

Fig. 11 shows a logical scheme designed on the basis of
a genetic algorithm to implement a minimal function [34].

Fig. 11. A logical circuit designed on the basis of a genetic
algorithm

The second dead end form.
Simplifying the function in Fig. 9 in PNF:

f A B C D

A B C D

The second dead end form

No.

, , ,() =

=

0 0 0 0 0
4
5

0 1 0 0
0 1 0 1

66
7
8
9

10
13 1 1 0 1
15 1 1 1 1

0 0 0 0

0 1 1 0
0 1 1 1

0 1 0 0
0 1 0 1
0 1

1 0 0 0
1 0 0 1
1 0 1 0

=

A B C D

11 0
0 1 1 1 0 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1

1 0

1 0 1 1
1 1 0 1
1 1 1 1

0 0 0 0

1 0 1 1
1 1 0 1
1 1

=

A B C D

11 1

0 0 0 0
0 1
1 0
1 0 1 1
1 1 1

0 0 0 0
0 1
1 0
1 0 0 1
1 1

=

= = =

= ⊕()⊕ ⊕ ⊕

A B C D A B C D

BC A D A B ADD

BC A D A B AD

B C A D B AD

=

= + ⊕()⊕ ⊕ ⊕ =

= + + ⊕()⊕ ⊕ . 	 (60)

The results of simplifying the function F(A, B, C, D) (Fig. 9)
by a non-standard system and a genetic algorithm [34] are
given in Table 8.

Table 8 demonstrates that the dead-end form of function
(59) has one XOR and one less logical element. A smaller
number of logical elements requires a smaller number of con-

nections, which can also provide technological advantages
when implementing function (59) in a logic scheme (Fig. 12).

Table 8

The result of simplifying the function F(A, B, C, D) (Fig. 9)

Non-standard system Genetic algorithm

F A B C D

B C A D B AD

, , ,()
()

=

+ + ⊕ ⊕ ⊕

F A D C

B D A D

= ⊕ + +

+ ⊕ ⊕ +

()
() ()()

6 gates 7 gates

1 AND, 1 OR, 2 XORs, 2 NOT 1 AND, 2 OR, 3 XORs, 1 NOT

Number of connections – 12 Number of connections – 13

=1

1

=1

&

f(x1, x2, x3, x3)

x1

x2x3

x4
Fig. 12. A logic scheme designed by a non-standard 	

system to implement the dead-end form of 	
the function F(A, B, C, D) (59)

The third dead-end form.
The simplification of function (Fig. 9) for the third dead-

end form begins with the fifth matrix of expression (60):

f A B C D

A B C D

A B C D
The third dead end form − () =

= =

, , ,

0 0 0 0
0 1
1 0
1 1
1 0 0 1

00 0 0 1
0 0 0 1
0 0 0 0
0 1
1 0
1 1
1 0 0 1
1 0 0 0
1 0 0 0

0 0
0 0 0 1
0 1
1 0
1 1
1 0 0 0

= =

=

A B C D

A B C D
00 0

0 0 0
0 1
1 0
1 1

0 0 0

0 0
0 0 1
0
1 0
1 1

0 0 0

0 0
0 0 0
0

0
1 1

0 0 0

1 0

= = =

=

A B C D A B C D

A B C D
00

0
0

1 1
0 0 0

1

1

=

= ⊕ ⊕ ⊕ +() =

= ⊕ ⊕()⊕ +() =

= ⊕ ⊕()()⊕

B ABC BC D A D

B AC C D A D

B C A D AA D

B C A D A D

B C A D A D

+() =

= ⊕()()⊕ +() =

= + ⊕()()⊕ +(). 	 (61)

Mathematics and Cybernetics – applied aspects

27

The results of simplifying the function F(A, B, C, D) (Fig. 9)
by a non-standard system and a genetic algorithm [35] are
given in Table 9.

Table 9

Result of simplifying the function F(A, B, C, D) (Fig. 9)

Non-standard system Genetic algorithm

F A B C D

B C A D A D

, , ,()
()() ()

=

+ ⊕ ⊕ +

F A D C

B D A D

= ⊕ + +

+ ⊕ ⊕ +

()
() ()()

7 gates 7 gates

1 AND, 2 OR, 2 XORs, 2 NOT 1 AND, 2 OR, 3 XORs, 1 NOT

Number of connections – 12 Number of connections – 13

Looking at Table 9, it can be seen that the dead-end form
of function (61) has one literal and one XOR less. A smaller
number of literals requires a smaller number of connections in
the scheme, which can give technological advantages in the
implementation of function (61) (Fig. 13). It is important to
note that the diagram in Fig. 13 has a longer signal delay com-
pared to the scheme in Fig. 11. However, the choice of logic
scheme depends on the design tasks and technical conditions.

1

1

&
=1

=1x1

x2x3

x4

f

Fig. 13. A logic scheme designed by a non-standard 	

system to implement the dead-end form 	
of function F (A, B, C, D) (61)

The fourth dead-end form.
Simplifying the function in Fig. 9 in DNF.

The implementation of the obtained dead-end form of
function (62) requires fewer transistors, compared to the
scheme in Fig. 11, and, therefore, is technologically sim-
pler (Fig. 14).

=1

&

&

1

1

&
x1

x2

x3

x4

f

Fig. 14. A logic circuit designed by a non-standard 	

system to implement the dead-end form 	
of function F (A, B, C, D) (62)

Work [34] considered the result of simplifying the func-
tion in Fig. 9, such that F A B C D AB A BD CD, , , .() = + +()
However, testing with code No. 0 – 0000, the specified sim-
plification option does not give unity, as required by the truth
table of the function in Fig. 9.

Example 14. Simplify the Boolean function F(E, D, C, B, A)
by a non-standard system given by the truth table (Fig. 15) [35]:

No. E D C B A F
0 0 0 0 0 0 0
1 0 0 0 0 1 0
2 0 0 0 1 0 0
3 0 0 0 1 1 1
4 0 0 1 0 0 0
5 0 0 1 0 1 1
6 0 0 1 1 0 1
7 0 0 1 1 1 0
8 0 1 0 0 0 0
9 0 1 0 0 1 1
10 0 1 0 1 0 1
11 0 1 0 1 1 0
12 0 1 1 0 0 1
13 0 1 1 0 1 0
14 0 1 1 1 0 0
15 0 1 1 1 1 0
16 1 0 0 0 0 0
17 1 0 0 0 1 1
18 1 0 0 1 0 1
19 1 0 0 1 1 0
20 1 0 1 0 0 1
21 1 0 1 0 1 0
22 1 0 1 1 0 0
23 1 0 1 1 1 0
24 1 1 0 0 0 1
25 1 1 0 0 1 0
26 1 1 0 1 0 0
27 1 1 0 1 1 0
28 1 1 1 0 0 0
29 1 1 1 0 1 0
30 1 1 1 1 0 0
31 1 1 1 1 1 0

Fig. 15. Truth table of 	

function F(E, D, C, B, A)

Solution. The function (Fig. 15) is
singular [2]. To simplify it, we choose the
Reed-Muller basis:

f A B C D

A B C D
The fourth dead end form

No.
− () =

=

, , ,

0
4
5

0 0 0 0
0 1 0 0
0 01 1

66
7
8
9 1 0 1

10 1 0 0
13
15

1 0 1
1 0 0

0 1 1 0
0 11 1

0

1 1 0 1
1 1 1 1

1 1

1 0 0 0

1

0 0 0
0 1= =

A B C D AA B C D A B C D

A B C D

0 0 0
0 1
1 0 0
1 0 0

1 1

0 0 0
0 1 0
1 0 0
1 0 0

1 1

0 0 0
0 1 0 0
0 1 1 0
1 0 0
1

= =

=

00 0
1 1

0 0 0
0 1 0
0 1 1 0
1 0 0
1 0 0

1 1

0 0 0
0 1 0
0 1 0
1 0 0
1 0 0

1 1

1 2 3

= = =

=

A B C D A B C D

x x x ++ + + + + =
= +() + +(

x x x x x x x x x x x x x x

x x x x x x x x
1 2 4 1 2 3 1 2 4 2 3 4 2 4

1 2 3 4 1 2 3 4)) + + =

= +() +() + + =

= +() ⊕

x x x x x

x x x x x x x x x x x

x x x

2 3 4 2 4

3 4 1 2 1 2 2 3 4 2 4

3 4 1 xx x x x x x x x x x x x x x x2 2 3 4 2 4 3 4 1 2 2 3 4 2 4() + + = ⊕() + + + + .  (62)

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

28

F E D C B A

E D C B A f

The dead endPNF

No.

− =

=

(, , , ,)

3 0 0 0 1 1 1
5 0 0 1 0 1 1
6 0 0 1 1 0 11
9 0 1 0 0 1 1

10 0 1 0 1 0 1
12 0 1 1 0 0 1
17 1 0 0 0 1 1
18 1 0 0 1 0 1
20 1 0 1 0 0 1
24 1 1 0 0 0 1

=

EE D C B A

E D C B A

0 0 0 1 1
0 0 1 1
0 0 1 1
0 1 0 1
0 1 0 1

1 1 0 0
1 0 0 1
1 0 0 1
1 1 0 0
1 1 0 0 0

0 0 0

=

=

11 1
0 1 1
0 1 1
0 1 1
0 1 1

1 1 0 0
1 0 0 1
1 0 0 1
1 1 0 0
1 1 0 0 0

0 0 0 1 0
0 1 1
0 1 1
0 1 1
0 1=

E D C B A

11
1 0 0

1 0 0 1
0 0 1

1 1 0 0
0 1 0 0 0

0 0 1 1
0 1 1
0 1
0 1
0 1 1

1 0 0
1 0 0 1

0 0 1
1 1 0 0
0 1 1

=

E D C B A

00

0 0 1 1
0 1 1
0 1
0 1 0

1 0 0
1 0 0 1

0 0 1
1 1 0 0
0 1 1 0

0 0 0 1
0 1
0 1
0 1 0

1 0

=

= =

E D C B A E D C B A

00
1 0 0 1

0 0 1
1 1 0 0
0 1 1 0

0 0 0 1
0 1
0
0 0 0

1 0 0
1 0 0 1

0 0 1
1 1 0 0
0 1 1 0

= =

=

E D C B A

E D C B A
00 0 0 1
0 0
0 0 0

1 0 0
1 0 0 1

0 0 1
1 1 0 0
0 1 1 0

.

The dead-end PNF of the function (Fig. 15) is as follows:

F E D C B A E B CA D

E ADC B A EC D DC EA B

The dead endPNF − () = ⊕()⊕

⊕ ⊕ ⊕()⊕ ⊕

, , , ,

((). 	 (63)

The Zhegalkin polynomial for TPNF (63) takes the fol-
lowing form:

P E D C B A ED EC EB EA
EDC EDB EDA ECB ECA EBA
DC DB D

, , , ,() = ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ AA DCB DCA

DBA CB CA CBA BA
⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ . 	 (64)

With the help of the visual-matrix form, the simplifica-
tion of the polynomial (64) is carried out and the minimum
function in the mixed basis is obtained.

F E D C B A
E D C B A

min , , , ,() =

=

1 1
1 1
1 1
1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

1 1
1 1
1 1
1 1 1
1 11 1
1 1 1

1 1
1 1
1 1 1

1 1

1 1

1 1

1 0 1
1 0 1
1 0 1

1 1
1 1
1 1

1 1 1
1 1 1
1 1 1

0 1 1
0 1 1
0 1 1

=

E D C B A

11

=

= ⊕ ⊕ ⊕() ⊕()⊕
⊕ ⊕() ⊕ ⊕()⊕ =
= ⊕ ⊕ ⊕() +()

ED C B A E D D

E D CB CA BA CBA

ED C B A E D ⊕⊕
⊕ ⊕() ⊕()⊕()⊕ =
= ⊕ ⊕ ⊕ ⊕ ⊕() +()⊕
⊕ ⊕() ⊕(

E D C B A BA CBA

ED E D E D C B A E D

E D C B A))⊕()⊕ =
= ⊕ ⊕ + ⊕ ⊕ ⊕() +()⊕
⊕ ⊕() ⊕()⊕()⊕ =

=

BA CBA

E D E D C B A E D

E D C B A BA CBA

C ⊕⊕ ⊕() + +()()⊕

⊕ ⊕() ⊕()⊕()⊕ =

= ⊕ ⊕() + +()()⊕

⊕ ⊕

B A E D

E D C B A BA CBA

C B A E D

E DD C B A BA CBA

C B A E D

E D C B A BA

() + ⊕()⊕()⊕ =

= ⊕ ⊕() + +()()⊕

⊕ ⊕() + ⊕()⊕()⊕

)

CCBA

C B A E D

E D C B A BA CBA

C B A E D

=

= ⊕ ⊕() +()()⊕ ⊕

⊕() + ⊕()⊕()⊕ =
= ⊕ ⊕() +()⊕
⊕⊕ ⊕() + ⊕()⊕()⊕E D C B A BA CBA.

The minimum function looks like this:

F E D C B A C B A E D

E D C B A BA CBA

min , , , ,

,

() = ⊕ ⊕() +()⊕

⊕ ⊕() + ⊕()⊕()⊕

and contains 15 literals, which is two literals less than [35]:

S B D A B CE B D A B CE

E D C A B

= ⊕()+ ⊕()()⊕()⊕ ⊕()+ ⊕()()⊕() ×

× ⊕ ⊕()()⊕ ⊕()(),,

where the simplification of the function (Fig. 15) is carried
out using the particle swarm optimization algorithm.

Mathematics and Cybernetics – applied aspects

29

Example 15. Simplify the partially defined function f(x1, x2,
x3, x4, x5, x6) with a non-standard system given by the truth
table (Fig. 16) [36].

No. x1 x2 x3 x4 x5 x6 f
0 0 0 0 0 1 0 0
1 0 0 0 0 1 1 0
2 0 0 0 1 0 1 0
3 0 0 0 1 1 0 0
4 0 0 0 0 0 1 1
5 0 0 1 0 0 1 1
6 0 0 1 0 1 0 1
7 0 0 1 1 0 1 1
8 0 0 1 1 1 0 1

 Fig. 16. Truth table of partially defined 	
function f (x1, x2, x3, x4, x5, x6)

Solution.
The truth table of the PDNF of the partially defined func-

tion f(x1, x2, x3, x4, x5, x6) (Fig. 16) takes the form (Fig. 17).
In the PDNF of the partially defined function f(x1, x2, x3, x4,

x5, x6) in Fig. 17, the following actions were carried out: to mo
dules 9, 10, 13, 14, 8, 11, 12, 15, 24, 25, 26, 27, 28, 29, 30, 31, 40,
41, 42, 43, 44, 45 , 46, 47, 56, 57, 58, 59, 60, 61, 62, 63; 1, 9, 0, 8, 16,
17, 24, 25, 32, 33, 40, 41, 48, 49, 56, 57, the corresponding groups
of which form intervals of the Boolean space containing com-
plete combinatorial systems, 2-(5 , 32)-design and 2-(4, 16)-de-
sign, the operation of super-gluing variables was applied [17].

The result of logical operations of super-gluing the vari-
ables is recorded in the following matrix in Fig. 18.

It is important to note that the undefined sets of vari-
ables 4, 7, 18, 19, 20, 21, 22, 23, 34, 35, 36, 37, 38, 39, 50,
51, 52, 53, 54, 55 of the matrix in Fig. 17 are not recorded
to the matrix in Fig. 18 since they do not participate in the
simplification of the partially defined function f(x1, x2, x3, x4,
x5, x6) (Fig. 16). This ultimately reduces the complexity of
simplifying the function in Fig. 16.

In one step, the minimum DNF of the function f(x1, x2, x3,
x4, x5, x6) is obtained (Fig. 16), which takes the form:

f x x x x x x x x xMDNF 1 2 3 4 5 6 3 4 5, , , , , ,() = +

it coincides with [36], in which the simplification of the func-
tion is carried out by the method of directed sorting.

No. x1 x2 x3 x4 x5 x6 f No. x1 x2 x3 x4 x5 x6 f
1 0 0 0 0 0 1 1 34 1 0 0 0 1 0 ‒
9 0 0 1 0 0 1 1 35 1 0 0 0 1 1 ‒
10 0 0 1 0 1 0 1 36 1 0 0 1 0 0 ‒
13 0 0 1 1 0 1 1 37 1 0 0 1 0 1 ‒
14 0 0 1 1 1 0 1 38 1 0 0 1 1 0 ‒
0 0 0 0 0 0 0 ‒ 39 1 0 0 1 1 1 ‒
4 0 0 0 1 0 0 ‒ 40 1 0 1 0 0 0 ‒
7 0 0 0 1 1 1 ‒ 41 1 0 1 0 0 1 ‒
8 0 0 1 0 0 0 ‒ 42 1 0 1 0 1 0 ‒
11 0 0 1 0 1 1 ‒ 43 1 0 1 0 1 1 ‒
12 0 0 1 1 0 0 ‒ 44 1 0 1 1 0 0 ‒
15 0 0 1 1 1 1 ‒ 45 1 0 1 1 0 1 ‒
16 0 1 0 0 0 0 ‒ 46 1 0 1 1 1 0 ‒
17 0 1 0 0 0 1 ‒ 47 1 0 1 1 1 1 ‒
18 0 1 0 0 1 0 ‒ 48 1 1 0 0 0 0 ‒
19 0 1 0 0 1 1 ‒ 49 1 1 0 0 0 1 ‒
20 0 1 0 1 0 0 ‒ 50 1 1 0 0 1 0 ‒
21 0 1 0 1 0 1 ‒ 51 1 1 0 0 1 1 ‒
22 0 1 0 1 1 0 ‒ 52 1 1 0 1 0 0 ‒
23 0 1 0 1 1 1 ‒ 53 1 1 0 1 0 1 ‒
24 0 1 1 0 0 0 ‒ 54 1 1 0 1 1 0 ‒
25 0 1 1 0 0 1 ‒ 55 1 1 0 1 1 1 ‒
26 0 1 1 0 1 0 ‒ 56 1 1 1 0 0 0 ‒
27 0 1 1 0 1 1 ‒ 57 1 1 1 0 0 1 ‒
28 0 1 1 1 0 0 ‒ 58 1 1 1 0 1 0 ‒
29 0 1 1 1 0 1 ‒ 59 1 1 1 0 1 1 ‒
30 0 1 1 1 1 0 ‒ 60 1 1 1 1 0 0 ‒
31 0 1 1 1 1 1 ‒ 61 1 1 1 1 0 1 ‒
32 1 0 0 0 0 0 ‒ 62 1 1 1 1 1 0 ‒
33 1 0 0 0 0 1 ‒ 63 1 1 1 1 1 1 ‒

Fig. 17. The truth table of DDNF of the partially defined

function f (x1, x2, x3, x4, x5, x6) (Fig. 16)

x1 x2 x3 x4 x5 x6 f
‒ ‒ ‒ 0 0 ‒ 1
‒ ‒ 1 ‒ ‒ ‒ 1

Fig. 18. Completing the simplification 	

of function f (x1, x2, x3, x4, x5, x6) (Fig. 16)

Table 10 gives the results of simplification of Boolean func-
tions borrowed from the works of other authors and a non-
standard system.

Table 10

Comparative table of examples of simplification of Boolean functions borrowed from the works of other authors 	
and a non-standard system

Example
No.

Number of
input variables Simplification method ID The result of simplification Non-standard system

3 4 Method of uncoupling of conjunct terms [26] 14 literals 12 literals

4 4 Method by Quine-McCluskey [28] 13 literals abbreviated
function

11 literals the minimum
function

5 4 Method of uncoupling of conjunct terms [29, 30] 12 DNF literals 8 CNF literals
6 4 Method of uncoupling of conjunct terms [29] 5 inversions 3 inversions
7 4 Method of uncoupling of conjunct terms [29] 10 literals 6 literals
8 4 Method by Quine-McCluskey Minimization results are the same

9 4 Method by Quine-McCluskey 14 literal abbreviated
function

MDNF of 8 literals MPNF
of 5 literals

10 4 Carnot map [32] Does not pass verification 4 literals
11 4 Veitch diagram [32] 6 inversions 5 inversions
12 4 Evolutionary method [33] 7 literals 6 literals
13 4 Genetic algorithm [34] 7 literals 6 literals
14 5 Swarm algorithm [35] 17 literals 15 literals
15 6 Method of directed search [36] Minimization results are the same

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

30

Table 10 gives a representative sample of examples in the
simplification of Boolean functions by various methods. The
non-standard function simplification system shows better or
the same result.

6. Discussion of results of simplifying the Boolean
functions by a non-standard system

The beginning of the simplification of Boolean functions by
a non-standard system is the search for intervals of the Boolean
space containing the combinatorial systems, 2-(n, b)-design,
2-(n, x/b)-design, in particular, in the case when different inter-
vals of the Boolean space partially coincide. The non-standard
is heuristic. Heuristics are inventive, the answer is not to «cal-
culate» but to find, this is the true search – the desire to find.
Detection through the search of the necessary intervals of the
Boolean space unambiguously implies the locations of equiva-
lent transformations and provides the «trigger causality» of the
consequence, in the form of the very solution to the problem of
the systematized procedure for simplifying Boolean functions
by the visual-matrix form of the analytical method.

The mathematical apparatus of a non-standard system for
simplifying Boolean functions is the method of figurative trans-
formations, which is considered in works [37–40], and others.

The technology for simplifying Boolean functions by a non-
standard system is given in Table 11.

New components of the technology of simplification
of Boolean functions by a non-standard system are given
in Table 12.

The following results were obtained for each task:
1. A property of combinatorial systems with 2-(n, b)-de-

sign repetition is demonstrated, which consists in the ability
of 2-(n, b)-design systems to reproduce (represent) the defi-
nition of logical super-gluing operations of variables in the
form of a change in self-determination in the process of inter-
action with them. Thus, to simplify Boolean functions with
a non-standard system, the logical operation of super-gluing
variables can be represented by a complete combinatorial
system, 2-(n, b)-design (n > 1, b > 3), and vice versa. For n = 1,
b = 2, the combinatorial system, 2-(n, b)-design, represents
a logical operation of simple gluing of variables.

To reproduce (represent) the definition of the logical ope
ration of super-gluing variables by the combinatorial system
with repeated 2-(n, b)-design, the mechanism of providing
polymorphism (Fig. 3) and the verbal concept (8) are used.
Examples of representation of logical operations of super-
gluing of variables by combinatorial systems with repeated
2-(n, b)-design demonstrate the rules of super- and simple
gluing of variables (9) to (11).

Table 11
Technology of simplification of Boolean functions by a non-standard system

1 Binary combinatorial systems with repetition, 2-(n, b)-design, 2-(n, x/b)-design

2 Verbal and figurative presentation of information

3 The logical operation of super-gluing variables

4 Logical operation of incomplete super-gluing of variables

5 Hermeneutics of logical operations on binary equivalents of logical functions

6 Protocols of figurative transformations

7 The sign of the minimal logical function,

8 Minimization of Boolean functions on a complete truth table

9 The algorithm of the analytical method and its automation

10 Extension of the analytical method to other logical bases

11 Algebra of equivalent transformations in the class of perfect normal forms of functions of the Scheffer algebra

12 Algebra of equivalent transformations in the class of perfect implicative normal forms

13 Algorithms for simplifying Boolean functions using logical operations of absorption and super-gluing of variables

14 Stack of logical operations

15
Algorithms for simplifying the PNF of Boolean functions using the insertion of identical conjunctions with the following operation of
super-gluing variables

16 Singular function

17 Algebra of equivalent transformations in the class of polynomial normal forms of Boolean functions

18 Mixed basis

19
Combining a sequence of logical operations of super- and simple gluing of variables with the possible use of an implicant table to identify
redundant simple implicants

20
Dead-end DNFs can be simplified by carrying out all operations of generalized gluing of variables, followed by the use of an implicant table:
– to detect extra simple implicants,
– to select simple implicants with a minimum number of inversions

21 Identifying the locations of equivalent transformations using the 2-(n, b)-design, 2-(n, x/b)-design combinatorial systems

Table 12
New components of the technology of simplification of Boolean functions by a non-standard system

1 Decimal format of equivalent figurative transformations

2
Basically, every 2-(n, b)-design, 2-(n, x/b)-design system implies a logical operation of super- and/or incomplete gluing of variables,
in particular in the case when different intervals of the Boolean space, which accommodate 2-(n, b)-design, 2-(n, x/b)-design systems
partially coincide

3 Theorem of the non-standard system of simplification of Boolean functions

4 Thesaurus of a non-standard system for simplifying Boolean functions

Mathematics and Cybernetics – applied aspects

31

2. The beginning (principle) of a non-standard system for
simplifying Boolean functions is the search for intervals in the
truth table containing combinatorial systems, 2-(n, b)-design,
2-(n, x/b)-design, and not multi-pass logical transformations,
which must be performed when simplifying a function by an
analytical method (Assertions 1–4). The mutually unambiguous
correspondence between the PDNF of the Boolean function
and the combinatorial system, 2-(n, b)-design (2), gives a hy-
perparameter in the form of a set location of equivalent transfor-
mations. The findings of the 2-(n, b)-design, 2-(n, x/b)-design
system directly and unambiguously point to logical operations
for equivalent transformations. In turn, this implies an optimal
algorithm for a non-standard system for simplifying Boolean
functions. The formal basis of this reduction of the visual-matrix
form is the algebraic simplification of the corresponding com-
plete and/or incomplete PDNF of Boolean functions, such as (5).

Example 3 demonstrates the identification of the loca-
tions of equivalent transformations using 2-(n, b)-design
combinatorial systems.

3. The theorem of the non-standard system of simplifica-
tion of Boolean functions is formulated (theorem). According
to the theorem, all non-redundant simple and/or super-gluing
operations of variables must be performed to obtain a minimal
function. As a result, this will provide a minimal function in
the main basis without using the implicant table (examples 4,
5, 8, etc.). Thus, the problem of simplifying Boolean functions
to the simplest normal equivalent is solved in one step, unlike
the methods by McCall [41], Quine [42], McCluskey [18],
in which the Boolean problem is solved in two steps.

4. The non-standard system for simplifying Boolean func-
tions has its own systematized composition of informa-
tion (knowledge) and settings, in the form of a formed the-
saurus (Table 1 and Table 5), which provides orientation in
this system.

5. A comparative analysis of the results of the simplifi-
cation of Boolean functions by a non-standard system and
examples of the simplification of functions by the evolutio
nary method, genetic, swarm algorithms, and the method for
directed selection was carried out (Examples 12–15). In the
vast majority of cases, the cost of implementing the minimum
function obtained using a non-standard system is lower. For
all the considered examples, the simplification procedure with

a non-standard system is simpler. This makes it possible to
simplify functions without the use of automated calculations.

The interpretation of the result is that the object of solving
the problem of simplifying Boolean functions is combinato
rial systems with repeated 2-(n, b)-design, 2-(n, x/b)-design,
which is actually the truth table of the given functions. This
makes it possible to focus the principle of simplification within
the limits of the truth table and do without auxiliary objects,
such as the Carnot map, Veitch diagrams, acyclic graph, etc.
Equivalent transformations with combinatorial images, which
by their properties have a greater information capacity, can
effectively replace verbal procedures of algebraic transforma-
tions. In this regard, the non-standard system of simplification
of Boolean functions allows the peculiarity that there is some
analogy of the algorithm, which transforms the «messy» com-
plexity of the simplification procedure by the analytical me
thod into a complex order of figurative transformations.

Table 13 gives a comparison of methods for simplifying
Boolean functions in the main basis.

Looking at Table 13, it can be seen that the Quine-McClus-
key method uses the division of terms into groups with the
same number of ones (zeros). In turn, a non-standard system
uses combinatorial systems with repeated 2-(n, b)-design,
2-(n, x/b)-design. This simplifies and speeds up the search for
the minimum function. The interpretation of 2-(n, b)-design
systems on the Carnot map is carried out by correct contours.
However, with an increase in the number of bits of the Boolean
functions, the correct contours lose visibility. In this regard,
the Carnot map becomes a difficult mathematical device for
simplifying a function with more than five to six variables.

The peculiarity of the simplification of logical functions by
a non-standard system, in contrast to the division of terms into
groups with an equal number of ones (zeros), is the implication
of the algorithm for simplifying functions by combinatorial
systems with repeated 2-(n, b)-design, 2-(n, x/b)-design by
searching for them on the binary structure of the truth table,
in particular in the case when different intervals of the Boolean
space partially coincide. As a result, verbal procedures of alge-
braic transformations, without established recommendations
for the rational search for minimal dead-end forms of Boolean
functions, are replaced by systematized equivalent figurative
transformations.

Table 13
Comparative table of methods for simplifying Boolean functions in the main basis

Simplification method The principle and complexity of simplification

Quine-McCluskey
(method of simple
implicants) [25]

Division of terms into groups with an equal number of units (zeros). This makes it possible to exclude comparisons
that do not allow the operation of gluing variables in advance.
The Quine-McCluskey method becomes complicated with a large number of variables. Then the time to search for
the optimal function increases by 22n, where n is the bit size of the Boolean function. The limitation of the application
area of the Quine-McCluskey method occurs when the time of operation of the method increases exponentially with
the increase of input data. For a Boolean function of n variables, the upper limit of the number of basic implicants is
3n/n. If n = 32, there may be more than 6.5×1015

Carnot map
(Veitch diagram)

For the Carnot map (Veitch diagram), the intervals of the Boolean space manifest themselves in the form of regular
contours.
The convenience and clarity of such a representation of a logical function is due to the fact that the logical terms, to
which the operations of pairwise incomplete gluing and elementary absorption can be applied, are grouped on the
Carnot map in the form of visually obvious rectangular arrays (regular contours) containing the same values in their
cells (zeros and ones).
However, the interpretation of the intervals of the Boolean space by regular contours is not of fundamental impor-
tance for the consequence – the Carnot map remains a redundant matrix. In addition to the above, the Carnot map
becomes a difficult mathematical device for simplifying a function with more than five to six variables

Non-standard system

The simplification of Boolean functions by a non-standard system is based on the search for intervals of the Boolean
space containing the combinatorial systems, 2-(n, b)-design, 2-(n, x/b)-design. Since these systems are logical ope
rations at the same time, this ensures the effectiveness of the implication of the algorithm for simplifying the given
functions. When increasing the bit rate of Boolean functions, the properties of the 2-(n, b)-design, 2-(n, x/b)-design
systems do not change

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

32

In contrast to the correct contours of the Carnot map, the
properties of the 2-(n, b)-design, 2-(n, x/b)-design systems
do not change with the increase in the number of bits of the
Boolean functions, and clarity is not lost. This makes it pos-
sible to search for them efficiently, and therefore effectively
imply the algorithm for simplifying logical functions for
a larger number of input variables.

The established location of equivalent transformations
by the 2-(n, b)-design, 2-(n, x/b)-design systems implies
a systematic procedure for simplifying Boolean functions.
As a result, the problem of implementing the simplification
of logical functions with a non-standard system is self-
solved. The implication of the algorithm for simplifying
Boolean functions is provided by the interpretation of
2-(n, b)-design systems by logical operations of simple
and/or super-gluing variables and vice versa, for carrying
out equivalent transformations of logical expressions.
Thus, the principle of minimizing functions by a non-stan-
dard system is established, which reduces the complexity
and improves the efficiency of the procedure for simplify-
ing Boolean functions, compared, in particular, with the
transfer of the problem of simplification to the algebraic
domain, in which algorithms for calculations are applica-
ble on the Graebner basis [9]; by simplifying the terms of
Boolean functions in the context of a formal, axiomatically
defined theory [13]; machine learning techniques [10];
techniques for finding approximate Boolean schemes, large
training sets of examples with a large number of primary
input data, methods for restoring the accuracy of a logical
scheme [14]; nonlinear mixed integer programming [15],
and others.

Only the fundamental non-standard nature in principle
solves the problem of the laboriousness of the procedure for
simplifying logical functions when they are represented in
a visual-matrix form.

The application of the result makes it possible to improve
and expand the technology of designing electronic compo-
nents and devices for their use in digital technologies, which
are based on basic, polynomial, and other bases.

The visibility of 2-dimensional binary matrices allows
for a manual way of simplifying Boolean functions using
a mathematical editor, for example MathType 7.4.0 (USA):
Examples 1, 2, 3, 4, 7, 9, 10, 12, 15 (minimization of DNF),
3, 6, 9, 13, 14 (minimization of PNF), 5, 11 (minimization
of CNF), or using MS Word tables: example 8 (minimiza-
tion of DNF).

The use of a non-standard system for simplifying func-
tions in the basic and polynomial bases brings, to a certain
extent, the problem of simplifying Boolean functions
to the level of a well-researched problem in the class
of disjunctive-conjunct term normal forms (DCNF) of
Boolean functions. A limitation of the application of the
method for figurative transformations is the cases when
the switching function is represented in a mixed basis.
In this case, the function must be represented by one
logical base.

The weakness of the considered method is in its small
practical application for the simplification of Boolean
functions with the subsequent design and manufacture of
the corresponding computing components. The negative
internal factors of a non-standard system are associa
ted with additional time costs for establishing protocols
for simplifying logical functions in Boolean and Reed-
Muller logic bases, followed by the creation of a library of

protocols that illustrate the corresponding image trans-
formations.

A prospect for further research on the simplification
of logical functions may be the use of Boolean formulas of
a special type, called conjunct term normal form (2-CNF)
or Krohm formulas. The problem is known as the computa-
tional problem of assigning values to variables, each of which
has two possible values 0 or 1, in order to satisfy a pairwise
constraint system – 2-satisfiability, (2-SAT), 3-satisfiability,
(3-SAT), so that the result of this function is equal to unity.

7. Conclusions

1. A property of combinatorial systems with 2-(n, b)-de-
sign repetition has been demonstrated, which consists in
the ability of 2-(n, b)-design systems to reproduce (rep-
resent) the definition of logical super-gluing operations
of variables in the form of a change in self-determination
in the process interaction with them. Thus, to simplify
Boolean functions with a non-standard system, the logical
operation of super-gluing variables can be represented by
a complete combinatorial system, 2-(n, b)-design (n > 1,
b > 3), and vice versa. For n = 1, b = 2, the combinatorial
system, 2-(n, b)-design, represents a logical operation of
simple gluing of variables.

2. Detection of the 2-(n, b)-design, 2-(n, x/b)-design
systems in the truth table directly and unambiguously
establishes the locations of equivalent transformations for
Boolean functions. The interpretation of the result is that
the 2-(n, b)-design, 2-(n, x/b)-design systems represent
logical operations. Therefore, the detection of combina-
torial systems in the truth table directly and unambigu-
ously indicates logical operations for equivalent transfor-
mations of Boolean expressions. This, in turn, implies an
optimal algorithm for a non-standard system of simplifying
logical functions.

3. A theorem of the non-standard system for the simplifi-
cation of Boolean functions has been formulated. According
to the theorem of the non-standard system of simplification
of Boolean functions, all non-redundant simple and/or su-
per-gluing operations of variables must be performed to
obtain the minimum function. The result of these actions will
be the minimal function in the main basis without using the
implicant table.

4. The non-standard system for simplifying Boolean
functions has its own systematized composition of informa-
tion (knowledge) and settings, in the form of a thesaurus,
which provides orientation in this system. Through the com-
parison of thesauri, correspondence between the concepts of
a non-standard system, the Quine-McCluskey method and
the Carnot map was established.

5. A comparative analysis of examples of simplification
by the evolutionary method, genetic and swarm algorithms
demonstrated that heuristic methods and algorithms pro-
vide a minimum function with a higher cost of implementa-
tion, compared to simplification by a non-standard system.
In addition to the above, obtaining a minimum function by
a non-standard system is a simpler procedure.

A comparative analysis of the example of simplifying
a 6-bit partially defined Boolean function in the main basis
by the method for directed sorting demonstrated that in-
creasing the bitness of Boolean functions does not change
the properties of 2-(n, b)-design systems. This makes it

Mathematics and Cybernetics – applied aspects

33

possible to search for them effectively, and therefore ef-
fectively imply the algorithm for simplifying functions for
a larger number of input variables. In one step, a non-stan-
dard system, without using an implicant table, obtained the
minimum DNF of the function. The results of the simplifi-
cation of the two methods coincide.

Conflict of interest

The author declares that he has no conflicts of interest
in relation to the current study, including financial, personal,
authorship, or any other, that could affect the study and the
results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

All data are available in the main text of the manuscript.

Use of artificial intelligence

The author confirms that he did not use artificial intelli-
gence technologies when creating the current work.

References

1.	 Riznyk, V., Solomko, M. (2018). Minimization of conjunctive normal forms of boolean functions by combinatorial method. Techno

logy Audit and Production Reserves, 5 (2 (43)), 42–55. https://doi.org/10.15587/2312-8372.2018.146312

2.	 Solomko, M., Batyshkina, I., Khomiuk, N., Ivashchuk, Y., Shevtsova, N. (2021). Developing the minimization of a polynomial nor-

mal form of boolean functions by the method of figurative transformations. Eastern-European Journal of Enterprise Technologies,

2 (4 (110)), 22–37. https://doi.org/10.15587/1729-4061.2021.229786

3.	 Solomko, M., Khomiuk, N., Ivashchuk, Y., Nazaruk, V., Reinska, V., Zubyk, L., Popova, A. (2020). Implementation of the method

of image transformations for minimizing the Sheffer functions. Eastern-European Journal of Enterprise Technologies, 5 (4 (107)),

19–34. https://doi.org/10.15587/1729-4061.2020.214899

4.	 Solomko, M., Antoniuk, M., Voitovych, I., Ulianovska, Y., Pavlova, N., Biletskyi, V. (2023). Implementing the method of figurative

transformations to minimize partially defined Boolean functions. Eastern-European Journal of Enterprise Technologies, 1 (4 (121)),

6–25. https://doi.org/10.15587/1729-4061.2023.273293

5.	 Burmistrov, S. V., Khotunov, V. I., Zakharova, M. V., Mykhaylyuta, S. L., Liuta, M. V. (2023). Index method of minimization of Boolean

functions. Bulletin of Cherkasy State Technological University, 2, 24–37. https://doi.org/10.24025/2306-4412.2.2023.273763

6.	 Udovenko, A. (2023). DenseQMC: an efficient bit-slice implementation of the Quine-McCluskey algorithm. arXiv. https://doi.org/

10.48550/arXiv.2302.10083

7.	 Ignatiev, A., Previti, A., Marques-Silva, J. (2015). SAT-Based Formula Simplification. Theory and Applications of Satisfiability

Testing -- SAT 2015, 287–298. https://doi.org/10.1007/978-3-319-24318-4_21

8.	 Cal , E., Levy, J. (2023). General Boolean Formula Minimization with QBF Solvers. Artificial Intelligence Research and Develop-

ment. https://doi.org/10.3233/faia230705

9.	 Faro , N., Schwarz, S. (2023). Gr bner Bases for Boolean Function Minimization. 8th International Workshop on Satisfiability

Checking and Symbolic Computation. Available at: https://ceur-ws.org/Vol-3455/short4.pdf

10.	 Le Charlier, B., Atindehou, M. M. (2016). A Method to Simplify Expressions: Intuition and Preliminary Experimental Results.

EPiC Series in Computing. https://doi.org/10.29007/jv63

11.	 Prasad, V. C. (2018). Novel method to simplify Boolean functions. Automatyka/Automatics, 22 (2), 29. https://doi.org/10.7494/

automat.2018.22.2.29

12.	 Sil di, V., Filo, T. (2013). Quine-Mccluskey algorithm on GPGPU. AWERProcedia Information Technology & Computer Science,

04, 814–820. https://doi.org/10.13140/2.1.2113.1522

13.	 Costamagna, A., De Micheli, G. (2023). Accuracy recovery: A decomposition procedure for the synthesis of partially-specified

Boolean functions. Integration, 89, 248–260. https://doi.org/10.1016/j.vlsi.2022.12.008

14.	 Boroumand, S., Bouganis, C.-S., Constantinides, G. A. (2021). Learning Boolean Circuits from Examples for Approximate Logic Syn-

thesis. Proceedings of the 26th Asia and South Pacific Design Automation Conference. https://doi.org/10.1145/3394885.3431559

15.	 Dimopoulos, A. C., Pavlatos, C., Papakonstantinou, G. (2022). Multi-output, multi-level, multi-gate design using non-linear pro-

gramming. International Journal of Circuit Theory and Applications, 50 (8), 2960–2968. https://doi.org/10.1002/cta.3300

16.	 Solomko, M. (2021). Developing an algorithm to minimize boolean functions for the visual-matrix form of the analytical method.

Eastern-European Journal of Enterprise Technologies, 1 (4 (109)), 6–21. https://doi.org/10.15587/1729-4061.2021.225325

17.	 Riznyk, V., Solomko, M. (2017). Application of super-sticking algebraic operation of variables for Boolean functions minimization by

combinatorial method. Technology Audit and Production Reserves, 6 (2 (38)), 60–76. https://doi.org/10.15587/2312-8372.2017.118336

18.	 McCluskey, E. J. (1956). Minimization of Boolean Functions. Bell System Technical Journal, 35 (6), 1417–1444. https://doi.org/

10.1002/j.1538-7305.1956.tb03835.x

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 (129) 2024

34

19.	 Zakrevskiy, A. D. (1981). Logicheskiy sintez kaskadnyh shem. Moscow: Nauka, 416.

20.	 Riznyk, V., Solomko, M., Tadeyev, P., Nazaruk, V., Zubyk, L., Voloshyn, V. (2020). The algorithm for minimizing Boolean functions

using a method of the optimal combination of the sequence of figurative transformations. Eastern-European Journal of Enterprise

Technologies, 3 (4 (105)), 43–60. https://doi.org/10.15587/1729-4061.2020.206308

21.	 Rytsar, B. E. (1997). Metod minimizatsii bulevyh funktsiy. Problemy upravleniya i informatiki, 2, 100–113.

22.	 Rytsar, B. (1997). Minimization method of Boolean functions. SPIE Proceedings. https://doi.org/10.1117/12.284818

23.	 Rytsar, B. Ye. (2005). Sposib pobudovy koniunktermovoho polia bulovoi funktsiyi. Visnyk Natsionalnoho universytetu «Lvivska

politekhnika», 534, 21–24. Available at: http://surl.li/siygp

24.	 Minimizatsiya bulevyh funktsiy v klasse DNF. Available at: http://vuz.exponenta.ru/PDF/book/logic.pdf

25.	 Kapuro, P. A. (2014). Tsifrovye funktsional’nye ustroystva v telekommunikatsiyah. Ch. 1: Bazovye tsifrovye funktsional’nye us-

troystva. Minsk: BGUIR, 64. Available at: http://surl.li/siygv

26.	 Rytsar, B. Ye. (2015). The Minimization Method of Boolean Functionns in Polynomial Set-theoretical Format. Conference: Proc.

24th Inter. Workshop, CS@P’2015. Vol. 2. Rzeszow, 130–146. Available at: https://www.researchgate.net/publication/298158364_

The_Minimization_Method_of_Boolean_Functionns_in_Polynomial_Set-theoretical_Format

27.	 Solomko, M., Tadeyev, P., Zubyk, L., Babych, S., Mala, Y., Voitovych, O. (2021). Implementation of the method of figurative trans-

formations to minimizing symmetric Boolean functions. Eastern-European Journal of Enterprise Technologies, 4 (4 (112)), 23–39.

https://doi.org/10.15587/1729-4061.2021.239149

28.	 Zakrevskiy, A. D., Pottosin, Yu. V., Cheremisinova, L. D. (2007). Logicheskie osnovy proektirovaniya diskretnyh ustroystv. Moscow:

FIZMATLIT, 592.

29.	 Rytsar, B. Ye., Belovolov, A. O. (2021). A New Method of the Logical Functions Minimization in the Polynomial Set-Theoretical

Format. «Handshaking» Procedure. Control Systems and Computers, 1 (291), 03–14. https://doi.org/10.15407/csc.2021.01.003

30.	 Rytsar, B. Ye. (2004). Teoretyko-mnozhynni optymizatsiyni metody lohikovoho syntezu kombinatsiynykh merezh. Lviv, 33. Avail-

able at: http://www.irbis-nbuv.gov.ua/publ/REF-0000263283

31.	 Metod Kvayna – Mak-Klaski nahozhdeniya sokrashchennoy DNF dvoichnoy funktsii. Available at: https://ematica.xyz/meto-

dichki-i-knigi-po-matematike/kurs-lektcii-po-matematicheskoi-logike-i-teorii-algoritmov-aliev/6-1-metod-kvaina-mak-klaski-na-

khozhdeniia-sokrashchennoi-dnf-dvoichnoi-funktcii

32.	 Kupriyanova, D. V., Luk’yanova, I. V., Lutsik, Yu. A. (2021). Arifmeticheskie i logicheskie osnovy vychislitel’noy tehniki. Minsk:

BGUIR, 72.

33.	 Chong, K. H., Aris, I. B., Sinan, M. A., Hamiruce, B. M. (2007). Digital Circuit Structure Design via Evolutionary Algorithm Meth-

od. Journal of Applied Sciences, 7 (3), 380–385. https://doi.org/10.3923/jas.2007.380.385

34.	 Coello Coello, C. A., Aguirre, A. H. (2002). Design of combinational logic circuits through an evolutionary multiobjective optimiza-

tion approach. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 16 (1), 39–53. https://doi.org/10.1017/

s0890060401020054

35.	 Coello Coello, C. A., Hernandez Luna, E., Hernandez Aguirre, A. (2004). A comparative study of encodings to design combinational

logic circuits using particle swarm optimization. Proceedings. 2004 NASA/DoD Conference on Evolvable Hardware, 2004. https://

doi.org/10.1109/eh.2004.1310811

36.	 Sysoienko, А. А., Sysoienko, S. V. (2023). Method for minimization of boolean functions with a large number of variables based on directed

enumeration. Bulletin of Cherkasy State Technological University, 1, 42–51. https://doi.org/10.24025/2306-4412.1.2023.274914

37.	 Solomko, M., Batyshkina, I., Voitovych, I., Zubyk, L., Babych, S., Muzychuk, K. (2020). Devising a method of figurative transforma-

tions for minimizing boolean functions in the implicative basis. Eastern-European Journal of Enterprise Technologies, 6 (4 (108)),

32–47. https://doi.org/10.15587/1729-4061.2020.220094

38.	 Riznyk, V. V., Solomko, M. T. (2017). Combinatorial method of minimizing boolean functions. Visnyk Natsionalnoho universytetu

«Lvivska politekhnika». Serie: Kompiuterni systemy ta merezhi, 881, 135–151. https://doi.org/10.23939/csn2017.881.135

39.	 Riznyk, V., Solomko, M. (2017). Minimization of Boolean functions by combinatorial method. Technology Audit and Production

Reserves, 4 (2(36)), 49–64. https://doi.org/10.15587/2312-8372.2017.108532

40.	 Riznyk, V., Solomko, M. (2018). Research of 5-bit boolean functions minimization protocols by combinatorial method. Technology

Audit and Production Reserves, 4 (2 (42)), 41–52. https://doi.org/10.15587/2312-8372.2018.140351

41.	 Markham Brown, F. (2010). McColl and Minimization. History and Philosophy of Logic, 31 (4), 337–348. https://doi.org/10.1080/

01445340.2010.517387

42.	 Quine, W. V. (1952). The Problem of Simplifying Truth Functions. The American Mathematical Monthly, 59 (8), 521–531. https://

doi.org/10.1080/00029890.1952.11988183

