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The object of this study is models of low-power digital logic circuits. The 
problem being solved is the effectiveness of the technique for simplifying 
Boolean functions to obtain optimal structures of logic circuits. A new theo-
rem of a non-standard system of simplification of Boolean functions has been 
formulated, according to which in order to obtain a minimal function it will 
suffice to perform all non-redundant operations of simple and/or super-gluing 
of variables, which ultimately provides a minimal function in the main basis 
without using an implicant table. Thus, the problem of simplifying Boolean 
functions to the simplest normal equivalent is solved in one step. The inter-
pretation of the result is that the properties of 2-(n, b)-design combinatorial 
systems make it possible to reproduce the definition of logical operations of 
super-gluing variables, to represent logical operations in a different way, and 
vice versa. This, in turn, ensures the establishment of the locations of equiva-
lent transformations on the binary structure of the truth table and the implica-
tion of a systematic procedure for simplifying Boolean functions by an analy
tical method. Special feature of the results is that unambiguous identification 
of the locations of equivalent transformations is possible even when different 
intervals of the Boolean space containing the 2-(n, b)-design systems have 
common modules.

It has been experimentally confirmed that the non-standard system 
improves the efficiency of simplifying Boolean functions, including partially 
defined ones, by 200–300 % compared to analogs.

In terms of application, a non-standard system for simplifying Boolean 
functions will ensure the transfer of innovations to material production: from 
conducting fundamental research, expanding the capabilities of digital com-
ponent design technology to organizing serial or mass production of novelties
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1. Introduction

The digital industry implies a management system (road 
map), which represents the unity of theoretical, production, 
and economic processes and connections in the movement of 
production funds. This process is continuous and purposeful, 
so the management system must be controlled and managed. 
For example, the technology of manufacturing microcircuits 
becomes more expensive with each new reduction in the size of 
semiconductor elements. Even when Moore’s law ceased to be 
relevant due to the fact that the reduction of silicon transistors 
approached physical limits, it turned out that improving the 
KMON technology remained more profitable than looking for 
something fundamentally new.

GlobalFoundries is rebuilding its advanced FinFET road-
map to serve the new wave of customers that will adopt the 
technology in the coming years. The company will shift deve
lopment resources to make its 14/12 nm FinFET platform more 
relevant to these customers by providing a range of innovative 
IT solutions and features. To support this transition, GF is sus-
pending its 7 nm FinFET program indefinitely and restructur-
ing research teams to support its expanded portfolio initiatives.

The race to physically reduce the size of transistors for 
digital devices has stopped but the performance of chips is in-
creasing. This, in particular, is due to the use of 3-dimensional 
integration, photonic crystals, including the results of de-
signing based on logical functions. Measures to simplify logic 

functions for the design of digital circuits will always be used 
since low power supply, cheapness, and speed of calculation 
are important, and are universal and relevant parameters, 
regardless of the dynamics of the industry, when design stan-
dards are reduced, or production programs are introduced 
that are implemented outside the boundaries of Moore’s law.

The logical operations of the analytical method for the 
equivalent transformation of Boolean functions are neither 
systematic nor suitable for computer implementation. In ad-
dition to the above, this technique takes more time to simplify.

Possible measures to overcome the problem of imple-
menting the simplification of Boolean functions by an analy
tical method are the use of hermeneutics [1, 2], metadata [3], 
established locations of equivalent transformations [4], im-
plication of the algorithm of simplification of Boolean func-
tions. As a result, verbal procedures of algebraic transforma-
tions are replaced by equivalent figurative transformations.

The figurative form of information, in particular, in the 
form of combinatorial objects, passes possibly accidentally 
from the tendency of causality into the necessary-valid tenden-
cy of the sequence of a non-standard procedure, which in the 
end should provide more chances to determine the algorithm 
for simplifying Boolean functions when they are represented 
in a visual matrix form. The combinatorial objects in this 
case will be 2-dimensional complete 2-(n, b)-design, and/or  
incomplete 2-(n, x/b)-design systems with repetition and are 
actually combinatorial images. The model of non-standard 
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simplification of Boolean functions, which needs to be rep-
resented, admits the peculiarity that there is some analogy 
of the algorithm, which transforms the «messy» complexity 
of the simplification procedure by the analytical method into 
a complex order of figurative transformations.

Given this, a topical aspect of theoretical scientific re-
search on the non-standard system of simplification of Boolean  
functions is studies aimed, in particular, at:

– obtaining a new result when simplifying Boolean functions;
– measurement and evaluation of the results of the im-

plementation of a non-standard simplification system in the 
real synthesis of digital components with their further appli-
cation in digital technologies;

– cost optimization of the technology of minimization of 
Boolean functions;

– ensuring the reliability of the obtained minimal forms 
of Boolean functions using a non-standard system of simpli-
fying functions.

2. Literature review and problem statement

A new method for simplifying Boolean functions based 
on a directed selection of possible minimization paths ac-
cording to the criteria of a necessary and sufficient condition 
is represented in [5]. It is noted that the proposed method is 
an improvement of the methods of simplification by parts, 
parallel decomposition, and other methods. The considered 
method was developed on the basis of a new way of recording 
individual Boolean functions in the form of indices of signi
ficant rows of the truth table. The advantage of the method is 
the two-stage simplification of the specified functions, which 
makes it possible not to use the directed sorting criterion 
directly. When implementing the method, only single vari-
able values are processed in the columns of the truth table, 
which reduces the amount of data processing. The machine 
implementation of the method uses the parallelization of 
the function simplification procedure. To confirm the theo-
retical statements of the reported method [5], it is advisable 
to represent the results of the simplification of the Boolean 
function in a demonstration example.

A new algorithm for finding simple implicants, which 
uses the ideas of Quine and McCluskey in a more thorough 
implementation, is considered in [6]. The algorithm has 
a complexity of O(3nn) bit operations on any function of 
n variables, which is further reduced by implementing a bit- 
fragment style that makes maximum use of processor re
gisters. A new implementation based on the bit slicing 
technique is proposed, which is particularly applicable in the 
implementations and designs of symmetric key cryptograph-
ic primitives such as block ciphers and is called DenseQMC. 
The idea is that processor instructions operate on entire 
registers rather than individual bits. The most common size 
of the general register is ω = 64 bits, although there are even 
vector expansions handling more bits at once. In essence, you 
can perform a bitwise operation on a register, such as OR, 
AND, NOT ω bits in parallel using a single instruction. All 
such bit streams are always aligned by the least significant 
bit of the register and complemented to the size of the re
gister. When these bit streams are stored in memory, they are 
called modules. Unused bits in modules are not used (that is, 
wasted). Therefore, it is desirable to choose a block size equal 
to a small multiple of the register size, close to the maximum 
capacity. Best practice is 256-bit modules. For this block size, 

only 5 % of memory is wasted. This is a small multiple of the 
64-bit register size provided by modern high-performance 
CPUs and also corresponds to the bit size of the AVX2  
vector extension. These bitwise operations require, however,  
a regular data structure.

The new approach expands the possible number of n 
input variables of the function to n = 23 when performing 
the task on a laptop and to n = 27 when working on a server 
equipped with 1 TiB of RAM. The efficient solution of the 
first step of the Quine-McCluskey algorithm opens up a pros-
pect for fast heuristic approximate methods for the second 
step of the algorithm.

Work [6] gives a description of a common error in imple-
mentations of the Quine-McCluskey algorithm, which leads 
to a quadratic slowdown of calculations. A corrected imple-
mentation of the Quine-McCluskey algorithm in the form of 
a classical approach – SparseQMC – is also presented and 
freely available.

The general problem of calculating the smallest simple 
representation of a non-clausal propositional formula, which 
is called formula simplification, is considered in [7]. In addi-
tion to the above, the paper proposes a new, fully SAT-based 
approach to the problem of formula simplification. In this 
regard, the original problem posed by the Quine-McCluskey 
procedure can be considered as a special case of the problem 
discussed in this paper. Experimental results demonstrate 
that the SAT-based approach to formula simplification is  
a viable alternative to existing implementations of the Quine- 
McCluskey procedure.

A typical Quine-McCluskey implementation starts by 
computing all prime implicants of the CNF formula or DNF, 
and then implements a cover with the minimum number of 
prime implicants equivalent to the original function. A more 
general scenario is when the original formula is non-clausal. 
Obviously, it is still possible to generate all the implicants 
of the formula, then generate all the prime implicants, and 
then do the minimal cover. However, in practice, there may 
be a number of implications far greater than the number 
of simple implicants. Here I can add that the apparatus for 
simplifying the non-clausal formula is sufficiently developed, 
in addition to the implementation of optimal coverage. 
It  should also be noted that work [7] does not provide an 
acceptable demonstration example. This makes it impossible 
to quickly compare and evaluate the method from [7] with 
other simplification methods.

The analysis of three possible (practical) approaches to 
solving the problem of obtaining minimal propositional for-
mulas in conjunctive normal format (CNF) or in disjunctive 
normal format (DNF) for their use in hardware design is con-
sidered in paper [8]. First, the use of brute force (Quine-Mc-
Cluskey algorithm). To do this, all possible formulas are 
generated in increasing size and checked whether they are 
equivalent to the original formula. Second, generation of 
Zeitin coding for all formulas and verification of equivalence 
with the original using SAT solvers. Third, encoding the prob-
lem as a Quantitative Boolean Formula (QBF) using a QBF 
solver. The results show that the QBF approach significantly 
outperforms the other two. Therefore, QBF solvers represent  
a state-of-the-art solution for Boolean minimization.

The comparison criterion represents the average and me-
dian time required for the three algorithms relative to the size 
of the original formula and the resulting minimized formula. 
Paper [8] also notes that although in most cases (given the me-
dian) the three algorithms minimize the formula in less than 
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one second, for function sizes less than 20 (variables), only  
a few cases force the SAT basis to require an average about  
1 hour of time when the function size is close to 20 (variables).

The practice of hardware design of digital devices, how-
ever, involves a management system that represents the unity 
of production and economic processes and connections in the 
movement of production funds. This process is continuous and 
purposeful, so the management system must be controlled and 
managed. The algorithm for simplifying Boolean functions 
belongs to the project and production management system. 
Let some algorithm simplifies the function faster by 1 hour. 
For strategic management, this gives a temporary advantage 
because the competitive pressing after 1 hour will catch up 
with the production and make it uncontrollable, and therefore 
the management system will not be continuous and focused. 
A fast algorithm becomes a fakir for 1 hour. In contrast to the 
execution time of the algorithm, the criterion of optimal sim-
plification of the function directly affects the area of the chip, 
power consumption, and heat generation of the digital device. 
In this regard, the quality criterion of simplification provides 
an innovative process, and therefore forms a stable unity of 
production and economic processes for hardware design.

Work [8] does not provide an acceptable demonstration 
example, which does not make it possible to quickly compare 
and evaluate the accuracy of the simplification of logical for-
mulas by the presented method with other methods.

A new heuristic technique for simplifying Boolean func-
tions is reported in [9]. In general, the exact Boolean simpli-
fication problem is NP-complex, even – complete. Therefore, 
with an increase in the bitness of the function, exact ap-
proaches quickly become infeasible. Therefore, simplification 
methods in this area are often a compromise between the 
quality of the result and the execution time. With the help 
of algebraic coding, the minimization problem is transferred 
to the algebraic domain, in which the algorithms for calcu-
lations are applicable on the Graebner basis. An equivalent, 
more compact version of the Boolean formula is reconstruc
ted in the Graebner basis. It is noted in [9] that the consid-
ered approach is the first one that uses the Graebner basis 
for simplifying Boolean functions. Given an input formula 
in DNF, the method encodes it as a system of equations. The 
resulting Graebner basis can thus again be interpreted as an 
empirically smaller equivalent Boolean formula. The method 
is especially suitable for formulas that contain many XOR 
operations. It is also noted in [9] that currently the consid-
ered algorithm can process functions of up to 20 input bits, 
while exact synthesis can only process up to 8 input bits. Em-
pirically, the algorithm produces smaller formulas compared 
to two-level minimization by the ESPRESSO algorithm.

The method for simplifying the terms of a Boolean 
function in the context of a formal, axiomatically defined 
theory is considered in [10]. The key idea of the method is 
to represent large, even infinite sets of terms using special 
data structures, which makes it possible to apply axioms to 
sets as a whole, rather than to individual terms. In this case, 
the terms can be simplified (i.e., minimized) in linear time. 
The method is demonstrated for Boolean terms with a small 
number of variables. Also, in [10], a «targeted» algorithm is 
proposed, which calculates only small parts of the underlying 
theory in order to simplify a specific term. Simplifying a term 
means choosing the simplest term in the equivalence class.  
It is shown that the algorithm is able to simplify Boolean 
terms with a much larger number of variables, but optimality 
can no longer be certified. Considering the presented method,  

it is obvious that the results of simplification [10] will be 
similar to the results of applying the heuristic technique for 
simplifying Boolean functions.

Obtaining all simple implicants of the Boolean function 
by expanding and simplifying the format of the product of 
the sum of literals is demonstrated in [11]. This gives a new 
method for generating all prime implicants. A simple algo-
rithm for obtaining one minimal set of simple implicants 
from all possible simple implicants without using minterms is 
presented. Examples are given to illustrate the method. The 
new approach has two important advantages:

1) it can use any form of representation of the underlying 
basis function (no minterms or maxterms are required, which 
are usually too many);

2) it makes it possible to break a large function into smaller 
functions and manipulate them.

After all simple implicants are generated, the next task is 
to obtain one minimal set of them so as to cover all the min-
terms of the function. The presented method is noticeably 
different from many known methods for simplifying Boolean 
functions, in particular, not all rules of Boolean algebra are 
used here. The specified feature of the method can reduce 
the entropy of the recommendations regarding the rational 
search for minimal dead-end forms of Boolean functions by 
the analytical method.

Paper [12] considers the use of parallel computing for 
the implementation of the Quine-McCluskey algorithm. The 
Quine-McCluskey algorithm has naturally parallel parts 
that can be implemented on a SIMT architecture, and thus 
on a GPGPU, to find simple implicants. The parallel part of 
the algorithm concerns the process of combining strings. The 
problem calculated by this algorithm is NP-complex, and the 
execution time of the algorithm increases exponentially with 
the increase in the number of variables. The goal is to prove 
that the parallel implementation of the Quine-McCluskey 
algorithm on graphics processors (GPUs) gives a signifi-
cant acceleration of the computational process. Algorithm 
parallelization is implemented using Compute Unified De-
vice Architecture (CUDA), which is a parallel computing 
platform and programming model created by NVIDIA and 
implemented by the graphics processing unit (GPU).

The synthesis of partial specifications of logical cir-
cuits (LSFPS) is presented in [13]. LSFPS is the problem 
of finding a hardware implementation of partially defined 
Boolean functions. Logical Synthesis from Partial Specifica-
tions (LSFPS) introduces the additional concept of «don’t 
know» to terms that are not in specifications. The exact 
solution to LSFPS is the optimal size logic scheme of the cor-
responding problem in which the undefined sets of variables 
are invalid. In practice, specification information may not be 
sufficient to determine exact functionality, so the goal becomes 
maximizing the accuracy of the scheme over the available 
subset of uncertain sets. Therefore, to the traditional goal of 
minimizing the size of the scheme, the goal of maximizing the 
accuracy of the scheme when evaluated by a subset of uncer-
tain sets is added. The problem is relevant because effective 
solutions can lead to hardware-friendly machine learning 
models that do not rely on black-box approaches. LSFPS 
directly addresses the problem of automatically generating 
optimal topologies for binary neural networks. In addition, 
the combination of an exact solution with modern methods 
for logical synthesis unlocks unprecedented opportunities for 
optimization. Previous works have proven the effectiveness of 
approximate logic synthesis (ALS) for designing circuits with 
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sufficient accuracy. However, these methods sacrifice specifi-
cation accuracy, which excludes them from being legitimate 
candidates for LSFPS. Paper [13] proposes the restoration 
of accuracy, which involves the procedure of comparing an 
approximate version of the scheme with a new one that satis-
fies the exact functionality of the specifications. Experimental 
testing showed a reduction in the number of gates by 17.38 % 
and a reduction in the depth of the logic circuit by 12.02 %.  
The use of the procedure for restoring the accuracy of  
the scheme based on the decomposition gives an accuracy  
of 95.73 %, which exceeds the current level of ALS at which 
the accuracy is 92.76 %.

Given the extensive research on logic synthesis for high-per-
formance systems, its potential role in the development of hard-
ware-aware machine learning techniques needs to be explored. 
It is worth noting that some machine learning tasks allow for-
mulation as a fundamental problem of logical synthesis.

The problem of finding an approximate Boolean scheme 
from a set of examples is considered in [14]. Many computer 
programs are inherently error-tolerant. This makes it possi-
ble to reduce the precision of calculations to achieve greater 
efficiency for chip area, computational performance, and/or 
power consumption. In recent years, a number of automated 
methods for approximate calculations have been proposed; 
however, most of these methods require full knowledge of 
the exact or «golden» description of the circuit. At the same 
time, there is considerable interest in the synthesis of calcu-
lations based on examples, a form of supervised learning. Pa-
per [14] presents the relationship between supervised learn-
ing of Boolean schemes and existing work on the synthesis 
of incompletely defined Boolean functions. When viewed 
through the lens of machine learning, the latter work has 
been shown to provide good training accuracy but low test 
accuracy. The paper compares with previous work from the 
1990s that uses mutual information to guide the search pro-
cess, aiming for good generalization. By combining this early 
work with the current approach to learning logic functions,  
a scalable and efficient machine learning approach for Boolean 
circuits can be achieved in terms of area/delay/test-error 
trade-off. The results of the study indicate that the proposed 
method has the potential to generate Boolean schemes with 
high accuracy from large training sets of examples with 
a large amount of primary input data. However, this method 
is limited to only 1-bit output. New research is needed that 
will take into account word-level searches that will help effi-
ciently search logic values of a circuit with many bit outputs.

The method for minimizing Boolean functions, which is 
based on nonlinear mixed integer programming, is reported 
in [15]. Experimental results show that the method gives the 
same or better results compared to other methods available 
in the literature. However, other methods do not guarantee 
obtaining a minimal solution. The main advantages of the pro-
posed method for minimization are that the presented method 
guarantees obtaining a minimum function and can also be 
used to minimize incompletely defined Boolean functions.

To confirm the theoretical statements of the reported 
method [15], it is advisable to present a demonstration exam
ple of the simplification of a partially defined Boolean func-
tion by at least 4 variables.

In [15], it is also stated that all experimental examples 
were run on the NEOS server with free access, which im-
plements deterministic algorithms. However, the NEOS 
free access service limits the maximum calculation time to  
8 hours, which is not enough to complete some of the examples.  

Therefore, for such examples, the final solution is not found, 
but instead the best solution is found.

The methods for simplifying Boolean functions, which 
are considered in the literature [5–15], mainly demonstrate 
the use of an additional mathematical apparatus for solv-
ing the Boolean problem, such as the DenseQMC cut bit 
technique; a fully SAT-based approach to the problem of 
simplifying a non-clausal propositional formula; checking 
equivalence with the original using QBF solvers; transfor-
mation of the problem from the domain of Boolean algebra to 
the classical algebraic domain, in which algorithms for calcu-
lations are applicable on the Graebner basis; the technique of 
simplifying the terms of a Boolean function in the context of 
a formal, axiomatically defined theory; parallel calculations 
for the implementation of the Quine-McCluskey algorithm 
implemented by a graphics processor (GPU). A mandatory 
technological point for the implementation of the specified 
algorithms and methods is the automation of calculations.

But additional mathematical apparatus complicates the 
method. In turn, the increase in the complexity of the simpli-
fication of Boolean functions is accompanied by positive and 
negative factors that can affect the innovative capacity of the 
simplification technology in the future.

The problem is the «trigger causality» of the possible 
consequence of the complication of the method, which is im-
portant for any IT production in any situation, in particular:

1) gradually increasing the potential of the innovation 
process and transforming it into an innovation;

2) an additional mathematical apparatus complicates the 
method to the point of self-denial, when only a mathematical 
technique remains, unable to solve the Boolean problem in 
practice.

In other words, is there a life cycle for a complex innova-
tion after methods for simplifying functions based, in parti
cular, on the use of:

– transfer of the minimization problem to the algebraic 
domain, in which algorithms for calculations are applicable 
on the Graebner basis [9];

– simplification of the terms of the Boolean function in 
the context of a formal, axiomatically defined theory [10];

– machine learning techniques [13];
– techniques for finding approximate Boolean schemes, large 

training sets of examples with a large number of primary input 
data, methods for restoring the accuracy of a logical scheme [14];

– nonlinear mixed integer programming [15], and others.
The non-standard Boolean simplification system is based on 

binary systems with repetition, 2-(n, b)-design, 2-(n, x/b)-de-
sign, which are both combinatorial objects that can be defined, 
set, and logical operations, which can be carried out. Such pro
perties of the 2-(n, b)-design, 2-(n, x/b)-design systems ensure 
the unambiguous identification of the locations of equivalent 
transformations and the implication of a systematic procedure 
for simplifying Boolean functions. This, in turn, makes it pos-
sible to reduce the complexity of simplification without loss 
of functionality, compared to the algorithms and methods for 
simplifying Boolean functions considered in works [5–15]. The 
non-standard simplification system uses the visual-matrix form 
of the analytical method [16] and does not exclude the manual 
method for simplifying Boolean functions.

Thus, algorithms and methods, software tools created for 
them [5–15] and a non-standard system for simplifying Boolean 
functions have excellent approaches (principles). And so they 
see different prospects regarding the possibility of algorithmic 
simplification of Boolean functions.
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And this is a reason to believe that the software-techno-
logical base, which is represented by algorithms and methods 
with additional mathematical apparatus for solving the  
Boolean problem [5–15], is insufficient for conducting theo-
retical research on the optimal simplification of Boolean func-
tions. This predetermines the need to carry out research using 
a non-standard system for simplifying Boolean functions.

In terms of application, a non-standard system for sim-
plifying Boolean functions could ensure the development 
of the innovation process and the transfer of innovations to 
material production: from decision-making, conducting fun-
damental research, expanding the capabilities of digital com-
ponent design technology based on Boolean functions in the 
main {∨, ∧, ¬} and polynomial {∧, ⊕, 1} bases, construction of 
prototypes, their testing, to the organization of serial or mass 
production of novelties and their implementation.

3. The aim and objectives of the study

The aim of my work is to extend the non-standard system 
for the simplification of disjunctive normal forms (DNF), 
conjunctive normal forms (CNF) and polynomial normal 
forms (PNF) of partially and fully defined Boolean func-
tions. This will make it possible to simplify and increase the 
productivity of simplifying Boolean functions in the basic, 
polynomial, and other bases, using their algebraic apparatus.

To achieve the goal, the following tasks must be solved:
– to demonstrate the property of combinatorial sys-

tems with repeated 2-(n, b)-design to the ability to repro-
duce (represent) the definition of logical super-gluing opera-
tions of variables in the form of changing their own definition 
in the process of interaction with them;

– to establish the implication between combinatorial 
objects, 2-(n, b)-design, 2-(n, x/b)-design, of the truth table 
and equivalent transformations with a non-standard system 
of simplification of Boolean functions;

– to state a theorem of a non-standard system for simpli-
fication of Boolean functions;

– to define the thesaurus of a non-standard system of 
simplifying Boolean functions;

– to conduct a comparative analysis of the results of the 
simplification of Boolean functions by a non-standard sys-
tem and examples of the simplification of functions by the 
evolutionary method, genetic, swarm algorithms, and the 
method for directed sorting in order to compare the cost of 
implementing the minimum function.

4. The study materials and methods

The object of my research is models of optimal logic circuits 
with a small chip area, power supply, and low heat generation.

It should be expected that the regular and constant 
application of the visual-matrix form of the analytical 
method for the simplification of Boolean functions 
will make it possible to provide a one-step simpli-
fication procedure and formulate the correspond- 
ing theorem.

The term «Binary combinatorial systems with 
repetition, 2-(n, b)-design, 2-(n, x/b)-design» is 
shortened to «combinatorial systems, 2-(n, b)-design,  
2-(n, x/b)-design», «2-(n, b)-design, 2-(n, x/b)-design 
systems».

Boolean. Some given set A implies the Boolean M(A), 
which is the set of all subsets of the set A. Мk (A) shall denote 
the Boolean, which is the set of all subsets of A containing  
k elements. Let А = {a, b, c, d, e}, then:
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, , , , , , , , , , , , , , ,

, , , , ,

d e c d c e

e b c dd b c e b d e c d e{ } { } { } { }










, , , , , , , , ,
. 

The number of all k-element subsets of a set of n elements is:

N M A C
n

k n kk n
k( )( ) = =

−( )
!

! !
.

There is also equality:

Cn
k

k

n
n

=
∑ =

0

2 .	 (1)

Since Cn
k is the number of k-element subsets of a set of 

n elements, the sum in the left part of expression (1) deter-
mines the number of all subsets, the set А = {a, b, c, d, e}. Thus, 
the number of all subsets of set A will be:

N M A C C C C C C( )( ) = + + + + + =

= + + + + + = =
5
0

5
1

5
2

5
3

5
4

5
5

51 5 10 10 5 1 32 2 .

Boolean configuration. The set А = {a, b, c, d, e}, in addition 
to enumerating its elements, can also determine the numbers 
of the positions where the element α is located. For example, 
a can define the first position, b the second position on the 
set А = {a, b, c, d, e}, etc. Subsets of the set А = {a, b, c, d, e},  
in this case, are the subsets containing the element α in  
k positions, k = 0, …, n, where n is the number of positions in 
the set A. In the general case, the element α can occupy se
veral positions in the set A, which means that the element α 
is repeated in the set A.

The positions in which the element α is present are 
denoted by one (α = 1). Positions in which the element α 
is missing are marked with zero (α = 0). Then the Boolean 
configuration of the set А = {a, b, c, d, e} will take the form:

0 ,0 ,0 ,0 ,0 ; 0 ,1 ,0 ,0 ,0 ;

0 ,0 ,0 ,0 ,1 ; 0 ,1 ,0
1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2

( ) ( )
( ) 33 4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4

,0 ,1 ;

0 ,0 ,0 ,1 ,0 ; 0 ,1 ,0 ,1 ,0 ;

0 ,0 ,0 ,1 ,1

( )
( ) ( )

55 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1

( ) ( )
( ) ( )

; 0 ,1 ,0 ,1 ,1 ;

0 ,0 ,1 ,0 ,0 ; 0 ,1 ,1 ,0 ,0 ;

0 ,,0 ,1 ,0 ,1 ; 0 ,1 ,1 ,0 ,1 ;

0 ,0 ,1 ,1 ,0 ; 0 ,1 ,1
2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3

( ) ( )
( ) ,,1 ,0 ;

0 ,0 ,1 ,1 ,1 ; 0 ,1 ,1 ,1 ,1 ;

1 ,0 ,0 ,0 ,0

4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

( )
( ) ( )

(( ) ( )
( ) ( )

; 1 ,1 ,0 ,0 ,0 ;

1 ,0 ,0 ,0 ,1 ; 1 ,1 ,0 ,0 ,1 ;

1 ,

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 00 ,0 ,1 ,0 ; 1 ,1 ,0 ,1 ,0 ;

1 ,0 ,0 ,1 ,1 ; 1 ,1 ,0 ,
2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3

( ) ( )
( ) 11 ,1 ;

1 ,0 ,1 ,0 ,0 ; 1 ,1 ,1 ,0 ,0 ;

1 ,0 ,1 ,0 ,1

4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

( )
( ) ( )
( )) ( )
( ) ( )

; 1 ,1 ,1 ,0 ,1 ;

1 ,0 ,1 ,1 ,0 ; 1 ,1 ,1 ,1 ,0 ;

1 ,0

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 22 3 4 5 1 2 3 4 5,1 ,1 ,1 ; 1 ,1 ,1 ,1 ,1( ) ( ).

	 (2)
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From an examination of the configuration of Boolean (2), 
it follows that it forms a complete combinatorial system with 
the repetition of the element α, which I denote by:

2-(n, b)-design,

where n is the bit rate of the system block; b is the num-
ber of modules of the complete system, which is determined 
by the formula b = 2n, the number 2 in front of the brackets 
means the binary structure of the configuration (2). For 
example, 2-(5, 32)-design is a complete binary combinatorial 
system with repetition consisting of 5-bit modules, the num-
ber of modules is 32.

In the general case, the configuration of the truth table of 
a given Boolean function, in addition to the submatrix of the 
complete combinatorial system with repetition, 2-(n, b)-de-
sign, also contains the submatrices of the incomplete combi-
natorial system with repetition:

2-(n, x/b)-design. 

In this case, x is the number of modules of an incom-
plete combinatorial system with repetition. For example, 
2-(3,7/8)-design is an incomplete binary combinatorial sys-
tem with repetition consisting of 3-bit modules, the number 
of modules is 7. Properties of an incomplete combinatorial 
system with repetition 2-(n, x/b)-design also makes it pos-
sible to set rules that, in the general case, ensure effective 
minimization of Boolean functions.

Visual matrix form. On the Boolean configuration (2),  
I shall replace the variables:

– replace 1n with xn;
– 0n is replaced by xn .
Here, n is an index that determines the number of bits 

of the literal «xn» or « »xn  in a logical function minterm.  
After replacing the variables with Boolean configura-
tions (2), I get the visual-matrix form of the 5-bit Boolean 
function:

It should be noted that the visual-matrix form (4) rep-
resents the complete perfect disjunctive normal form (PDNF) 
of a 5-bit Boolean function. Therefore, the PDNF of the 
Boolean function (4) uniquely defines a complete combi-
natorial system with the repetition, 2-(n, b)-design (2), and 
vice versa [17].

It is known that the reduction of a complete PDNF  
of logical function always gives unity. For example, the 
reduction of a 3-bit full PDNF of Boolean function takes 
the form:

x x x x x x x x x x x x

x x x x x x x x x x x x
1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

+ + + +
+ + + + =

= xx x x x x x x x

x x x x x x x x

x x x

1 2 3 3 1 2 3 3

1 2 3 3 1 2 3 3

1 2 1

+( ) + +( ) +

+ +( ) + +( ) =

= + xx x x x x

x x x x x x x x
2 1 2 1 2

1 2 2 1 2 2 1 1 1

+ + =

= +( )+ +( ) = + = .	 (5)

Considering (5), the operation of super-gluing variables 
in the analytical representation can take the following form, 
for example:

x x x x x x x x x x x x x x x x

x x x x x x x x x x
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1

+ + + +
+ + + 22 3 4 1 2 3 4

4
1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1

x x x x x x

x
x x x x x x x x x x x x

x x x x x

+ =

=
+ + + +

+ + 22 3 1 2 3 1 2 3

4

1 2 3 3 1 2 3 3

1 2

x x x x x x x

x
x x x x x x x x

x x x

+ +






=

=
+( ) + +( ) +

+ 33 3 1 2 3 3

4 1 2 1 2 1 2 1 2

4 1

+( ) + +( )










=

= + + +( ) =

=

x x x x x

x x x x x x x x x

x x xx x x x x x x x x2 2 1 2 2 4 1 1 4+( )+ +( )( ) = +( ) = .

An interval of the Boolean space. The concept of a ternary 
vector and an interval of a Boolean space is presented in [18]:

x x x x x x x x x x x1 2 3 4 1 2 3 4 1 3 4

0011

3

0111

+ =





















 

  
    

   7
 

,

    
  

0 11

3 7

−







,

.
 

x x x x x x x x1 2 3 1 2 3 1 3

100 110

       

  8,9
    

12,13

+ =
−









−






.




− −







    

    

  8

1 0

9 12 13, , ,
.

«Binary and decimal numbers in parentheses below the 
sum indicate the rows of the truth table for which the corre-
sponding terms take the value of one. A binary expression in 

which a dash occurs represents two binary 
numbers formed by replacing the dash with 
a «0» and then a «1». Similarly for a binary 
expression, in which two dashes represent the 
corresponding four binary numbers, formed 
by replacing two dashes by entries «0» and 
«0», «0» and «1», etc.» [18].

The decimal equivalent of the analytic 
notation of the Boolean function is also given 
in [18]:

T =
( ) ( )
( ) ( ) ( )













∑
0 1 2 3 7 15 23 31

29 31 22 23 14 15

, , , , , , , ,

, , , , ,
.

T x x x x x x x x x x

x x x x x x x x

= + + +

+ +
5 4 3 3 2 1 5 4 3 1

5 4 3 2 5 4 3 2.

An ordered set of Boolean variables (x1, x2, …, xn) form 
an n-component Boolean vector. The set consisting of 2n of 
these vectors is called a Boolean space, which I denote by M. 
Each vector from the set M is an argument of the Boolean 
function f(x1, x2, …, xn), which returns the value 0 or 1 for 
each set of variables (x1, x2, …, xn).

The easiest way to specify a Boolean function is to use 
a  truth table, which lists all possible sets of argument values 
and their corresponding function values.

x x x x x x x x x x x x x x x x x x1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2, , , , ; , , , , ; , , , , ; , ,( ) ( ) ( ) 33 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4

, , ;

, , , , ; , , , , ; , , , ,

x x

x x x x x x x x x x x x x x x

( )
( ) ( ) 55 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1

( ) ( )
( ) ( )

; , , , , ;

, , , , ; , , , , ;

x x x x x

x x x x x x x x x x x ,, , , , ; , , , , ;

, , , , ; , ,

x x x x x x x x x

x x x x x x x x

2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3

( ) ( )
( ) ,, , ; , , , , ; , , , , ;

, , , ,

x x x x x x x x x x x x

x x x x x

4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

( ) ( ) ( )
(( ) ( ) ( ) ( ); , , , , ; , , , , ; , , , , ;

,

x x x x x x x x x x x x x x x

x

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 xx x x x x x x x x x x x x x x x x2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3, , , ; , , , , ; , , , , ; , , ,( ) ( ) ( ) xx x

x x x x x x x x x x x x x x x

4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

, ;

, , , , ; , , , , ; , , , ,

( )
( ) ( ) ( )) ( )
( ) ( )

; , , , , ;

, , , , ; , , , , ; ,

x x x x x

x x x x x x x x x x x x

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 22 3 4 5 1 2 3 4 5, , , ; , , , ,x x x x x x x x( ) ( ).

	 (4)
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The representation of the function f(x1, x2, …, xn) can 
be compressed if I limit myself to the enumeration of the 
elements of its characteristic set, that is, those elements of 
the space M on which the function f(x1, x2, …, xn) returns the 
value 1. This set is denoted by M f

1 .
The compactness of the representation of the characte

ristic set M f
1 can be improved if you use ternary vectors, the 

components of which can take as their values, in addition to 
the symbols «0» and «1», also the symbol «–».

I shall interpret the ternary vector as a set of all Boolean 
vectors obtained from it by all possible substitutions of the 
values «0» and «1» instead of the value «–». It is worth 
noting that carrying out all possible substitutions of the 
values «0» and «1» instead of the value «–» is the process  
of synthesis of a complete combinatorial system, 2-(n, b)-de-
sign, with its parameters. If the ternary vector has k va
lues «–», then it generates 2k Boolean vectors that form 
the interval I(α, β) in the Boolean space, the minimum 
element (α) of which is determined by substituting zeros 
instead of «–», the maximum (β) – substitution of units [19].

For example, the ternary vector 11–0– in this interpre-
tation is considered as an interval of the space I(α, β) of five 
Boolean variables formed by the following terms:

I Iα β, , .( ) = ( ) =11000 11101

11000

11001

11100

11101

The components along which the boundaries (and, there-
fore, all the vectors of the interval) coincide are called the 
external components of the interval, the rest are internal. The 
external components form an implicant of rank (r), and the 
number of internal components gives the bit rate of the in-
terval (n) [20]. The set of internal components of the interval 
I(α, β) form a combinatorial system, 2-(n, b)-design, for this 
example, 2-(2, 4)-design.

Numerical conjunct term. The correspondence between the 
Boolean vectors α = x1x2… xn and the numbers N ∈{0,1,…,2n–1} 
is established by the following relation:

N xi
n i

i

n

= × −

=
∑ 2

1

,	 (6)

where n is the bit rate of the Boolean vector, the components 
of the vector x1x2…xn represent the binary numbers 0 and 1.

Let the Boolean vector α = 1010 be given. Substituting 
its components into formula (6), I get the number N = 1×23+ 
+0×22+1×21+0×20 = 8+2 = 10.

The given number is N = 14. Expanding it into the sum of 
powers of two: 14 = 8+4+2 = 1×23+1×22+1×21+0×20, I get the 
Boolean vector α = 1110.

If I arrange the Boolean vectors α = x1x2…xn in lexico-
graphic order, then the integers Ni will correspond to the 
numbers of the sets of variables (x1,x2,…,xn) in the truth table 
of the Boolean function.

A conjunct term (minterm, constituent of a unit) is a term 
that unites all Boolean variables in a direct or inverse code 
with a conjunction sign. The minterm is denoted as follows:

F

x x x

i

n

=

( )1 1 2, if the number of setting   

is equal to

, ,...,

  

0, if the number of setting   

is not equ

N ,

, ,...,x x xn1 2( )
aal to N.











Example, F x x x x1 1 2 3 4= , F x x x2 1 2 3= .
The rank of the term r is determined by the number of 

logical variables included in this term. For example, for min-
term F x x x x1 1 2 3 4= , the rank is r = 4, for minterm F x x x2 1 2 3= ,  
the rank is r = 3.

In [21, 22] it is proposed to consider the numerical con-
junct term θr of rank r (i.e., a set of glued numerical minterms) 
of the Boolean function f (x1, x2, …, xn) as a set-theoretic ele-
ment of a preformed set of conjunct terms of all ranks r (r = 0, 1, 
2, ..., n), called a conjunct term field, namely: of rank n (subfield 
of mingerms θn), ranks (n–1), (n–2), ..., 2, 1 (subfields of impli-
cants θn–1, θn–2, ..., θ2, θ1) and rank 0 (constant function 1–θ0).

In [23], a method for constructing the conjunct term field 
of the Boolean function f(x1, x2, …, xn) is proposed, the essence 
of which is the formation of subfields P P Pn

n
n
n

n
− −1 2 1, ,...,  using the 

matrices Ln
r  of the literal masks l ∈{0, 1} and the simple im-

plementation of the recurrent procedure for their formation.
As a result, for a certain mask of literals of rank r, it is 

possible to obtain 22n–r pseudo-ternary numbers. Then, if 
instead of the symbol «–» I substitute all its possible values 0 
and 1, then for a certain conjunct term of rank r it is possible 
to obtain 2r numerical (decimal) minterms.

The transition from the analytical notation of the con-
junct term to its decimal equivalent, as an ordered set of 
numerical minterms, is possible by filling the symbols «–» 
in the pseudo-ternary code with the values 0 and l, starting 
from the smallest, that is, the symbols «–» are replaced by the 
system of 2-(n, b)-design illustrating an example: 

x x x2 3 5 01 1

0 0 1 0 1

0 0 1 1 1

1 0 1 0 1

1 0 1 1 1

5 7 21 23⇒ − −( ) ⇒ ⇒ ( ), , , .

The technique for constructing a conjunct term field can 
be successfully used to find a set of simple conjunct terms 
when solving the problem of minimizing not only complete 
but also partially defined Boolean functions, as well as their 
systems specified by DNF [23].

5. Results of a non-standard system for simplifying 
Boolean functions

5. 1. Determining logical operations for super-gluing of 
variables by 2-(n, b)-design combinatorial systems

The relationship between the PDNF of the logical func-
tion and the complete combinatorial system with repetition, 
2-(n, b)-design (2), and vice versa, is provided by the visual ma-
trix form (4). Therefore, the latter can be considered as an ab-
stract class, a superclass. An abstract class can only be an ancestor 
class. Then instances of this class will be objects with attributes:

– perfect disjunctive normal form (PDNF) of the Boolean  
function;

– a complete combinatorial system with repeated 2-(n, b)- 
design.	 (7)

To reproduce (represent) the determination of the logical 
operation for super-gluing of variables by combinatorial systems 
with repetition, 2-(n, b)-design, a mechanism for providing poly-
morphism will also be needed. The literal meaning of this term 
translated from Greek means «the presence of many forms». In 
other words, polymorphism is the property of some object to 
take different forms depending on the situation. In object-ori-
ented programming, this term is used in relation to a method.
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Properties of polymorphism make it possible to define  
a class, which is a general description of some group of simi
lar objects of actual reality. But very often, describing such  
a class, it is impractical or even impossible to specify the im-
plementation of some methods common to the entire group. 
In this case, the methods are described as abstract, and their 
implementation is not indicated.

In UML – the Unified Modeling Language – a class is 
represented as a rectangle divided into three parts. The first 
part contains the name of the class, the second – attributes, the 
third – methods (Fig. 1).

Visual-matrix form 
- perfect disjunctive normal form (PDNF); 
- complete combinatorial system with repeated 2-(n, b)-design 
- logical operation of super-gluing of variables () 
- logical operation of super-gluing of variables () 

 Fig. 1. Mapping a class to a UML diagram

Since the complete combinatorial system with repeated 
2-(n, b)-design is a variant of the matrix representation of the 
Boolean function, the logical operation of super-gluing variables 
for the 2-(n, b)-design system will have the correct meaning.

The determination of the logical operation of super-glu-
ing the variables by the 2-(n, b)-design combinatorial system 
is based on the presence of the same methods (logical opera-
tions of super-gluing the variables) in different objects from 
the list of instances of the abstract class (7).

Given that full PDNF of the function:
– uniquely defines a complete combinatorial system with 

repetition, 2-(n, b)-design (2), and vice versa [17];
– reduction of the full PDNF function always gives a unit (5),
this then gives reason to represent the logical operation 

of super-gluing the variables by a complete combinatorial 
system with repetition, 2-(n, b)-design, according to the fol-
lowing verbal concept:

2 1 2 1 2 1 2 3

1 2

 designn b x x x x x x x x x

x x x x

n n

n

, ... ... ...

...

( ) ≡ + + + =

= + nn n n

n n n n

x x x x

x x x x x x x x

( ) + +( ) +

+ + +( ) = + +−

1 2

1 2 1 1 1

...

... ... ... ... −−

− −

=

= +( ) + =
1

1 1 1 1x x xn n... ... . 	 (8)

Thus, the 2-(n, b)-design system represents a logical ope
ration of super-gluing the variables (n > 1, b > 3).

For n = 1, b = 2, the combinatorial system, 2-(n, b)-design, 
provides a logical operation of simple gluing of variables:

2 21 11 1 design( ) ., ≡ + =x x

Then the visual-matrix form (4) for the operation of su-
per-gluing the variables may take the following form, for example:

– the first rule of super-gluing for a 4-bit Boolean function:

x x x x
x
x
x
x
x
x
x
x

x

1 2 3 4

4

4

4

4

4

4

4

4

4

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

= .	 (9)

The literals repeated in the variable sets of the PDNF of 
function (9) are simple implicants for the reduced form of the 
Boolean function. Therefore, x4 is a simple implicant in the 
shortened form of the Boolean function (9).

The general rule of gluing on the intervals of the Boolean 
space containing combinatorial 2-(n, b)-design systems can 
be formulated as follows: the sets of variables subject to glu-
ing are the number that is a power of 2. The new elementary 
product obtained (prime implicant) is defined as the product 
of variables that do not change their value on all sets that are 
glued together. The number m of variables remaining in the 
elementary product is determined by the formula:

m n M= − log ,2

where n is the number of function variables; M is the number 
of sets to be glued. Therefore, for function (9), the number m 
is m n M= − = − =log log .2 24 8 1

The ternary vector of the visual matrix form (9) repre-
senting the interval of the Boolean space I (0001, 1111) takes 
the form:

(– – – 1).

The decimal equivalent of the analytical record of the 
first rule (9) takes the following form:

x4 1

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

1 3 5 7 9 11 1

⇒ − − −( ) ⇒

⇒ ⇒ , , , , , , 33 15, ;( )

– the second rule of super-gluing for a 4-bit Boolean 
function:

x x x x

x x

x x

x x

x x

x x

1 2 3 4

3 4

3 4

3 4

3 4

3 4

0 0

0 1

1 0

1 1

= .	 (10)

The number m for function (10) is m n M= − = − =log log .2 24 4 2 
m n M= − = − =log log .2 24 4 2

The ternary vector of the visual matrix form (10) repre-
senting the interval of the Boolean space I (0011, 1111) takes 
the form:

(– – 11).

The decimal equivalent of the analytical record of the 
second rule (10) takes the following form:

x x3 4 11

0 0 1 1

0 1 1 1

1 0 1 1

1 1 1 1

3 7 11 15

⇒ − −( ) ⇒

⇒ ⇒ ( ), , , ;
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– the third rule of super-gluing for a 4-bit Boolean function:

x x x x

x x x

x x x

x x x
1 2 3 4

2 3 4

2 3 4

2 3 40

1

= .	 (11)

The number m for function (11) is m n M= − = − =log log .2 24 2 3 
m n M= − = − =log log .2 24 2 3

The ternary vector of the visual matrix form (11) repre-
senting the interval of the Boolean space I (0111, 1111) takes 
the form:

(– 111).

The decimal equivalent of the analytic notation of the 
third rule (11) is as follows:

x x x2 3 4 111
0 1 1 1

1 1 1 1
7 15⇒ −( ) ⇒ ⇒ ( ), .

The first rule of super-gluing the variables uses the 
2-(3, 8)-design system. The second rule uses a 2-(2, 4)-de-
sign system. The third rule uses a 2-(1, 2)-design system. 
Rule (11) manifests itself as a simple gluing of variables and 
is a partial case of rules (9) and (10).

The variables forming a complete combinatorial system 
with repetition, 2-(n, b)-design, can occupy any bits of the 
logical function.

The decimal equivalents of analytical entries (9) to (11) 
directly represent the necessary intervals of the Boolean 
space for carrying out equivalent figurative transformations 
when simplifying Boolean functions.

The following examples demonstrate verbal and figura-
tive ways of simplifying Boolean functions, which represent 
standard and non-standard implementations of their simpli-
fication algorithms.

Example 1. It is required to simplify the perfect disjunc-
tive normal form (PDNF) of a Boolean function using the 
analytical method [24]:

f x y z xyz xyz xyz xyz xyz, , .( ) = + + + + 	 (12)

Solution.
When moving out of parentheses in the first pair of mint-

erms of function (12) xy, in the last pair xy, I obtained:

f x y z xy z z xyz xy z z, , .( ) = +( ) + + +( )

It is obvious that z z+ = 1. Then function (12) takes  
the form:

f x y z xy xyz xy, , .( ) = + + 	 (13)

When rearranging the term in (13) and taking out the 
variable y out of parentheses, the following is obtained:

f x y z xy xyz xy y x x xyz y xyz, , .( ) = + + = +( ) + = + 	 (14)

The law of distributivity is applied to expression (14):

f x y z y xyz y x y y y z, , .( ) = + = +( ) +( ) +( ) 	 (15)

A simplification of expression (15) has been carried out:

f x y z y xyz y x y z, , .( ) = + = +( ) +( ) 	 (16)

Once again, the law of distributivity is applied to ex
pression (16):

f x y z y x y z y xz, , .( ) = +( ) +( ) = + 	 (17)

Further simplification of the logical expression (17) is 
no longer possible. Thus, the minimum function is obtained:

f x y z y xz, , .( ) = + 	 (18)

The simplification of the function f(x, y, z) (12) using 
the visual-matrix form of the analytical method takes the 
following form:

f x y z

x y z

x y z
y xz, , .( ) = = = +

No.
2
3
5 1 0 1
6
7 1 1

1 1

0 1 0
0 1 1

1 1 0
1

1 	 (19)

In the first matrix of expression (19), the following ac-
tions are performed:

– to modules 2, 3, 6, 7, which contain the complete com-
binatorial system, 2-(2, 4)-design, and the common literal 
«y», the super-gluing operation of variables is applied [17];

– to modules 5, 7, which contain the complete combina-
torial system, 2-(1, 2)-design, and common literals «y», «z», 
a simple variable gluing operation is applied.

The seventh block of variables «111» is common to two 
systems – Σm(2,3,6,7), Σm(5,7) and two operations of super- 
and simple gluing of variables, the localization of which is 
determined by combinatorial systems, 2-(2, 4)-design, and 
2-(1, 2)-design [4]. As a result, the minimal function (19) is 
obtained, which coincides with the minimal function (18). 
The result is the same, but the non-standard implementation 
of the simplification algorithm is simpler.

Example 2. It is required to simplify the switching circuit 
in Fig. 2 (x – on, x  – off) [24].

 

Fig. 2. Switching circuit

Solution.
The switching circuit in Fig. 1 corresponds to a logical 

function:

f x y z xyz xyz xyz xyz, , .( ) = + + + 	 (20)

In the second and third minterms of the function (20), the 
common factor xy, is taken out in parentheses, and I obtained:

f x y z xyz xy z z xyz, , .( ) = + +( ) +
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It is obvious that z z+ =1. Then function (20) takes the form:

f x y z xyz xy xyz, , .( ) = + + 	 (21)

Expression (21) is transformed as follows:

f x y z xyz xy xyz xyz x y yz, , .( ) = + + = + +( )

When applying the law of elementary absorption, the 
following is obtained:

f x y z xyz x y yz xyz xy xz, , .( ) = + +( ) = + + 	 (22)

The elementary absorption operation was also performed 
on the first two terms of expression (22):

f x y z xyz xy xz y xz x xz

y z x xz yz xy xz

, ,

.

( ) = + + = +( ) + =

= +( ) + = + +

Once in the law of generalized gluing of variables,  
x  is taken instead of x, then the following will be obtained:

f x y z xz yz xy xz yz, , .( ) = + + = +

Answer: the minimal function is:

f xz yz= + .	 (23)

Accordingly, a simplified switch diagram will look like 
this (Fig. 3).

 

Fig. 3. Simplified switch diagram

The simplification of the function f(x, y, z) (20) using 
the visual-matrix form of the analytical method takes the 
following form:

f x y z

x y z
x y z

xz yz, , .( ) = = = +

No.
1
2 0 1 0
3
6 1 1 0

1 0

0 0 1

0 1 1
0 1 	 (24)

In the first matrix of expression (24), the following ac-
tions are performed:

– the location of logical operations is determined by the 
place of 2-(1, 2)-design combinatorial systems in the truth 
table of the given function;

– to modules 1, 3, and 2, 6, each of which contains a com-
plete combinatorial system, 2-(1, 2)-design, and common 
literals «z» and «y», « »x  respectively, a simple variable gluing 
operation is applied.

As a result, the minimal function (24) is obtained, which 
coincides with the minimal function (23).

Contemplating examples 1 and 2, it is important to note 
that the sequence of the standard (verbal) procedure of 
minimization of Boolean functions is necessarily determin-
istic in its own determination of the steps of representation 

of the analytical method. In turn, a non-standard system 
implies a simplification algorithm through the detection of 
2-(n, b)-design systems in the truth table, and therefore de-
fines the appropriate, necessary and sufficient logical opera-
tions for the equivalent transformation of Boolean functions.

5. 2. Identifying the locations of equivalent trans-
formations with a non-standard system for simplifying  
Boolean functions

Analytical method has no established recommendations 
for the rational search for minimal dead-end forms of Boolean 
functions. The success of minimization depends on the level of 
knowledge of axioms, the laws of algebra of logic, and the skills 
of their application. For functions with the number of variables 
four or more, this method involves multi-pass combinations 
of logical transformations that must be performed during 
simplification. The process of simplification is time-consuming 
and does not provide any guarantees of obtaining the required 
minimum, since neither the axioms nor the laws of the algebra 
of logic give a direct indication of the achievement of the mini
mal dead-end form. The existence of a minimal form can be 
determined only in simple cases, when the number of variants 
of the search procedure does not exceed two to three, and the 
depth of the completed search is limited to approximately the 
same number of steps. These estimates largely depend on the 
engineering experience of the performer.

A non-standard minimization system has innovative 
reserves for reducing the complexity of simplifying logical 
functions. Let’s consider it in detail.

Assertion 1. The 2-(n, b)-design, 2-(n, x/b)-design sys-
tems have two implementations:

– an object, the position of which can be determined, 
established;

– method, logical operation that can be performed, car-
ried out.

Assertion 2. Each combinatorial system, 2-(n, b)-design, 
2-(n, x/b)-design, implies its logical operation:

– 2-(n, b)-design – super- and/or simple gluing of variables;
– 2-(n, x/b)-design – incomplete super-gluing of vari-

ables [17], in particular in the case when different intervals 
of the Boolean space containing the systems, 2-(n, b)-design, 
2-(n, x/b)-design, partially coincide, have an intersection.

Assertion 3. Each combinatorial system, 2-(n, b)-design, 
2-(n, x/b)-design, implies an algorithm for simplifying logi
cal functions according to the principle of their probable, 
free possibility.

This «reduction a priori» to the experience of things is in 
itself an event of synergistic «self» organization – the formation 
of a binary matrix structure in hyperparametric tendencies. 
Self-organization is not a cause since it is not random, but 
regular; it is not a consequence since there is no consequence if 
there is no cause.

The formal basis for this reduction of the visual-matrix form 
is the algebraic simplification of the corresponding complete 
and/or incomplete PDNF of Boolean functions, such as (5).

Assertion 4. The beginning (principle) of a non-standard 
system for simplifying Boolean functions is the search for 
intervals in the truth table containing combinatorial systems, 
2-(n, b)-design, 2-(n, x/b)-design, and not multi-pass logical 
transformations, which must be performed when simplifying 
the function by an analytical method.

The self-organization of the intervals of the Boolean 
space, containing the 2-(n, b)-design, 2-(n, x/b)-design sys-
tems, in the truth table gives the possibility of free selection of 
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simplification variants, in the «optimal variant form». Having 
turned into its own opposite, as required by the dialectic of  
the formation of the «new modern» disclosure of «old» (laby-
rinth) problems, from a possible-temporal probability forecast 
into a possible – necessary one, it provides an unambiguous 
identification of the locations of equivalent transformations. 
These herparic manifestations of synergistic self-organization 
of the binary matrix structure, accumulating, give a qualitative 
jump! Mutually unambiguous correspondence between the 
PDNF of the Boolean function and the combinatorial system, 
2-(n, b)-design, gives a hyperparameter in the form of a fixed 
location, a place of equivalent transformations. In turn, this 
implies the algorithm of the non-standard system of simpli-
fying Boolean functions. The problem of the algorithm for 
simplifying Boolean functions by analytical metol solves itself!

Only the fundamental non-standard nature in principle 
solves the problem of the laboriousness of the procedure for 
simplifying analytical functions when they are represented in 
a visual-matrix form.

Unambiguous identification of the locations of equiva-
lent transformations with a non-standard simplification sys-
tem is also possible when different intervals of the Boolean 
space containing the 2-(n, b)-design systems have common 
modules, intersections. The use of intersection preempts  
a possible subsequent semi-gluing operation of variables.

The intersection of modules of 2-(n, b)-design systems 
has its own model in the form of an algebraic analog, which is 
demonstrated by an example of simplifying a Boolean func-
tion in the main basis.

Let the PDNF function of three variables be given [25]:

f x x x x x x x x x x x x x x x3 2 1 3 2 1 3 2 1 3 2 1 3 2 1, , .( ) = + + +

Here, to simplify the function f(x3,x2,x1), the min
term x x x3 2 1  must be written three times:

f x x x x x x x x x

x x x x x x x x x x x x

3 2 1 3 2 1 3 2 1

3 2 1 3 2 1 3 2 1 3 2 1

, ,( ) = +( ) +

+ +( ) + +(( ) =

= +( )+ +( ) + +( ) =

= + +

x x x x x x x x x x x x

x x x x x x
3 1 2 2 3 2 1 1 2 1 3 3

3 1 3 2 2 1.

Contemplating this elementary example, it is clear that 
the analytical method is quite complex due to the laborious-
ness of searching for neighboring minterms [25].

The technique for simplifying the logical function f(x3, x2, x1), 
using the visual-matrix form of the analytical method, by focus-
ing, makes it possible to simultaneously represent the system of 
relations between the individual variables of the problem. As 
a result, verbal procedures of algebraic transformations are re-
placed by equivalent figurative transformations. This significant-
ly reduces the complexity of searching for neighboring minterms:

f x x x

x x x
x x x

x x x x

DNF 3 2 1

3 2 1
3 2 1

3 1 3 2

0 0 0
1

0 0
0

1 1 0
1 0

0
0 1 1

0 1

, ,( ) =

= = = + + xx x2 1.

The detection of the locations of equivalent transforma-
tions using 2-(n, b)-design combinatorial systems is demon-
strated by the following example.

Example 3. Use a non-standard system to simplify the 
function f(x1, x2, x3, x4) in the Reed-Muller basis given in the 
canonical form [26]:

f x x x x1 2 3 4 0 3 5 6 7 8 9 10 12 15, , , , , , , , , , , , .( ) = ( )∑ 	 (25)

Solution.
The beginning of the simplification of function (25) is 

carried out in the basic logical basis:

f x x x x

x x x x f

MDNF

No.

1 2 3 4

1 2 3 4

0 1
3 1
5 1
6 1
7

0 0 0 0
0 0 1 1

0

0 1 0 1
0 1 1 0

, , ,( ) =

= 11
0 1 1

1 0 11 1
8 1
9 1

10 1
12 1
15 1 1 1 1 1

1

0 0 0

0

1 1 0 0

0

1 0 1 0

0
1 0 0 1

0 1 1

1 2 3 4

=

x x x x

11
1 0 0
1 0 0
1 0 0

1 1 1

.	 (26)

In the first matrix of expression (26), the following ac-
tions are performed:

– to modules 0, 8; 3.7; 5.7; 6.7; 8,9; 8,10; 8,12; 7,15, each of 
which form a complete combinatorial system of 2-(1, 2)-de-
sign [17] and contain corresponding common literals, the 
operation of simple gluing of variables is applied.

The seventh block of variables «0111» is common to four 
systems – Σm(3,7), Σm(5,7), Σm(6,7), Σm(7,15) and four ope
rations of simple gluing of variables, the location of which is 
determined by the corresponding intervals of the Boolean 
space containing combinatorial 2-(1, 2)-design systems.

The eighth block of variables «1000» is common to four 
systems – Σm(0,8), Σm(8,9), Σm(8,10), Σm(8,12) and four 
operations of simple gluing of variables, the location of which 
is determined by the corresponding intervals of the Boolean 
space containing combinatorial 2-(1, 2)-design systems.

The minimal function in disjunctive normal form (DNF) 
takes the form:

f x x x x x x x x x x x x x

x x x x x x x x

MDNF 1 2 3 4 2 3 4 1 3 4 1 2 4

1 2 3 1 2 3 1 2

, ,( ) = + + +

+ + + xx x x x x x x4 1 3 4 2 3 4+ + . 	 (27)

To obtain the minimum function in the polynomial nor-
mal form (PNF), three extensions are possible using:

– singular function [2];
– Zhegalkin polynomial [2];
– Reed-Muller polynomial [2].
Consider the first two extensions. The procedure for ob-

taining a singular function takes the form [2]:

f x x x x

x x x x x

Singular 1 2 3 4

1 2 3 4

0 0 0
0 1 1
0 1 1
0 1 1
1 0 0
1 0 0
1 0 0

1 1 1

, , ,( ) =

= =

11 2 3 4

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 0 0

1 1 1

x x x

.	 (28)
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Simplification of the singular function (28) in the Reed-
Muller basis:

f x x x x

x x x x

MPNF 1 2 3 4

1 2 3 4

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 0 0

1 1 1

, , ,( ) =

= ==

x x x x1 2 3 4

0 0 0

0 0 1

0 1 1

0 1 1

1 0 1

1 0 1

1 0 0

1 1 1

.	 (29)

In the first matrix of expression (29), the following trans-
formations are carried out:

x x x x x x x x x x x x x x

x x x x x x x x

1 2 3 4 1 2 3 4 1 2 3 4 3 4

1 2 3 4 1 2 3 4

⊕ = ⊕( ) =

= ⊕( ) = ⊕( ) == ⊕x x x x x x1 2 3 1 2 4;

x x x x x x x x x x x x x x

x x x x x x x x x

1 2 3 4 1 2 3 4 1 2 3 4 3 4

1 2 3 4 1 2 3 1 2

⊕ = ⊕( ) =

= ⊕( ) = ⊕ xx4;

x x x x x x x x x x x x x x

x x x x x x x x x

1 2 3 4 1 2 3 4 1 2 3 4 3 4

1 2 3 4 1 2 3 1 2

⊕ = ⊕( ) =

= ⊕( ) = ⊕ xx4.

f x x x x

x x x x
x x x

MPNF 1 2 3 4

1 2 3 4
1 20 0 0

0 0 1

0 1 1

0 1 1

1 0 1

1 0 1

1 0 0

1 1 1

, , ,( ) =

= =

33 4 1 2 3 4

0 0 0

0 1

0 1 1

0 1 1

1 0 1

1 0 0

1 1 1

0 0 0

0 1

1 1

0 1 1

1 1

1 0 0

1 1 1

x x x x x

= .	 (30)

In the second matrix of expression (30), the following 
transformations are carried out:

x x x x x x x x x x x

x x x x x x x

1 2 4 1 2 4 4 1 2 1 2

4 1 2 1 4 2 4

⊕ = ⊕( ) =

= ⊕( ) = ⊕ .

f x x x x

x x x x
x x x x

MPNF 1 2 3 4

1 2 3 4
1 2 3 40 0 0

0 1

1 1

0 1 1

1 1

1 0 0

1 1 1

0 0 0

, , ,( ) =

= =
00 1

0 1 1

1 1

1 0 0

1 0 1

0 0 0

1

1 1 1

1

1 1 0

1 0 1

1 2 3 4

=

x x x x

.	 (31)

In the first matrix of expression (31), a logical operation 
of polynomial absorption of variables [2] is carried out:

x x x x x x x x2 4 2 3 4 2 3 4⊕ = .

In the second matrix of expression (31), two logical opera-
tions of polynomial semi-gluing of variables [2] are carried out:

x x x x x x x x x x x x

x x x x x x x x

2 3 1 2 3 3 2 1 2 3 1 2

3 1 2 3 1 2 3 11

⊕ = ⊕( ) = +( ) =

= = ⊕( ) = ⊕ xx x2 3.

x x x x x x x x x x x x

x x x x x x x x

1 4 1 3 4 1 4 3 4 1 3 4

1 3 4 1 3 4 1 11

⊕ = ⊕( ) = +( ) =

= = ⊕( ) = ⊕ xx x3 4.

f x x x x

x x x x
x x x x

MPNF 1 2 3 4

1 2 3 4
1 2 3 4

0 0 0

1

1 1 1

1

1 1 0

1 0 1

0 0 0

1

1 1 1

, , ,( ) =

= =
11

1 0 1 0

1 1 1 0

1 0 1

0 0 0

1

1

1 0 1 0

1 1 1 1

1 0 1

0 0

1

1

1 0 0 0

0 1

1 2 3 4 1 2 3 4

=

= =

x x x x x x x x

11 1

1 1

0

1

1

1 0 0 0

0 1 1 1

1

1 2 3 4

=

=

x x x x

.

The dead-end function in PNF is as follows:

f x x x x

x x x x x x x x x x x

The dead end PNF 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3

, ,( ) =

= ⊕ ⊕ ⊕ ⊕ ⊕ xx4,	 (32)

it contains 12 literals, which is two literals less compared to [26]: 

f x x x x x

x x x x x x x x x

= ⊕ ⊕ ⊕

⊕ ⊕ ⊕











1 2 2 3 4

1 3 4 1 2 3 1 2 4

.

For TPNF (32), it is possible to continue the simplifica-
tion using the following transformations [27]:

x x x x x x x x x x x x

x x x x x x x x x

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 1 3

⊕ ⊕ ⊕ ⊕ ⊕ =

= ⊕ ⊕ ⊕ ⊕ ⊕( ) ⊕( ) 11 4⊕( )x .	 (33)
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As a result, a 3-level logical expression was also obtained, 
but one containing 10 literals. Further simplification of ex-
pression (33) gives the following result:

x x x x x x x x x x

x x x x x x x

1 2 3 4 1 2 1 3 1 4

2 3 1 2 1 3 1

⊕ ⊕ ⊕ ⊕ ⊕( ) ⊕( ) ⊕( ) =

= ⊕ ⊕ ⊕( ) ⊕( ) + ⊕⊕( )( )x4 . 	 (34)

The minimal function (34) represents a 4-level logical 
expression containing 8 literals.

For function (26), the Zhegalkin polynomial takes the form:

P x x x x x x x x x x x

x x x x x x x x x
1 2 3 4 2 3 4 1 2 1 3

1 4 1 2 3 1 2 4 1

1, , ,( ) = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ xx x x x x3 4 2 3 4⊕ .

Simplifying P(x1, x2, x3, x4) gives the minimal Boolean 
function in the mixed basis:

f x x x x

x x x x x x x x x x x x

x x x

MPNF 1 2 3 4

1 2 1 3 1 4 1 2 3 1 2 4

1 3 4

1

, , ,( ) =
= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕⊕ ⊕ ⊕ ⊕ =

= ⊕ = ⊕

x x x x x x2 2 3 4 3 4

1

1 1
1 1
1 1
1 1 1
1 1 1
1 1 1

1
1 1 1

1
1

1

1 1
1 0 1
1 0 1
1 1 1

1
1 11 1

1
1

1

1

1 2 1 2 3 4 1 2 3 4

2 3 4 1 2

1

=

= ⊕ ⊕ ⊕( )⊕ ⊕( ) ⊕

⊕ ⊕ ⊕ = ⊕ ⊕

⊕

x x x x x x x x x x

x x x x x

x xx x x x x x x

x x x x x x x x x x

x x

2 3 4 1 2 3 4

1 2 1 2 1 2 1 2 3 4

1

1

⊕( )⊕ ⊕( ) =

= ⊕ ⊕ ⊕ ⊕ ⊕( )⊕

⊕ ⊕ 22 3 4 1 2 1 2

1 2 3 4 1 2 3 4

1 2

1

1

( ) = ⊕ ⊕ ⊕ ⊕

⊕ ⊕( )⊕ ⊕( ) =

= ⊕ ⊕

x x x x x x

x x x x x x x x

x x x

( )

11 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1

1

x x x x x x x

x x x x x x x x

x x

⊕( )⊕ ⊕( ) =

= ⊕ + ⊕( )( )⊕ ⊕( ) =

= 22 3 4 1 2 3 4+ ⊕( )( )⊕ ⊕( ) +( )x x x x x x . 	 (35)

The minimum function (35), compared to (34), also con-
sists of 8 literals, but has two logical XOR operations less, 
which can give technological advantages in the manufacture 
of a digital circuit.

5. 3. Theorem of the non-standard system of simplifica-
tion of Boolean functions

Simplification of Boolean functions is carried out by 
equivalent transformations, in particular, with the help of the 
following logical operations:

– simple gluing of variables:

xy xy y+ = ;

x y x y y+( ) +( ) = .	 (36)

– super-gluing of variables:

xyz xyz xyz xyz x x yz x x yz

yz yz y y z z

+ + + = +( ) + +( ) =

= + = +( ) = ;

x y z x y z x y z x y z

y z y z z

+ +( ) + +( ) + +( ) + +( ) =

= +( ) +( ) = . 	 (37)

Theorem. (without proof) Once all operations of simple 
and/or super-gluing variables (36), (37) are carried out in 
the perfect disjunctive normal form of the Boolean function, 
the minimum DNF of the given function will be obtained 
as a result.

Note. Operations of gluing variables (36), (37) may 
be redundant. This means the presence in the binary 
structure of the truth table of other minimal DNFs of the 
given function. Therefore, to obtain a minimal function, all 
non-redundant operations of simple and/or super-gluing of 
variables must be performed. This will ensure that the min-
imum function is obtained in the main basis without using 
the implicant table.

A reduced DNF is determined by means of a disjunctive 
combination of conjunct terms under the condition that all 
sets of variables of the truth table of a Boolean function con-
taining 2-(n, b)-design systems completely cover that part 
of the set of sets on which the Boolean function returns one.  
At the same time, the intersection of the sets of variables 
holding the 2-(n, b)-design systems is allowed.

Example 4. Using a non-standard system, obtain the mini
mum Boolean function of four variables f(x1, x2, x3, x4) given 
by the perfect disjunctive normal form [28]:

f x x x x

x x x x x x x x x x x x

x x x x x x x

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3

, ,( ) =

= + + +

+ + xx

x x x x x x x x x x x x

x x x x x x x x x x x x

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3

+

+ + + +

+ + + 44. 	 (38)

Solution:

f x x x x

x x x x

MDNF

No.

1 2 3 4

1 2 3 4

1

2

4

5

6

8 1

0 0 0 1

0 1 0 1

0 0 1 0

0

0 1 0 0

1 1 0

, , ,( ) =

=
00 0 0

9 1

12 1

13 1

14

15

1 00 0 1

0 1

0 1

1 0

1 0

1 0

0

1

1 1

1 1 1 1

1 1

0 1 0

1 2 3 4

1

= =

=

x x x x

x x22 1 3 2 4 1 3 4 3 4+ + + +x x x x x x x x x . 	 (39)
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In the first matrix (39), which represents the PDNF of 
f(x1, x2, x3, x4), the following actions are performed:

– to modules 1, 5, 9, 13; 4, 6, 12, 14; 8, 9, 12, 13; 12, 13, 
14, 15, each of which forms a corresponding interval of the 
Boolean space containing the complete 2-(2, 4)-design com-
binatorial system, the super-gluing operation of variables is 
applied [17].

– to modules 2, 6, which form the corresponding interval 
of the Boolean space containing the combinatorial system 
2-(1, 2)-design and contain the common literal «x2», a simple 
variable gluing operation is applied.

The results of non-redundant logical operations of 
gluing variables are written to the second matrix of ex-
pression (39).

The decimal equivalent of the analytical notation of the 
minimal function (39) takes the form:

f x x x x1 2 3 4

1 5 9 13 4 6 12 14

8 9 12 13 12 13 1

, , ,

, , , , , , , ,

, , , , , ,

( )
( ) ( )
( )

=

=
44 15 2 6, , ,

.
( ) ( )












	 (40)

The structure of the decimal counterpart (40) accom-
modates the necessary intervals of the Boolean space con-
taining the 2-(n, b)-design, 2-(n, x/b)-design systems. This 
implies all operations of simple and/or super-gluing of 
variables (36), (37), which according to the theorem gives 
a minimal function.

The sixth block of variables «0110» in the first matrix of 
expression (39) is common to two systems – Σm(4,6,12,14), 
Σm(2,6) and one operation of simple gluing of variables, the 
localization of which is determined by the corresponding 
intervals of the Boolean space, containing combinatorial  
2-(2, 4)-design and 2-(1, 2)-design systems.

The twelfth block of variables «1100» in the first 
matrix of expression (39) is common to three systems – 
Σm(4,6,12,14), Σm(8,9,12,13), Σm(12,13,14,15) and one 
operation of super-gluing variables, the localization of 
which is determined by the corresponding intervals of 
the Boolean space containing combinatorial systems of  
2–(2, 4)-design.

The thirteenth block of variables «1101» in the first 
matrix of expression (39) is common to three systems – 
Σm(1,5,9,13), Σm(8,9,12,13), Σm(12,13,14,15) and one 
operation of super-gluing variables, the localization of 
which is determined by the corresponding intervals of 
the Boolean space containing combinatorial systems of  
2-(2, 4)-design.

The fourteenth block of variables «1110» in the first 
matrix of expression (39) is common to two systems – 
Σm(4,6,12,14), Σm(12,13,14,15) and one super-gluing oper-
ation of variables, the localization of which is determined by 
the corresponding intervals of the Boolean space containing 
combinatorial 2-(2, 4)-design systems.

As a result, in one step, without using the implicant table, 
the minimal function (39) is obtained, which is two literals 
smaller compared to the reduced function [28] f x x x x x x x x x x x x x2

1 3 4 3 4 2 3 2 4 1 2 1 3= + + + + +( ). 
f x x x x x x x x x x x x x2

1 3 4 3 4 2 3 2 4 1 2 1 3= + + + + +( ).
Example 5. Using a non-standard system, obtain the min-

imum Boolean function of four variables f(x1, x2, x3, x4) given 
in PDNF [29, 30]:

f x x x x1 2 3 4 0 1 2 5 7 10 14 15, , , , , , , , , , .( ) = ( )∑ 	 (41)

Solution.
I simplify the function f(x1, x2, x3, x4) (41) in the conjunc-

tive normal form (CNF):

f x x x x

x x x x

MCNF

No.

1 2 3 4

1 2 3 4

3 0 0 1 1

4 0 1 0 0

6 0 1 1 0

8 1 0 0 0

9 1 0 0 1

11

, , ,( ) =

=

11 0 1 1

12 1 1 0 0

13 1 1 0 1

3

4

6

8

9

11

1 1 0 0

0 1

1 0 1 1

1 0 0 1

0 1 1 1

0 1 1 0

1 2 3 4

=

No. x x x x

00 0

1 0 0

12

13

0 0 1 1

0 0 1 0

0 1

1 0 1

1 2 3 4

1 3 1 2 4 2 3

=

= =

= +( ) + +( ) + +

x x x x

x x x x x x x xx4( ). 	 (42)

The decimal equivalent of MCNF (42) is: 

fMCNF(x1, x2, x3, x4) = 

= {(3,11),(4,6),(8,9,12,13)} = {3,4,6,8,9,11,12,13}.

In the first matrix of expression (42) according to the 
Nelson method, I invert the values of the variables [1]. In 
the second matrix of expression (42), which represents the 
DCNF of f(x1, x2, x3, x4) (41), the following actions are per-
formed:

– to modules 8, 9, 12, 13, which form the interval of the 
Boolean space containing the complete combinatorial system 
2-(2, 4)-design, the super-gluing operation of variables is 
applied [17];

– to modules 3, 11; 4, 6, which form the corresponding 
intervals of the Boolean space, containing combinatorial 
systems 2-(1, 2)-design, the operation of simple gluing of 
variables is applied.

The results of logical operations of gluing the variables 
are written to the third matrix of expression (42). As a re-
sult, the minimal function (42) in the conjunctive normal 
form, which is four literals smaller than the reduced func-
tion in the disjunctive normal form [29, 30], was obtained 
in one step:

YMDNF =
( ) ( ) ( ) ( ){ }
( ) ( ) ( )

1 0 1 2 10 5 7 14 15

2 0 2 1 5 7 15 1

. . , . , , , ,

. , , , , , , 00 14,
.

( ){ }


















Example 6. Using a non-standard system, obtain the 
minimum Boolean function of four variables f(x1, x2, x3, x4), 
specified in PNF [29]:

f x x x x1 2 3 4 0 1 2 5 7 10 14 15, , , , , , , , , , .( ) = ( )∑  
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Solution:

f x x x x

x x x x

min , , ,1 2 3 4

1 2 3 4

0 0 0 0

0 0 1 0

0 0 0 1

0 1 0 1

0 1 1 1

1 1 1

1 0 1 0

1 1 1 0

( ) =

=

11

1 1 1

0 0 0

0 0 1

1 1 0

0 0 0 0

0 0 1 0

0 0 1

1 1 1

1 1 0

1 2 3 4

1 2 3 4 1 2 3

= =

= =

x x x x

x x x x x x x x44

1 2 3 4 1 2 3 4

0 1 0 0

0 1 1 0

0 0

1 1 1

1 0

0 1 0

0 0

1 1 1

1 0

0 1 0

0 0

0 1 1

1

=

= = =

=

x x x x x x x x

x11 3 1 2 4 2 3 4

1 3 1 2 4 2 3 4

1 3 1 2 41

+( )⊕ ⊕ =

= ⊕ ⊕ =

= ⊕ ⊕ ⊕

x x x x x x x

x x x x x x x x

x x x x x x22 3 4

1 3 1 2 4 2 3 4

1 3 1 2 4 2 3 4

x x

x x x x x x x x

x x x x x x x x

=

= ⊕ ⊕ =

= ⊕ + +( )⊕ . 	 (43)

A minimal function (43) in a mixed basis containing two 
fewer inversions is obtained compared to [29]:

Y DNF =

=

( ) ( )
( ) ( )
( ) ( )
( )

0000 0001

0010 0101

0111 1010

1110 111

, ,

, ,

, ,

, 11

1 0

0 1 1

0 1 0( )

























⇒

− − − −
− −

−
−
























DNF

PNF



.

Simplification of symmetric Boolean functions is provid-
ed by the polynomial basis algebra [27]. However, after the 
first equivalent transformation of a symmetric function in 
a polynomial basis, it becomes possible to simplify it in the 
main basis as well.

Example 7. Using a non-standard system, obtain the 
minimum Boolean function of four variables f(x1, x2, x3, x4), 
specified in PDNF [29]:

f x x x xPDNF 1 2 3 4 0000 0011 1111, , , , , .( ) = ( ) ( ) ( ){ } 	 (44)

Solution.
Function (44) is symmetric [27]. For the sake of sim-

plicity (44), I apply the procedure of inserting identical 
conjunct terms, followed by the operation of super-gluing 
the variables:

f x x x xmin , , ,1 2 3 4

0 0 0 0

0 0 1 1

1 1 1 1

0 0 0 0

0 0 0 1

0 0 0 1

0 0 1 0

0 0 1 0

0 0 1 1

0 1

( ) =

= =

00 0

0 1 0 0

0 1 0 1

0 1 0 1

0 1 1 0

0 1 1 0

0 1 1 1

0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 1

1 0 0 1

1 0 1 0

1 0 1 0

1 0 1 11

1 0 1 1

1 1 0 0

1 1 0 0

1 1 0 1

1 1 0 1

1 1 1 0

1 1 1 0

1 1 1 1

1

0 0 0 1

0 0 1 0

0 1 0 0

0 1 0 1

0 1 1 0

0

= ⊕
11 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1

0 0 0 1

0 0 1 0

0 1

1 0

1 1 0 1

1 1 0 0

1 1

=

= ⊕

11 0

1 1 0

1

0 0 0 1

0 0 1 0

0 1

1 0

1 1 0 1

1

0 0 1

0 1 0

0 1

1 0

1 0

1 0 1

1

0 1

0 1 0

0 1

1 0

1 0

= ⊕ =

= ⊕ = ⊕ == ⊕ =

= + ⊕( ) + ⊕( )

1

0 1

1 0

0 1

1 0

1 0

1 4 1 2 3 4x x x x x x . 	 (45)

The result of the first equivalent transformation in the 
polynomial basis (the procedure of inserting the same con-
junct terms followed by the operation of super-gluing the 
variables) is written to the third matrix of expression (45). 
The function represented by the third matrix of expres-
sion (45) remains singular [2]. Therefore, for further simpli-
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fication in the third matrix, I switch to the main basis and 
obtain the minimal function (45) in the mixed basis, which 
has four literals less, compared to [29]:

Y DNF

DNF

PNF

=
( )
( )
( )

















⇒

−( )
−( )

0000

0011

1111

1

000

00 1

,

,

.

,

,

11111

2

00 0

001

1111

3

0

( )

















−( )
−( )

( )

















PNF

PNF

.

,

,

.

0000

0 11

111

4

0000

011

1 11

( )
−( )

−( )

















( )
−( )

−( )






,

,

.

,

,

PNF




































































PNF

























.

Therefore, a minimal Boolean function of four variables 
f(x1, x2, x3, x4) was obtained using a non-standard system, 
which has four fewer literals compared to [29].

5. 4. Thesaurus of non-standard system of simplifica-
tion of Boolean functions

Binary systems with repetition, 2-(n, b)-design, 2-(n, x/b)- 
design, which are part of the Boolean space in the form of 
combinatorial structures of truth tables of Boolean functions, 
represent logical operations of simple and/or super-gluing 
variables. In this regard, establishing the placement of the 
2-(n, b)-design, 2-(n, x/b)-design systems provides unambi
guous identification of the locations of equivalent trans-
formations, and hence the implication of the algorithm for 
simplifying Boolean functions. Accordingly, the non-stan-
dard system for simplifying Boolean functions has its own 
systematized composition of information (knowledge) and 
settings, in the form of a thesaurus (Tables 1, 5), which pro-
vides orientation in this system.

Table 1

Thesauri of the basic concepts of the Quine-McCluskey 
method and the non-standard system of simplification 	

of Boolean functions

No. of 
entry

Thesaurus for simplifying 
Boolean functions using 
the Quine-McCluskey 

method

Thesaurus of a non-standard 
system for simplifying Boolean 

functions

1 DDNF DDNF

2 Laws of logic algebra Laws of logic algebra

3
Constituents and implants 
of logical functions

Intervals of the Boolean space 
and their possible intersection 
containing the 2-(n, b)-design, 
2-(n, x/b)-design systems

4
Operations of incomplete 
gluing and absorption of 
variables

Location of equivalent trans-
formations

5
Abbreviated form of the 
function

The minimal form of the 
function

The division into groups of conjunct terms, according to 
the Quine-McCluskey method, provides a logical operation 
of only simple gluing of variables. This increases the amount 
of computation and makes it difficult to simplify the function.

Example 8. Using a non-standard system, obtain the mini-
mum Boolean function of four variables f(x4, x3, x2, x1), given 
in the canonical form [18]:

f x x x x4 3 2 1 0 1 2 5 6 7 9 10 11 13 14 15, , , , , , , , , , , , , , .( ) = ( )∑ 	 (46)

Solution.
Option 1.
I choose the minimum number of intervals containing 

combinatorial 2-(n, b)-design systems to cover the PDNF of 
function (46) (Fig. 4).

No. x4 x3 x2 x1 f 
0 0 0 0 0 1 
1 0 0 0 1 1 
2 0 0 1 0 1 
5 0 1 0 1 1 
6 0 1 1 0 1 
7 0 1 1 1 1 
9 1 0 0 1 1 
10 1 0 1 0 1 
11 1 0 1 1 1 
13 1 1 0 1 1 
14 1 1 1 0 1 
15 1 1 1 1 1 

 
Fig. 4. Disjunctive normal form of 	

function f (x4, x3, x2, x1)

Table 2 gives the minimal sets of intervals containing 
2-(n, b)-design systems for covering the PDNF of func-
tion (46) and the corresponding simple implicants.

Table 2

Minimal sets of intervals containing 2-(n, b)-design 	
systems for covering the PDNF of function (46) 	

and the corresponding simple implicants

No. of 
entry

Minimal sets of intervals con-
taining 2-(n, b)-design systems

Simple implicants  
of a minimal function

Variant 1

1 Σm(0,1) ¬x4 ¬x3 ¬x2

2 Σm(2,6,10,14) x2 ¬x1

3 Σm(5,7,13,15) x3 x1

4 Σm(9,11,13,15) x4 x1

Variant 2

1 Σm(0,2) ¬x4 ¬x3 ¬x1

2 Σm(1,5,9,13) ¬x2 x1

3 Σm(6,7,14,15) x3 x2

4 Σm(10,11,14,15) x4 x2

Contemplating Table 2 demonstrates that there are two 
identical minimum functions:

f x x x x x x x x xMDNF1 = + + +4 3 2 2 1 3 1 4 1;

f x x x x x x x x xMDNF2 = + + +4 3 1 2 1 3 2 4 2.	 (47)



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/4 ( 129 ) 2024

22

The result of simplification (47) coincides with [18], in 
which the simplification of function (46) was carried out in 
two steps by the Quine-McCluskey method.

Option 2.
I choose not the minimal set of intervals that hold the 

2-(n, b)-design systems but one that covers the constituents 
of the PDNF unit (Fig. 4) of function (46), for example,  
as in Table 3.

Reviewing Table 4 reveals that simple implicants 000 –, 
– –10, –1–1, 1– –1 cover (highlighted in green) all consti
tuents of the PDNF unit of function (46). Thus, the MDNF 
of function (46) takes the form:

f x x x x x x x x xMDNF = + + +4 3 2 2 1 3 1 4 1.	 (48)

The results of the simplification of (47), (48) of example 
8 coincide with [18], but the algorithm of their simplification 
is significantly simpler.

Example 9. Using a non-standard system, obtain the mini-
mum Boolean function of four variables f(x1, x2, x3, x4), given 
by the algebraic form [31]:

f x x x x

x x x x x x x x x x x x x x x x

x x x

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2

, , ,( ) =

= + + + +

+ 33 4 1 2 3 4 1 2 3 4 1 2 3 4x x x x x x x x x x x x x+ + + . 	 (49)

Solution.
Simplification of function f(x1, x2, x3, x4) (49) in DNF:

f x x x x

x x x x

MDNF

No.

1 2 3 4

1 2 3 4

3

5 0 1 0 1

7 0 1 1 1

8

10

1

0 0 1 1

1 0 0 0

1 0 1 0

, , ,( ) =

=

11

12

14

0 1 1

3

1 0 1 1

0 1 1

1 1 0 0

1 1 1 0

1 0

1 2 3 4

1 4 1 2 4 2 3 4

= =

= + + =

=

x x x x

x x x x x x x x

,, , , , , , ,

, , , , , , , .

11 5 7 8 10 12 14

3 5 7 8 10 11 12 14

( ) ( ) ( ){ } =

= { } 	 (50)

In one step, the minimal function in DNF (50) is 
obtained, which is six literals smaller than the reduced 
function in [31], in which the Quine-McCluskey me
thod is used for simplification.

Simplification of the function f(x1, x2, x3, x4) in PNF: 
since function (49) is singular [2], let’s move on to the 
Reed-Muller basis:

f x x x x

x x x x

MPNF

No.

1 2 3 4

1 2 3 4

3
5 0 1 0 1
7 0 1 1 1
8

10
1

0 0 1 1

1 0 0 0
1 0 1 0

, , ,( ) =

=

11
12
14

0 1 1

0 0 1 1
1 0 1 1
0 1 1
1 0

1 0 1 1

0 1 1

1 1 0 0
1 1 1 0

1 0

1 2 3 4

1 2 3

= =

= =

x x x x

x x x x11 2 3

1 2 3 4

1 4 1 2 2 3

0 0 0 1
1 0 1 1
0 1
1 0

0 0 1
1 0 1

1
1

1

x x

x x x x

x x x x x x

=

= =

= ⊕ ⊕ ⊕( ) =

= xx x x x x

x x x x x

x x x x x

1 4 2 1 3

1 4 2 1 3

1 4 2 1 3

1⊕ ⊕ ⊕( )( ) =

= ⊕ ⊕( )( ) =

= ⊕ + ⊕( )( ) =

= xx x x x x1 4 2 1 3⊕ + ⊕( )( ). 	 (51)

Table 3

A non-minimal set of intervals containing 2-(n, b)-design systems 
for covering the PDNF of function (46) and the corresponding 

simple implicants

No. of 
entry

Combinatorial 2-(n, b)-design 
systems 

Simple implicants  
of systems

A Σm(0,1) ¬x4 ¬x3 ¬x2

B Σm(1,5,9,13) ¬x2 x1

C Σm(2,6,10,14) x2 ¬x1

D Σm(5,7,13,15) x3 x1

E Σm(9,11,13,15) x4 x1

F Σm(10,11,14,15) x4 x2

Table 4

Implicant table of DNF of functions f(x4,x3,x2,x1) (46)

No. x4 x3 x2 x1 f 000 – – –01 – –10 –1–1 1– –1 1–1– fmin

0 0 0 0 0 1 • – – – – – 1

1 0 0 0 1 1 • • – – – – 1

2 0 0 1 0 1 – – • – – – 1

5 0 1 0 1 1 – • – • – – 1

6 0 1 1 0 1 – – • – – – 1

7 0 1 1 1 1 – – – • – – 1

9 1 0 0 1 1 – • – – • – 1

10 1 0 1 0 1 – – • – • 1

11 1 0 1 1 1 – – – – • • 1

13 1 1 0 1 1 – • – • • – 1

14 1 1 1 0 1 – – • – • 1

15 1 1 1 1 1 – – – • • • 1
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A minimal function in a mixed basis (51) is obtained, 
which is nine literals less than the reduced function in 
work [31].

Table 5

Thesauri of the main concepts of the Carnot map and the 
non-standard system of simplifying Boolean functions

No. of 
entry

Thesaurus of simpli-
fication of Boolean 

functions by the 
Carnot map

Thesaurus of a non-standard 
system for simplifying Boolean 

functions

1 DDNF, DCNF DDNF, DCNF

2 Laws of logic algebra Laws of logic algebra

3
Correct contours and 
their possible inter-
section

Intervals of the Boolean space 
and their possible intersection 
containing the 2-(n, b)-design, 
2-(n, x/b)-design systems

4
Rules for grouping 
minterms (maxterms) 
into correct contours

Location of equivalent transfor-
mations

5
Definition rules for 
minimal function

The minimal form of the function

Disadvantages of the method for Carnot maps, Veitch 
diagrams:

– the actual additional construction of Carnot maps, 
Veitch diagrams with their structure according to the given 
truth table of the Boolean function is necessary;

– it is necessary to unambiguously match the indices of 
the bit of the binary code, using the Gray code, when placing 
the terms of the given function in the cells of the Carnot 
maps, Veitch diagrams;

– it is advisable to use Carnot maps and Veitch diagrams 
when the number of variables does not exceed 5;

– the selection of the correct contours is carried out 
intuitively and there is no algorithm that would provide the 
best solution;

– after choosing the correct contours on the Carnot map, 
the Veitch diagram, the control rules for determining the 
minimum function must be followed.

Example 10. Use a non-standard system to simplify the 
DNF of a partially defined function f(x1, x2, x3, x4) given by 
the truth table (Fig. 5) [32].

No. x1 x2 x3 x4 f 
0 0 0 0 0 0 
1 0 0 0 1 1 
2 0 0 1 0 – 
3 0 0 1 1 1 
4 0 1 0 0 – 
5 0 1 0 1 0 
6 0 1 1 0 0 
7 0 1 1 1 0 
8 1 0 0 0 0 
9 1 0 0 1 1 
10 1 0 1 0 0 
11 1 0 1 1 1 
12 1 1 0 0 1 
13 1 1 0 1 – 
14 1 1 1 0 1 
15 1 1 1 1 1 

 
Fig. 5. Truth table of function f (x1, x2, x3, x4)

Solution: 

f x x x x

x x x x f

MDNF

No.

1 2 3 4

1 2 3 4

1 1
3 1
9 1

11 1
1

0 0 0 1
0 0 1 1
1 0 0 1
1 0 1 1

, , ,( ) =

= 22 1
14 1
15 1
2 0 0 1 0
4 0 1 0 0

13

1
1

0 0
1 1 0 0
1 1 1 0
1 1 1 1

1 1 0 1

1 1
0 1

1 2 3 4

−
−
−

=

x x x x f

11 1
1 0 1 1

1 2 2 4

−
−

=

= +x x x x . 	 (52)

The first matrix of expression (52) represents the truth 
table of the partially defined DNF function f(x1, x2, x3, x4) 
(Fig. 5). Modules 1, 3, 9, 11 and 12, 14, 15, 13 of the first ma-
trix of expression (52) were treated with the super-gluing op-
eration of variables [17]. The result of logical operations of the 
first matrix is written to the second matrix of expression (52).

The minimum DNF takes the form:

f x x x x x x x xMDNF 1 2 3 4 1 2 2 4, , , .( ) = +

It is important to note that the undefined sets of vari-
ables 2, 4 were not used during the simplification of function  
f(x1, x2, x3, x4) (Fig. 5) by the non-standard system. This 
ultimately reduced the overall complexity of simplifying the 
function (Fig. 5).

The result of simplifying the function f(x1, x2, x3, x4) (Fig. 5) 
using the Carnot map in work [32] is f x x x x x x x xMDNF 1 2 3 4 1 2 3 4, , , .( ) = + 

f x x x x x x x xMDNF 1 2 3 4 1 2 3 4, , , .( ) = +  However, testing with code No. 1 – 0001, the 
specified result of simplification does not give unity, as required 
by the truth table of the function in Fig. 5.

Example 11. Simplify the Boolean function f(x1, x2, x3, x4), 
represented by the algebraic form [32] with a non-standard 
system:

f x x x x

x x x x x x x x x x x x x x x x

x x x

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3

, ,( ) =

= + + + +
+ xx x x x x x x x x x x x x4 1 2 3 4 1 2 3 4 1 2 3 4+ + + . 	 (53)

Solution.
Simplification of function f(x1, x2, x3, x4) (53) is to be 

carried out in CNF:

f x x x x

x x x x

MCNF

No.

1 2 3 4

1 2 3 4

0 0 0 0 0
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0

, , ,( ) =

=

11 1 0
13 1 1 0 1
15 1 1 1 1

0
2
3
4 1
5 1 0 1 0
6

1 1 1 1
1 1 0

1 0 1

1 0 0 1

1
1 1 0 0

1 2 3 4

=

No. x x x x

113
15

1 0 1

0 0 1 0
0 0 0 0

0 0 0

1 1
1 1 0

1 2 3 4

1 4 1 2 3 1 2

= =

= +( ) + +( ) + +

x x x x

x x x x x x x xx x x x3 1 2 4

0 2 4 6 2 3 4 5 13 15 0 2 3 4 5

( ) + +( ) =

= ( ) ( ) ( ) ( ){ } =, , , , , , , , , , , , , ,, , , .6 13 15{ } 	 (54)
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In the first matrix of expression (54) according to the 
Nelson method, I invert the values of variables [1]. 

In the second matrix of expression (54), which rep-
resents the DCNF of f(x1, x2, x3, x4), the following actions 
are performed:

– to the modules 0, 2, 4, 6, which form the interval of the 
Boolean space containing the complete combinatorial sys-
tem, 2-(2, 4)-design, the super-gluing operation of variables 
is applied [17];

– to modules 2, 3; 4, 5; 13, 15, which form the correspond-
ing intervals of the Boolean space, containing combinatorial 
systems, 2-(1, 2)-design, the operation of simple gluing of 
variables is applied.

The results of logical operations of gluing variables are 
written to the third matrix of expression (54). As a result, in 
one step, the minimum function (54) in CNF was obtained, 
which has one less inversion, compared to the simplification 
of the function f(x1, x2, x3, x4) (52) in CNF using the Veitch 
diagram [32] ( ( , , , )f x x x xMCNF 1 2 3 4 == + + + + + + +( )( )( )( )).x x x x x x x x x x x1 4 1 2 3 2 3 4 1 2 4×  
×= + + + + + + +( )( )( )( )).x x x x x x x x x x x1 4 1 2 3 2 3 4 1 2 4

5. 5. Comparison with the evolutionary method, gene
tic, swarm algorithms, and the directed selection method

Example 12. Simplify the Boolean function f(x1, x2, x3, x4) 
by a non-standard system given in the canonical form [33]:

f x x x x1 2 3 4 7 10 11 13 14 15, , , , , , , , .( ) = ( )∑ 	 (55)

Solution.
I simplify the function f(x1, x2, x3, x4) (55) in the disjunc-

tive normal form (DNF):

f x x x x

x x x x

MDNF

No.

1 2 3 4

1 2 3 4

7

10

11

13 1 1 0 1

14

0 1 1 1

1 0 1 0

1 0 1 1

1 1

, , ,( ) =

=

11 0

115 1 1

1 1 1

1

1 1 1

1 1

1 2 3 4

1 3 1 2 4 2 3 4

1 3 2 4

= =

= + + =

= +

x x x x

x x x x x x x x

x x x x x11 3+( )x . 	 (56)

The decimal equivalent of MDNF (56) is: 

fMDNF(x1, x2, x3, x4) = 

= {(10,11,14,15),(7,15),(13,15)} = 

= {7,10,11,13,14,15}.

In the first matrix of expression (56), the following ac-
tions are performed:

– to modules 10, 11, 14, 15, which form an interval of the 
Boolean space containing the complete combinatorial system, 
2-(2, 4)-design, the operation of super-gluing of variables is 
applied [17];

– to modules 7, 15; 13, 15, which form an interval of the 
Boolean space containing the complete combinatorial system, 

2-(1, 2)-design, the operation of simple gluing of variables  
is applied.

The fifteenth block of variables «1111» is common to 
three systems – Σm(10,11,14,15), Σm(7,15), Σm(13,15) and 
three operations of super- and simple gluing of variables, 
the location of which is determined by the combinatorial 
systems, 2-(2, 4)-design and 2-(1, 2)-design [4]. As a result,  
a minimal function is obtained in one step:

f x x x x x x x x x xMDNF 1 2 3 4 1 3 2 4 1 3, , .( ) = + +( ) 	 (57)

The results of simplification of function (55) by a non-stan-
dard system and an evolutionary method are given in Table. 6. 
Convergence with the optimal result was achieved at the 
175th generation of the evolutionary method [33].

Table 6

The result of minimizing the function 	
f (x1, x2, x3, x4) (55)

Non-standard  
system

Evolutionary  
method 

f x x x x x x x x x xMDNF 1 2 3 4 1 3 2 4 1 3, ,( ) ( )= + + F bd c bdc amin = + +( )( )

Contemplating Table 6 reveals that the result of simpli-
fying the function f(x1, x2, x3, x4) (55) by a non-standard 
system is a minimal function containing six literals. This is 
one literal less compared to [33]. Decreasing the number of 
literals gives a smaller depth of the logical scheme that im-
plements the minimal function (57) (Fig. 6).

1
&

1

&

&

x1x2x3x4 f(x1, x2, x3, x3)

Fig. 6. A logic circuit that implements 	
a minimum function (57) (circuit complexity 	

of 5 logical elements, circuit depth of 	
3 typical logic elements)

Fig. 7 shows the optimal variant of the logic scheme that 
implements the DNF of the minimal function f(x1, x2, x3, x4) =  
= x1x3+x1x2x4+x2x3x4 (56).

&

&

&

1

x1
x2x3
x4

f(x1, x2, x3, x4)

 
Fig. 7. A logic circuit that implements the DNF (disjunctive 

normal form) of the minimal function (56) (complexity of the 
circuit is 4 logic elements, depth of the circuit is 2 typical 

logic elements)

Fig. 8 shows a logical scheme designed on the basis of the 
evolutionary method [33].
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Fig. 8. A logic scheme designed on the basis 	

of the evolutionary method (the complexity of the scheme 
is 5 logical elements; the depth of the scheme is 4 typical 

logical elements)

It should be noted that according to the diagram in Fig. 8, 
the corresponding logical function will be of the form:

F bd c bdc amin .= +( ) +( ) 	 (58)

Continuing the simplification of the function (56), one 
can achieve the result (57):

F bd c bdc a bdc abd bdc ac

abd bdc ac ac bd a c
min

.

= +( ) +( ) = + + + =

= + + = + +( )

Thus, the transformation of the given logical function (55) 
over 175 generations of the evolutionary method turned out to 
be insufficient to obtain the optimal result of simplifying the 
function.

Example 13. Simplify the Boolean function F(A, B, C, D) with 
a non-standard system given by the truth table (Fig. 9) [34]:

No. A B C D F 
0 0 0 0 0 1 
1 0 0 0 1 0 
2 0 0 1 0 0 
3 0 0 1 1 0 
4 0 1 0 0 1 
5 0 1 0 1 1 
6 0 1 1 0 1 
7 0 1 1 1 1 
8 1 0 0 0 1 
9 1 0 0 1 1 
10 1 0 1 0 1 
11 1 0 1 1 0 
12 1 1 0 0 0 
13 1 1 0 1 1 
14 1 1 1 0 0 
15 1 1 1 1 1 

 
Fig. 9. Truth table of function F (A, B, C, D )

Solution. I shall simplify the function F(A, B, C, D) (Fig. 9) 
in PNF. Consider four dead-end forms of the given function 

F(A, B, C, D) (Fig. 9). Depending on the technical condi-
tions for designing a logic circuit that implements simplified 
functions, one of the considered dead-end forms may become 
minimal.

The first dead-end form (DF).
Simplification of the function in PNF:

f A B C D

A B C D

The first dead end form   

No.

− ( ) =

=

, , ,

0 0 0 0 0

4

5

6

0 1 0 0

0 1 0 1

00 1 1 0

0 1 1 1
0 1

7

8

9

10 1 0 1 0

13

15

0 0 0

1 0 0
1 0 0 0

1 0 0 1

1 0 0

1 1 0 1

1 1 1 1

1 1 1

= =

A B C D

== = =

= ⊕ ⊕ ⊕ =

= ⊕ ⊕ ⊕

A B C D
A B C D

AD B ABC BC D

AD B BC A

0 0 0

1

1 0 0

1 0 0

1 1 0

0 0 0

1

1 0 0

1 0

DD

AD AD AD B BC A D

A D AD B BC A D

A D BC AD B

( ) =

= ⊕ ⊕ ⊕ ⊕ ⊕( ) =

= ⊕ ⊕ ⊕ ⊕ ⊕( ) =

= ⊕ +( )⊕ ⊕ =

== ⊕ + +( )⊕ ⊕A D B C AD B. 	 (59)

The results of simplifying the function F(A, B, C, D) (Fig. 9)  
by a non-standard system and a genetic algorithm [34] are 
given in Table 7. Convergence with the optimal result was 
achieved in 400 generations of the genetic algorithm, the 
total number of population members is 170 [34]. It is worth 
noting that the problem of optimal stopping of the genetic 
algorithm during the simplification of Boolean functions has 
not been solved. 

Contemplating Table 7, it can be seen that the dead-
end function (59) has one XOR less, which can give tech-
nological advantages when it is implemented by a logical 
scheme (Fig. 10).

Table 7
Result of simplifying the function F(A, B, C, D ) (Fig. 9)

Non-standard system Genetic algorithm

F A B C D A D B C AD B, , ,( ) ( )= ⊕ + + ⊕ ⊕ F A D C B D A D= ⊕ + + ⊕ ⊕ +( ) ( ) ( )( )
7 gates 7 gates

1 AND, 2 OR, 2 XORs, 2 NOT 1 AND, 2 OR, 3 XORs, 1 NOT

Number of connections – 13 Number of connections – 13
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=1

1

&

1

=1 F

A

B
C

D  
Fig. 10. A logic scheme designed by a non-standard 	

system to implement the dead-end form of 	
the function F(A, B, C, D ) (59)

Fig. 11 shows a logical scheme designed on the basis of 
a genetic algorithm to implement a minimal function [34].

 

Fig. 11. A logical circuit designed on the basis of a genetic 
algorithm 

The second dead end form.
Simplifying the function in Fig. 9 in PNF:

f A B C D

A B C D

The second dead end form    

No.

, , ,( ) =

=

0 0 0 0 0
4
5

0 1 0 0
0 1 0 1

66
7
8
9

10
13 1 1 0 1
15 1 1 1 1

0 0 0 0

0 1 1 0
0 1 1 1

0 1 0 0
0 1 0 1
0 1

1 0 0 0
1 0 0 1
1 0 1 0

=

A B C D

11 0
0 1 1 1 0 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1

1 0

1 0 1 1
1 1 0 1
1 1 1 1

0 0 0 0

1 0 1 1
1 1 0 1
1 1

=

A B C D

11 1

0 0 0 0
0 1
1 0
1 0 1 1
1 1 1

0 0 0 0
0 1
1 0
1 0 0 1
1 1

=

= = =

= ⊕( )⊕ ⊕ ⊕

A B C D A B C D

BC A D A B ADD

BC A D A B AD

B C A D B AD

=

= + ⊕( )⊕ ⊕ ⊕ =

= + + ⊕( )⊕ ⊕ . 	 (60)

The results of simplifying the function F(A, B, C, D) (Fig. 9) 
by a non-standard system and a genetic algorithm [34] are 
given in Table 8.

Table 8 demonstrates that the dead-end form of function 
(59) has one XOR and one less logical element. A smaller 
number of logical elements requires a smaller number of con-

nections, which can also provide technological advantages 
when implementing function (59) in a logic scheme (Fig. 12).

Table 8

The result of simplifying the function F(A, B, C, D) (Fig. 9)

Non-standard system Genetic algorithm

F A B C D

B C A D B AD

, , ,( )
( )

=

+ + ⊕ ⊕ ⊕

F A D C

B D A D

= ⊕ + +

+ ⊕ ⊕ +

( )
( ) ( )( )

6 gates 7 gates

1 AND, 1 OR, 2 XORs, 2 NOT 1 AND, 2 OR, 3 XORs, 1 NOT

Number of connections – 12 Number of connections – 13

=1

1

=1

&

f(x1, x2, x3, x3)

x1

x2x3

x4  
Fig. 12. A logic scheme designed by a non-standard 	

system to implement the dead-end form of 	
the function F(A, B, C, D ) (59)

The third dead-end form.
The simplification of function (Fig. 9) for the third dead-

end form begins with the fifth matrix of expression (60):

f A B C D

A B C D

A B C D
The third dead end form   − ( ) =

= =

, , ,

0 0 0 0
0 1
1 0
1 1
1 0 0 1

00 0 0 1
0 0 0 1
0 0 0 0
0 1
1 0
1 1
1 0 0 1
1 0 0 0
1 0 0 0

0 0
0 0 0 1
0 1
1 0
1 1
1 0 0 0

= =

=

A B C D

A B C D
00 0

0 0 0
0 1
1 0
1 1

0 0 0

0 0
0 0 1
0
1 0
1 1

0 0 0

0 0
0 0 0
0

0
1 1

0 0 0

1 0

= = =

=

A B C D A B C D

A B C D
00

0
0

1 1
0 0 0

1

1

=

= ⊕ ⊕ ⊕ +( ) =

= ⊕ ⊕( )⊕ +( ) =

= ⊕ ⊕( )( )⊕

B ABC BC D A D

B AC C D A D

B C A D AA D

B C A D A D

B C A D A D

+( ) =

= ⊕( )( )⊕ +( ) =

= + ⊕( )( )⊕ +( ). 	 (61)
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The results of simplifying the function F(A, B, C, D) (Fig. 9) 
by a non-standard system and a genetic algorithm [35] are 
given in Table 9.

Table 9

Result of simplifying the function F(A, B, C, D ) (Fig. 9)

Non-standard system Genetic algorithm

F A B C D

B C A D A D

, , ,( )
( )( ) ( )

=

+ ⊕ ⊕ +

F A D C

B D A D

= ⊕ + +

+ ⊕ ⊕ +

( )
( ) ( )( )

7 gates 7 gates

1 AND, 2 OR, 2 XORs, 2 NOT 1 AND, 2 OR, 3 XORs, 1 NOT

Number of connections – 12 Number of connections – 13

Looking at Table 9, it can be seen that the dead-end form 
of function (61) has one literal and one XOR less. A smaller 
number of literals requires a smaller number of connections in 
the scheme, which can give technological advantages in the 
implementation of function (61) (Fig. 13). It is important to 
note that the diagram in Fig. 13 has a longer signal delay com-
pared to the scheme in Fig. 11. However, the choice of logic 
scheme depends on the design tasks and technical conditions.

1

1

&
=1

=1x1

x2x3

x4

f

 
Fig. 13. A logic scheme designed by a non-standard 	

system to implement the dead-end form 	
of function F (A, B, C, D ) (61)

The fourth dead-end form.
Simplifying the function in Fig. 9 in DNF.

The implementation of the obtained dead-end form of 
function (62) requires fewer transistors, compared to the 
scheme in Fig. 11, and, therefore, is technologically sim-
pler  (Fig. 14).

=1

&

&

1

1

&
x1

x2

x3

x4

f

 
Fig. 14. A logic circuit designed by a non-standard 	

system to implement the dead-end form 	
of function F (A, B, C, D ) (62)

Work [34] considered the result of simplifying the func-
tion in Fig. 9, such that F A B C D AB A BD CD, , , .( ) = + +( )  
However, testing with code No. 0 – 0000, the specified sim-
plification option does not give unity, as required by the truth 
table of the function in Fig. 9.

Example 14. Simplify the Boolean function F(E, D, C, B, A) 
by a non-standard system given by the truth table (Fig. 15) [35]:

No. E D C B A F 
0 0 0 0 0 0 0 
1 0 0 0 0 1 0 
2 0 0 0 1 0 0 
3 0 0 0 1 1 1 
4 0 0 1 0 0 0 
5 0 0 1 0 1 1 
6 0 0 1 1 0 1 
7 0 0 1 1 1 0 
8 0 1 0 0 0 0 
9 0 1 0 0 1 1 
10 0 1 0 1 0 1 
11 0 1 0 1 1 0 
12 0 1 1 0 0 1 
13 0 1 1 0 1 0 
14 0 1 1 1 0 0 
15 0 1 1 1 1 0 
16 1 0 0 0 0 0 
17 1 0 0 0 1 1 
18 1 0 0 1 0 1 
19 1 0 0 1 1 0 
20 1 0 1 0 0 1 
21 1 0 1 0 1 0 
22 1 0 1 1 0 0 
23 1 0 1 1 1 0 
24 1 1 0 0 0 1 
25 1 1 0 0 1 0 
26 1 1 0 1 0 0 
27 1 1 0 1 1 0 
28 1 1 1 0 0 0 
29 1 1 1 0 1 0 
30 1 1 1 1 0 0 
31 1 1 1 1 1 0 

 
Fig. 15. Truth table of 	

function F(E, D, C, B, A)

Solution. The function (Fig. 15) is 
singular [2]. To simplify it, we choose the 
Reed-Muller basis:

f A B C D

A B C D
The fourth dead end form   

No.
− ( ) =

=

, , ,

0
4
5

0 0 0 0
0 1 0 0
0 01 1

66
7
8
9 1 0 1

10 1 0 0
13
15

1 0 1
1 0 0

0 1 1 0
0 11 1

0

1 1 0 1
1 1 1 1

1 1

1 0 0 0

1

0 0 0
0 1= =

A B C D AA B C D A B C D

A B C D

0 0 0
0 1
1 0 0
1 0 0

1 1

0 0 0
0 1 0
1 0 0
1 0 0

1 1

0 0 0
0 1 0 0
0 1 1 0
1 0 0
1

= =

=

00 0
1 1

0 0 0
0 1 0
0 1 1 0
1 0 0
1 0 0

1 1

0 0 0
0 1 0
0 1 0
1 0 0
1 0 0

1 1

1 2 3

= = =

=

A B C D A B C D

x x x ++ + + + + =
= +( ) + +(

x x x x x x x x x x x x x x

x x x x x x x x
1 2 4 1 2 3 1 2 4 2 3 4 2 4

1 2 3 4 1 2 3 4 )) + + =

= +( ) +( ) + + =

= +( ) ⊕

x x x x x

x x x x x x x x x x x

x x x

2 3 4 2 4

3 4 1 2 1 2 2 3 4 2 4

3 4 1 xx x x x x x x x x x x x x x x2 2 3 4 2 4 3 4 1 2 2 3 4 2 4( ) + + = ⊕( ) + + + + .  (62)
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F E D C B A

E D C B A f

The dead endPNF 

No.

− =

=

( , , , , )

3 0 0 0 1 1 1
5 0 0 1 0 1 1
6 0 0 1 1 0 11
9 0 1 0 0 1 1

10 0 1 0 1 0 1
12 0 1 1 0 0 1
17 1 0 0 0 1 1
18 1 0 0 1 0 1
20 1 0 1 0 0 1
24 1 1 0 0 0 1

=

EE D C B A

E D C B A

0 0 0 1 1
0 0 1 1
0 0 1 1
0 1 0 1
0 1 0 1

1 1 0 0
1 0 0 1
1 0 0 1
1 1 0 0
1 1 0 0 0

0 0 0

=

=

11 1
0 1 1
0 1 1
0 1 1
0 1 1

1 1 0 0
1 0 0 1
1 0 0 1
1 1 0 0
1 1 0 0 0

0 0 0 1 0
0 1 1
0 1 1
0 1 1
0 1=

E D C B A

11
1 0 0

1 0 0 1
0 0 1

1 1 0 0
0 1 0 0 0

0 0 1 1
0 1 1
0 1
0 1
0 1 1

1 0 0
1 0 0 1

0 0 1
1 1 0 0
0 1 1

=

E D C B A

00

0 0 1 1
0 1 1
0 1
0 1 0

1 0 0
1 0 0 1

0 0 1
1 1 0 0
0 1 1 0

0 0 0 1
0 1
0 1
0 1 0

1 0

=

= =

E D C B A E D C B A

00
1 0 0 1

0 0 1
1 1 0 0
0 1 1 0

0 0 0 1
0 1
0
0 0 0

1 0 0
1 0 0 1

0 0 1
1 1 0 0
0 1 1 0

= =

=

E D C B A

E D C B A
00 0 0 1
0 0
0 0 0

1 0 0
1 0 0 1

0 0 1
1 1 0 0
0 1 1 0

.

The dead-end PNF of the function (Fig. 15) is as follows:

F E D C B A E B CA D

E ADC B A EC D DC EA B

The dead endPNF − ( ) = ⊕( )⊕

⊕ ⊕ ⊕( )⊕ ⊕

, , , ,

(( ). 	 (63)

The Zhegalkin polynomial for TPNF (63) takes the fol-
lowing form:

P E D C B A ED EC EB EA
EDC EDB EDA ECB ECA EBA
DC DB D

, , , ,( ) = ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ AA DCB DCA

DBA CB CA CBA BA
⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ . 	 (64)

With the help of the visual-matrix form, the simplifica-
tion of the polynomial (64) is carried out and the minimum 
function in the mixed basis is obtained.

F E D C B A
E D C B A

min , , , ,( ) =

=

1 1
1 1
1 1
1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

1 1
1 1
1 1
1 1 1
1 11 1
1 1 1

1 1
1 1
1 1 1

1 1

1 1

1 1

1 0 1
1 0 1
1 0 1

1 1
1 1
1 1

1 1 1
1 1 1
1 1 1

0 1 1
0 1 1
0 1 1

=

E D C B A
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=

= ⊕ ⊕ ⊕( ) ⊕( )⊕
⊕ ⊕( ) ⊕ ⊕( )⊕ =
= ⊕ ⊕ ⊕( ) +( )

ED C B A E D D

E D CB CA BA CBA

ED C B A E D ⊕⊕
⊕ ⊕( ) ⊕( )⊕( )⊕ =
= ⊕ ⊕ ⊕ ⊕ ⊕( ) +( )⊕
⊕ ⊕( ) ⊕(

E D C B A BA CBA

ED E D E D C B A E D

E D C B A))⊕( )⊕ =
= ⊕ ⊕ + ⊕ ⊕ ⊕( ) +( )⊕
⊕ ⊕( ) ⊕( )⊕( )⊕ =

=

BA CBA

E D E D C B A E D

E D C B A BA CBA

C ⊕⊕ ⊕( ) + +( )( )⊕

⊕ ⊕( ) ⊕( )⊕( )⊕ =

= ⊕ ⊕( ) + +( )( )⊕

⊕ ⊕

B A E D

E D C B A BA CBA

C B A E D

E DD C B A BA CBA

C B A E D

E D C B A BA

( ) + ⊕( )⊕( )⊕ =

= ⊕ ⊕( ) + +( )( )⊕

⊕ ⊕( ) + ⊕( )⊕( )⊕

)

CCBA

C B A E D

E D C B A BA CBA

C B A E D

=

= ⊕ ⊕( ) +( )( )⊕ ⊕

⊕( ) + ⊕( )⊕( )⊕ =
= ⊕ ⊕( ) +( )⊕
⊕⊕ ⊕( ) + ⊕( )⊕( )⊕E D C B A BA CBA.

The minimum function looks like this:

F E D C B A C B A E D

E D C B A BA CBA

min , , , ,

,

( ) = ⊕ ⊕( ) +( )⊕

⊕ ⊕( ) + ⊕( )⊕( )⊕

and contains 15 literals, which is two literals less than [35]: 

S B D A B CE B D A B CE

E D C A B

= ⊕( )+ ⊕( )( )⊕( )⊕ ⊕( )+ ⊕( )( )⊕( ) ×

× ⊕ ⊕( )( )⊕ ⊕( )( ),,

where the simplification of the function (Fig. 15) is carried 
out using the particle swarm optimization algorithm.
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Example 15. Simplify the partially defined function f(x1, x2,  
x3, x4, x5, x6) with a non-standard system given by the truth 
table (Fig. 16) [36].

No. x1 x2 x3 x4 x5 x6 f 
0 0 0 0 0 1 0 0 
1 0 0 0 0 1 1 0 
2 0 0 0 1 0 1 0 
3 0 0 0 1 1 0 0 
4 0 0 0 0 0 1 1 
5 0 0 1 0 0 1 1 
6 0 0 1 0 1 0 1 
7 0 0 1 1 0 1 1 
8 0 0 1 1 1 0 1 

 Fig. 16. Truth table of partially defined 	
function f (x1, x2, x3, x4, x5, x6)

Solution.
The truth table of the PDNF of the partially defined func-

tion f(x1, x2, x3, x4, x5, x6) (Fig. 16) takes the form (Fig. 17).
In the PDNF of the partially defined function f(x1, x2, x3, x4, 

x5, x6) in Fig. 17, the following actions were carried out: to mo
dules 9, 10, 13, 14, 8, 11, 12, 15, 24, 25, 26, 27, 28, 29, 30, 31, 40, 
41, 42, 43, 44, 45 , 46, 47, 56, 57, 58, 59, 60, 61, 62, 63; 1, 9, 0, 8, 16, 
17, 24, 25, 32, 33, 40, 41, 48, 49, 56, 57, the corresponding groups 
of which form intervals of the Boolean space containing com-
plete combinatorial systems, 2-(5 , 32)-design and 2-(4, 16)-de-
sign, the operation of super-gluing variables was applied [17].

The result of logical operations of super-gluing the vari-
ables is recorded in the following matrix in Fig. 18.

It is important to note that the undefined sets of vari-
ables 4, 7, 18, 19, 20, 21, 22, 23, 34, 35, 36, 37, 38, 39, 50, 
51, 52, 53, 54, 55 of the matrix in Fig. 17 are not recorded 
to the matrix in Fig. 18 since they do not participate in the 
simplification of the partially defined function f(x1, x2, x3, x4, 
x5, x6) (Fig. 16). This ultimately reduces the complexity of 
simplifying the function in Fig. 16.

In one step, the minimum DNF of the function f(x1, x2, x3, 
x4, x5, x6) is obtained (Fig. 16), which takes the form:

f x x x x x x x x xMDNF 1 2 3 4 5 6 3 4 5, , , , , ,( ) = +

it coincides with [36], in which the simplification of the func-
tion is carried out by the method of directed sorting.

No. x1 x2 x3 x4 x5 x6 f No. x1 x2 x3 x4 x5 x6 f 
1 0 0 0 0 0 1 1 34 1 0 0 0 1 0 ‒ 
9 0 0 1 0 0 1 1 35 1 0 0 0 1 1 ‒ 
10 0 0 1 0 1 0 1 36 1 0 0 1 0 0 ‒ 
13 0 0 1 1 0 1 1 37 1 0 0 1 0 1 ‒ 
14 0 0 1 1 1 0 1 38 1 0 0 1 1 0 ‒ 
0 0 0 0 0 0 0 ‒ 39 1 0 0 1 1 1 ‒ 
4 0 0 0 1 0 0 ‒ 40 1 0 1 0 0 0 ‒ 
7 0 0 0 1 1 1 ‒ 41 1 0 1 0 0 1 ‒ 
8 0 0 1 0 0 0 ‒ 42 1 0 1 0 1 0 ‒ 
11 0 0 1 0 1 1 ‒ 43 1 0 1 0 1 1 ‒ 
12 0 0 1 1 0 0 ‒ 44 1 0 1 1 0 0 ‒ 
15 0 0 1 1 1 1 ‒ 45 1 0 1 1 0 1 ‒ 
16 0 1 0 0 0 0 ‒ 46 1 0 1 1 1 0 ‒ 
17 0 1 0 0 0 1 ‒ 47 1 0 1 1 1 1 ‒ 
18 0 1 0 0 1 0 ‒ 48 1 1 0 0 0 0 ‒ 
19 0 1 0 0 1 1 ‒ 49 1 1 0 0 0 1 ‒ 
20 0 1 0 1 0 0 ‒ 50 1 1 0 0 1 0 ‒ 
21 0 1 0 1 0 1 ‒ 51 1 1 0 0 1 1 ‒ 
22 0 1 0 1 1 0 ‒ 52 1 1 0 1 0 0 ‒ 
23 0 1 0 1 1 1 ‒ 53 1 1 0 1 0 1 ‒ 
24 0 1 1 0 0 0 ‒ 54 1 1 0 1 1 0 ‒ 
25 0 1 1 0 0 1 ‒ 55 1 1 0 1 1 1 ‒ 
26 0 1 1 0 1 0 ‒ 56 1 1 1 0 0 0 ‒ 
27 0 1 1 0 1 1 ‒ 57 1 1 1 0 0 1 ‒ 
28 0 1 1 1 0 0 ‒ 58 1 1 1 0 1 0 ‒ 
29 0 1 1 1 0 1 ‒ 59 1 1 1 0 1 1 ‒ 
30 0 1 1 1 1 0 ‒ 60 1 1 1 1 0 0 ‒ 
31 0 1 1 1 1 1 ‒ 61 1 1 1 1 0 1 ‒ 
32 1 0 0 0 0 0 ‒ 62 1 1 1 1 1 0 ‒ 
33 1 0 0 0 0 1 ‒ 63 1 1 1 1 1 1 ‒ 

 
Fig. 17. The truth table of DDNF of the partially defined 

function f (x1, x2, x3, x4, x5, x6) (Fig. 16)

x1 x2 x3 x4 x5 x6 f 
‒ ‒ ‒ 0 0 ‒ 1 
‒ ‒ 1 ‒ ‒ ‒ 1 

 
Fig. 18. Completing the simplification 	

of function f (x1, x2, x3, x4, x5, x6) (Fig. 16)

Table 10 gives the results of simplification of Boolean func-
tions borrowed from the works of other authors and a non- 
standard system.

Table 10 

Comparative table of examples of simplification of Boolean functions borrowed from the works of other authors 	
and a non-standard system

Example 
No.

Number of 
input variables Simplification method ID The result of simplification Non-standard system

3 4 Method of uncoupling of conjunct terms [26] 14 literals 12 literals

4 4 Method by Quine-McCluskey [28] 13 literals abbreviated 
function

11 literals the minimum 
function

5 4 Method of uncoupling of conjunct terms [29, 30] 12 DNF literals 8 CNF literals
6 4 Method of uncoupling of conjunct terms [29] 5 inversions 3 inversions
7 4 Method of uncoupling of conjunct terms [29] 10 literals 6 literals
8 4 Method by Quine-McCluskey Minimization results are the same

9 4 Method by Quine-McCluskey 14 literal abbreviated 
function

MDNF of 8 literals MPNF  
of 5 literals

10 4 Carnot map [32] Does not pass verification 4 literals
11 4 Veitch diagram [32] 6 inversions 5 inversions
12 4 Evolutionary method [33] 7 literals 6 literals
13 4 Genetic algorithm [34] 7 literals 6 literals
14 5 Swarm algorithm [35] 17 literals 15 literals
15 6 Method of directed search [36] Minimization results are the same
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Table 10 gives a representative sample of examples in the 
simplification of Boolean functions by various methods. The 
non-standard function simplification system shows better or 
the same result.

6. Discussion of results of simplifying the Boolean 
functions by a non-standard system

The beginning of the simplification of Boolean functions by 
a non-standard system is the search for intervals of the Boolean 
space containing the combinatorial systems, 2-(n, b)-design, 
2-(n, x/b)-design, in particular, in the case when different inter-
vals of the Boolean space partially coincide. The non-standard 
is heuristic. Heuristics are inventive, the answer is not to «cal-
culate» but to find, this is the true search – the desire to find. 
Detection through the search of the necessary intervals of the 
Boolean space unambiguously implies the locations of equiva-
lent transformations and provides the «trigger causality» of the 
consequence, in the form of the very solution to the problem of 
the systematized procedure for simplifying Boolean functions 
by the visual-matrix form of the analytical method.

The mathematical apparatus of a non-standard system for 
simplifying Boolean functions is the method of figurative trans-
formations, which is considered in works [37–40], and others.

The technology for simplifying Boolean functions by a non- 
standard system is given in Table 11.

New components of the technology of simplification  
of Boolean functions by a non-standard system are given  
in Table 12.

The following results were obtained for each task:
1. A property of combinatorial systems with 2-(n, b)-de-

sign repetition is demonstrated, which consists in the ability 
of 2-(n, b)-design systems to reproduce (represent) the defi-
nition of logical super-gluing operations of variables in the 
form of a change in self-determination in the process of inter-
action with them. Thus, to simplify Boolean functions with 
a non-standard system, the logical operation of super-gluing 
variables can be represented by a complete combinatorial 
system, 2-(n, b)-design (n > 1, b > 3), and vice versa. For n = 1, 
b = 2, the combinatorial system, 2-(n, b)-design, represents  
a logical operation of simple gluing of variables.

To reproduce (represent) the definition of the logical ope
ration of super-gluing variables by the combinatorial system 
with repeated 2-(n, b)-design, the mechanism of providing 
polymorphism (Fig. 3) and the verbal concept (8) are used.  
Examples of representation of logical operations of super- 
gluing of variables by combinatorial systems with repeated  
2-(n, b)-design demonstrate the rules of super- and simple 
gluing of variables (9) to (11).

Table 11 
Technology of simplification of Boolean functions by a non-standard system

1 Binary combinatorial systems with repetition, 2-(n, b)-design, 2-(n, x/b)-design

2 Verbal and figurative presentation of information

3 The logical operation of super-gluing variables

4 Logical operation of incomplete super-gluing of variables

5 Hermeneutics of logical operations on binary equivalents of logical functions

6 Protocols of figurative transformations

7 The sign of the minimal logical function,

8 Minimization of Boolean functions on a complete truth table

9 The algorithm of the analytical method and its automation

10 Extension of the analytical method to other logical bases

11 Algebra of equivalent transformations in the class of perfect normal forms of functions of the Scheffer algebra

12 Algebra of equivalent transformations in the class of perfect implicative normal forms

13 Algorithms for simplifying Boolean functions using logical operations of absorption and super-gluing of variables

14 Stack of logical operations

15
Algorithms for simplifying the PNF of Boolean functions using the insertion of identical conjunctions with the following operation of 
super-gluing variables

16 Singular function

17 Algebra of equivalent transformations in the class of polynomial normal forms of Boolean functions

18 Mixed basis

19
Combining a sequence of logical operations of super- and simple gluing of variables with the possible use of an implicant table to identify 
redundant simple implicants

20
Dead-end DNFs can be simplified by carrying out all operations of generalized gluing of variables, followed by the use of an implicant table:
– to detect extra simple implicants, 
– to select simple implicants with a minimum number of inversions

21 Identifying the locations of equivalent transformations using the 2-(n, b)-design, 2-(n, x/b)-design combinatorial systems

Table 12 
New components of the technology of simplification of Boolean functions by a non-standard system

1 Decimal format of equivalent figurative transformations

2
Basically, every 2-(n, b)-design, 2-(n, x/b)-design system implies a logical operation of super- and/or incomplete gluing of variables, 
in particular in the case when different intervals of the Boolean space, which accommodate 2-(n, b)-design, 2-(n, x/b)-design systems 
partially coincide

3 Theorem of the non-standard system of simplification of Boolean functions

4 Thesaurus of a non-standard system for simplifying Boolean functions
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2. The beginning (principle) of a non-standard system for 
simplifying Boolean functions is the search for intervals in the 
truth table containing combinatorial systems, 2-(n, b)-design, 
2-(n, x/b)-design, and not multi-pass logical transformations, 
which must be performed when simplifying a function by an 
analytical method (Assertions 1–4). The mutually unambiguous 
correspondence between the PDNF of the Boolean function 
and the combinatorial system, 2-(n, b)-design (2), gives a hy-
perparameter in the form of a set location of equivalent transfor-
mations. The findings of the 2-(n, b)-design, 2-(n, x/b)-design 
system directly and unambiguously point to logical operations 
for equivalent transformations. In turn, this implies an optimal 
algorithm for a non-standard system for simplifying Boolean 
functions. The formal basis of this reduction of the visual-matrix  
form is the algebraic simplification of the corresponding com-
plete and/or incomplete PDNF of Boolean functions, such as (5).

Example 3 demonstrates the identification of the loca-
tions of equivalent transformations using 2-(n, b)-design 
combinatorial systems.

3. The theorem of the non-standard system of simplifica-
tion of Boolean functions is formulated (theorem). According 
to the theorem, all non-redundant simple and/or super-gluing 
operations of variables must be performed to obtain a minimal 
function. As a result, this will provide a minimal function in 
the main basis without using the implicant table (examples 4, 
5, 8, etc.). Thus, the problem of simplifying Boolean functions 
to the simplest normal equivalent is solved in one step, unlike 
the methods by McCall [41], Quine [42], McCluskey [18],  
in which the Boolean problem is solved in two steps.

4. The non-standard system for simplifying Boolean func-
tions has its own systematized composition of informa-
tion (knowledge) and settings, in the form of a formed the-
saurus (Table 1 and Table 5), which provides orientation in 
this system.

5. A comparative analysis of the results of the simplifi-
cation of Boolean functions by a non-standard system and 
examples of the simplification of functions by the evolutio
nary method, genetic, swarm algorithms, and the method for 
directed selection was carried out (Examples 12–15). In the 
vast majority of cases, the cost of implementing the minimum 
function obtained using a non-standard system is lower. For 
all the considered examples, the simplification procedure with 

a non-standard system is simpler. This makes it possible to 
simplify functions without the use of automated calculations.

The interpretation of the result is that the object of solving 
the problem of simplifying Boolean functions is combinato
rial systems with repeated 2-(n, b)-design, 2-(n, x/b)-design, 
which is actually the truth table of the given functions. This 
makes it possible to focus the principle of simplification within 
the limits of the truth table and do without auxiliary objects, 
such as the Carnot map, Veitch diagrams, acyclic graph, etc. 
Equivalent transformations with combinatorial images, which 
by their properties have a greater information capacity, can 
effectively replace verbal procedures of algebraic transforma-
tions. In this regard, the non-standard system of simplification 
of Boolean functions allows the peculiarity that there is some 
analogy of the algorithm, which transforms the «messy» com-
plexity of the simplification procedure by the analytical me
thod into a complex order of figurative transformations.

Table 13 gives a comparison of methods for simplifying 
Boolean functions in the main basis.

Looking at Table 13, it can be seen that the Quine-McClus-
key method uses the division of terms into groups with the 
same number of ones (zeros). In turn, a non-standard system 
uses combinatorial systems with repeated 2-(n, b)-design, 
2-(n, x/b)-design. This simplifies and speeds up the search for 
the minimum function. The interpretation of 2-(n, b)-design 
systems on the Carnot map is carried out by correct contours. 
However, with an increase in the number of bits of the Boolean  
functions, the correct contours lose visibility. In this regard, 
the Carnot map becomes a difficult mathematical device for 
simplifying a function with more than five to six variables.

The peculiarity of the simplification of logical functions by 
a non-standard system, in contrast to the division of terms into 
groups with an equal number of ones (zeros), is the implication 
of the algorithm for simplifying functions by combinatorial 
systems with repeated 2-(n, b)-design, 2-(n, x/b)-design by 
searching for them on the binary structure of the truth table, 
in particular in the case when different intervals of the Boolean 
space partially coincide. As a result, verbal procedures of alge-
braic transformations, without established recommendations 
for the rational search for minimal dead-end forms of Boolean 
functions, are replaced by systematized equivalent figurative 
transformations.

Table 13 
Comparative table of methods for simplifying Boolean functions in the main basis

Simplification method The principle and complexity of simplification

Quine-McCluskey 
(method of simple 
implicants) [25]

Division of terms into groups with an equal number of units (zeros). This makes it possible to exclude comparisons 
that do not allow the operation of gluing variables in advance.
The Quine-McCluskey method becomes complicated with a large number of variables. Then the time to search for 
the optimal function increases by 22n, where n is the bit size of the Boolean function. The limitation of the application 
area of the Quine-McCluskey method occurs when the time of operation of the method increases exponentially with 
the increase of input data. For a Boolean function of n variables, the upper limit of the number of basic implicants is 
3n/n. If n = 32, there may be more than 6.5×1015

Carnot map  
(Veitch diagram)

For the Carnot map (Veitch diagram), the intervals of the Boolean space manifest themselves in the form of regular 
contours.
The convenience and clarity of such a representation of a logical function is due to the fact that the logical terms, to 
which the operations of pairwise incomplete gluing and elementary absorption can be applied, are grouped on the 
Carnot map in the form of visually obvious rectangular arrays (regular contours) containing the same values in their 
cells ( zeros and ones).
However, the interpretation of the intervals of the Boolean space by regular contours is not of fundamental impor-
tance for the consequence – the Carnot map remains a redundant matrix. In addition to the above, the Carnot map 
becomes a difficult mathematical device for simplifying a function with more than five to six variables

Non-standard system

The simplification of Boolean functions by a non-standard system is based on the search for intervals of the Boolean 
space containing the combinatorial systems, 2-(n, b)-design, 2-(n, x/b)-design. Since these systems are logical ope
rations at the same time, this ensures the effectiveness of the implication of the algorithm for simplifying the given 
functions. When increasing the bit rate of Boolean functions, the properties of the 2-(n, b)-design, 2-(n, x/b)-design 
systems do not change
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In contrast to the correct contours of the Carnot map, the 
properties of the 2-(n, b)-design, 2-(n, x/b)-design systems 
do not change with the increase in the number of bits of the 
Boolean functions, and clarity is not lost. This makes it pos-
sible to search for them efficiently, and therefore effectively 
imply the algorithm for simplifying logical functions for  
a larger number of input variables.

The established location of equivalent transformations 
by the 2-(n, b)-design, 2-(n, x/b)-design systems implies 
a systematic procedure for simplifying Boolean functions. 
As a result, the problem of implementing the simplification 
of logical functions with a non-standard system is self-
solved. The implication of the algorithm for simplifying 
Boolean functions is provided by the interpretation of 
2-(n, b)-design systems by logical operations of simple 
and/or super-gluing variables and vice versa, for carrying 
out equivalent transformations of logical expressions. 
Thus, the principle of minimizing functions by a non-stan-
dard system is established, which reduces the complexity 
and improves the efficiency of the procedure for simplify-
ing Boolean functions, compared, in particular, with the 
transfer of the problem of simplification to the algebraic 
domain, in which algorithms for calculations are applica-
ble on the Graebner basis [9]; by simplifying the terms of 
Boolean functions in the context of a formal, axiomatically 
defined theory [13]; machine learning techniques [10]; 
techniques for finding approximate Boolean schemes, large 
training sets of examples with a large number of primary 
input data, methods for restoring the accuracy of a logical 
scheme [14]; nonlinear mixed integer programming [15], 
and others.

Only the fundamental non-standard nature in principle 
solves the problem of the laboriousness of the procedure for 
simplifying logical functions when they are represented in  
a visual-matrix form.

The application of the result makes it possible to improve 
and expand the technology of designing electronic compo-
nents and devices for their use in digital technologies, which 
are based on basic, polynomial, and other bases.

The visibility of 2-dimensional binary matrices allows 
for a manual way of simplifying Boolean functions using  
a mathematical editor, for example MathType 7.4.0 (USA): 
Examples 1, 2, 3, 4, 7, 9, 10, 12, 15 (minimization of DNF), 
3, 6, 9, 13, 14 (minimization of PNF), 5, 11 (minimization 
of CNF), or using MS Word tables: example 8 (minimiza-
tion of DNF).

The use of a non-standard system for simplifying  func-
tions in the basic and polynomial bases brings, to a certain 
extent, the problem of simplifying Boolean functions 
to the level of a well-researched problem in the class 
of disjunctive-conjunct term normal forms (DCNF) of 
Boolean functions. A limitation of the application of the 
method for figurative transformations is the cases when 
the switching function is represented in a mixed basis. 
In this case, the function must be represented by one  
logical base.

The weakness of the considered method is in its small 
practical application for the simplification of Boolean 
functions with the subsequent design and manufacture of 
the corresponding computing components. The negative 
internal factors of a non-standard system are associa
ted with additional time costs for establishing protocols 
for simplifying logical functions in Boolean and Reed- 
Muller logic bases, followed by the creation of a library of 

protocols that illustrate the corresponding image trans-
formations.

A prospect for further research on the simplification 
of logical functions may be the use of Boolean formulas of  
a special type, called conjunct term normal form (2-CNF) 
or Krohm formulas. The problem is known as the computa-
tional problem of assigning values to variables, each of which 
has two possible values 0 or 1, in order to satisfy a pairwise 
constraint system – 2-satisfiability, (2-SAT), 3-satisfiability, 
(3-SAT), so that the result of this function is equal to unity.

7. Conclusions 

1. A property of combinatorial systems with 2-(n, b)-de-
sign repetition has been demonstrated, which consists in 
the ability of 2-(n, b)-design systems to reproduce (rep-
resent) the definition of logical super-gluing operations 
of variables in the form of a change in self-determination 
in the process interaction with them. Thus, to simplify 
Boolean functions with a non-standard system, the logical 
operation of super-gluing variables can be represented by 
a complete combinatorial system, 2-(n, b)-design (n > 1, 
b > 3), and vice versa. For n = 1, b = 2, the combinatorial 
system, 2-(n, b)-design, represents a logical operation of 
simple gluing of variables.

2. Detection of the 2-(n, b)-design, 2-(n, x/b)-design 
systems in the truth table directly and unambiguously 
establishes the locations of equivalent transformations for 
Boolean functions. The interpretation of the result is that 
the 2-(n, b)-design, 2-(n, x/b)-design systems represent 
logical operations. Therefore, the detection of combina-
torial systems in the truth table directly and unambigu-
ously indicates logical operations for equivalent transfor-
mations of Boolean expressions. This, in turn, implies an 
optimal algorithm for a non-standard system of simplifying  
logical functions.

3. A theorem of the non-standard system for the simplifi-
cation of Boolean functions has been formulated. According 
to the theorem of the non-standard system of simplification 
of Boolean functions, all non-redundant simple and/or su-
per-gluing operations of variables must be performed to 
obtain the minimum function. The result of these actions will 
be the minimal function in the main basis without using the 
implicant table.

4. The non-standard system for simplifying Boolean 
functions has its own systematized composition of informa-
tion (knowledge) and settings, in the form of a thesaurus, 
which provides orientation in this system. Through the com-
parison of thesauri, correspondence between the concepts of 
a non-standard system, the Quine-McCluskey method and 
the Carnot map was established.

5. A comparative analysis of examples of simplification 
by the evolutionary method, genetic and swarm algorithms 
demonstrated that heuristic methods and algorithms pro-
vide a minimum function with a higher cost of implementa-
tion, compared to simplification by a non-standard system.  
In addition to the above, obtaining a minimum function by  
a non-standard system is a simpler procedure.

A comparative analysis of the example of simplifying  
a 6-bit partially defined Boolean function in the main basis 
by the method for directed sorting demonstrated that in-
creasing the bitness of Boolean functions does not change 
the properties of 2-(n, b)-design systems. This makes it 
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possible to search for them effectively, and therefore ef-
fectively imply the algorithm for simplifying functions for  
a larger number of input variables. In one step, a non-stan-
dard system, without using an implicant table, obtained the 
minimum DNF of the function. The results of the simplifi-
cation of the two methods coincide.
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