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Although there have been great advancements in this 
field, there are still a lot of unanswered questions about how 
to enhance control systems and stabilize mobile robot mo-
tions in the face of outside stimuli. This addresses the theo-
retical underpinnings of developing mathematical models as 
well as the pragmatic challenges of applying them to actual 
situations. More investigation and optimization are needed 
to tackle the pressing issue of developing an efficient motion 
control system for unmanned aerial vehicles in practical op-
erational environments [6–8].

Thus, research in the subject of creating control systems 
for unmanned aerial vehicles is still vital. The advancement 
of this topic is required to tackle a wide range of practical 
challenges that necessitate a high level of autonomy and 
control accuracy.

2. Literature review and problem statement

The paper [9] presents the results of research on the 
challenges faced by autonomous mobile robots and the sen-
sor fusion methods employed to enhance their performance. 
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This study focuses on developing a mathematical 
model for precise control and stabilization of unmanned 
aerial vehicles (UAVs) in various spatial conditions. 
Addressing the problem of achieving precise control 
and stability, the proposed solution designs a control 
system based on a linear-quadratic controller (LQR) 
and simulates it using a proportional-derivative (PD) 
controller implemented in Matlab/Simulink. The results 
demonstrate high precision and stability in controlling 
the UAV motion parameters – roll, pitch, yaw, and 
altitude. This important level of performance is achieved 
due to the adaptivity of the LQR-based control system, 
which optimizes control actions according to the 
unsteady dynamics of the UAV. The integration of the 
PD controller improves responsiveness and stability, 
providing precise motion control over a range of spatial 
states. These features effectively solve the problem by 
handling the complex dynamics of the UAV and providing 
precise control. The results are explained by the ability 
of the LQR to provide optimal control laws that minimize 
deviations using a quadratic cost function, while the 
PD controller quickly corrects errors and responds to 
disturbances. The benefits of this approach include a 
significant reduction in control errors by about 25–30 %, 
increased response speed to external disturbances, and 
reduced computational latency due to efficient processing 
compared to more resource-intensive methods such as 
model predictive control. The developed mathematical 
model can be applied in practice in conditions 
requiring robust real-time control and adaptation to 
dynamic changes in the environment. It is especially 
suitable for industries such as logistics, surveillance, 
and environmental monitoring, providing an effective 
and optimal solution for stabilizing and controlling the 
motion of UAVs in various spatial states. This approach 
improves the performance of UAVs and expands their 
capabilities in various operating conditions
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1. Introduction

The modern development of robotics and automation 
requires the scientific community to actively search for 
solutions to improve the efficiency and accuracy of various 
systems, including mobile robots [1, 2]. The increasing de-
mand for automated control and monitoring systems makes 
relevant scientific study in the field of mobile robot and 
especially unmanned aerial vehicles [3, 4]. This is because 
they can precisely regulate their direction and motion in 
space, which is essential for carrying out tasks in small 
areas [5].

This development of this class of robots is due to several 
specific advantages, the implementation of which allows 
one to obtain a significant advantage over stationary robots 
for a wide range of tasks, such as monitoring the ecological 
state of the area, aerial photography, construction control, 
surveillance, location navigation and reconnaissance, etc. 
Furthermore, the advancements in computer vision and arti-
ficial intelligence have made it necessary to enhance mobile 
robot control systems, which has led to a surge in interest in 
this field of study [5–7].
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issues related to the method’s adaptability to different envi-
ronments and robustness against unmodeled dynamics.

Similarly, the development of nonlinear control tech-
niques has been considered. In [16], modeling and nonlin-
ear control of a quadcopter for stabilization and trajectory 
tracking were explored. It is shown that nonlinear control 
enhances quadcopter performance, but unresolved issues 
pertain to system complexity and computational overhead 
associated with these algorithms.

In [17], a drone delivery logistics model for the on-de-
mand hyperlocal market was developed. It is shown that 
drone delivery can significantly enhance logistical efficien-
cy, but there were unresolved issues related to regulatory 
challenges, airspace management, and safety concerns. The 
reason for this may be objective difficulties associated with 
integrating drones into existing airspace systems and the 
cost implications of implementing large-scale drone delivery 
services.

The paper [18] provides a review of unmanned aerial ve-
hicles for precision agriculture. It is shown that UAVs offer 
significant benefits in monitoring and managing agricultur-
al activities, but unresolved issues involve data processing 
challenges, integration with existing agricultural systems, 
and economic feasibility for small-scale farmers.

The paper [19] investigates the use of Linear Quadratic 
Regulator (LQR) control for the active suspension system 
of a four-wheeled agricultural robot. It is shown that LQR 
control enhances stability and ride comfort, but there were 
unresolved issues related to adaptability to varying loads 
and terrain conditions. The reason for this may be objective 
difficulties associated with the variability of agricultural en-
vironments and the need for more robust control strategies.

Thus, all this suggests that it is advisable to conduct 
a study on developing integrated systems that combine 
efficient sensor fusion, adaptive control algorithms, and re-
al-time processing capabilities to enhance the performance 
and applicability of autonomous robots and UAVs in various 
environments.

This paper discusses the problem of developing a math-
ematical model for a motion control system for a quadcop-
ter-type mobile robot (UAV). The problem is important 
because it lays the foundation for the creation and design 
of efficient UAVs, which are increasingly used in various 
applications, including environmental monitoring, aerial 
photography, construction control, surveillance and recon-
naissance. In this paper, a method for quadcopter control is 
proposed based on feedback linearization and the integration 
of PD controller synthesis with optimization methods such 
as linear-quadratic regulator (LQR), which can significantly 
improve the system performance due to adaptive control and 
minimization of stabilization errors. This makes PD control-
lers suitable for use in more complex control systems such as 
LQR to provide robust control in various spatial conditions.

3. The aim and objectives of the study

The aim of the study is to develop a mathematical model 
of the control system to ensure precise control and stabili-
zation of an unmanned aerial vehicle (UAV), particularly a 
quadcopter, in various spatial conditions, considering com-
plex dynamic behavior. 

To achieve this aim, the following objectives are accom-
plished:

It is shown that while sensor fusion significantly improves 
perception and navigation capabilities, there are unresolved 
issues related to the integration of heterogeneous sensor 
data, real-time processing constraints, and maintaining reli-
ability under varying environmental conditions. The reason 
for this may be objective difficulties associated with process-
ing large volumes of diverse data in real-time, fundamental 
limitations of sensor technologies in adverse environments, 
and cost considerations in implementing advanced sensors 
and high-performance computing hardware, which makes 
relevant research impractical for widespread adoption.

A way to overcome these difficulties can be the devel-
opment of adaptive motion control strategies that utilize 
environmental risk assessments to optimize navigation. This 
approach was used in [10], where an adaptive motion control 
method for an autonomous mobile robot based on a space 
risk map was proposed. However, there were unresolved 
issues related to the computational complexity of generating 
and updating the risk map in real-time and the scalability 
of the system in more complex or varying environmental 
conditions.

The paper [11] presents the results of research on motion 
planning and control of an omnidirectional mobile robot 
in dynamic environments. It is shown that their proposed 
methods enhanced navigation in dynamic settings, but there 
were unresolved issues related to real-time adaptability 
and obstacle avoidance in highly unpredictable conditions. 
The reason for this may be objective difficulties associated 
with rapidly changing environments and the computational 
demands of processing dynamic data, which makes relevant 
research challenging.

In the domain of unmanned aerial vehicles (UAVs), sev-
eral studies have addressed modeling and control challenges. 
The paper [12] focuses on modeling power consumptions for 
multirotor UAVs, highlighting the importance of accurate 
power models for efficient operation. It is shown that while 
the models improve understanding of energy usage, there 
are unresolved issues related to accurately predicting power 
consumption under varying flight conditions and payloads. 
The reason for this may be the complex interplay of aerody-
namic factors and hardware limitations.

A way to overcome these difficulties can be the develop-
ment of precise modeling techniques and adaptive control 
strategies that account for varying conditions. This ap-
proach was used in [13], where a quadrotor’s modeling and 
control system design based on PID control was presented. 
However, there were unresolved issues related to handling 
nonlinear dynamics and external disturbances due to the 
limitations of PID controllers.

To address these challenges, advanced control methods 
such as model predictive control (MPC) have been explored. 
In [14], real-time model predictive control for quadrotors 
was proposed. It is shown that MPC improves control 
precision and responsiveness, but unresolved issues include 
the computational demands of real-time optimization and 
performance under highly dynamic conditions. The reason 
for this may be objective difficulties associated with the 
need for high computational resources and the complexity of 
implementing MPC in real-time systems.

Another approach is the use of fast model-free learning 
methods. The paper [15] introduces such a method for con-
trolling a quadrotor UAV with a designed error trajectory. It 
is shown that this approach accelerates the learning process 
and improves control accuracy, but there were unresolved 
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The motion of the UAV’s center of mass in the inertial 
frame of reference is generally described by (1):

( ), , ,T
z smr mge R u= − + ψ θ φ
 

 		  (1)

were r=(x,y,z) – UAV center acceleration vector; ze


 – the 
unit vector directed along the Oz axis; su



 – the sum of the 
non-corrosive forces acting on the system (including the 
force of the frontal resistance and the force of the propellers) 
and RT – transposed transition matrix:

For simplicity, it will be assumed that there are no resis-
tance forces and only the total thrust force of the four screws 
u


, which is written in the form (2):
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  – unit vector directed along the Oz  

axis; b – thrust factor; ωpn – angular speed of rotation of the 
nth propeller.

Substituting equation (2) into equation (1) and performing 
matrix multiplication in the second term, it is possible to obtain 
the following equation of motion of the UAV’s center of mass 
in the form of a system of ordinary differential equations (3):
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In addition to translational motion, the UAV also performs 
rotational motion relative to the Earth, which is motion relative 
to its center of mass [22]. In vector form, the equation of rota-
tional motion of the UAV is described by Euler’s equations [20]:

– to develop a mathematical model of a UAV motion 
control system based on a PD controller;

– to develop a mathematical model of a control system 
based on a linear-quadratic controller (LQR) and a feedback 
coefficient to minimize errors in control and stabilization of 
the UAV position;

– to simulate the operation of the control system using a 
PD controller in the Matlab/Simulink;

– to simulate UAV motion control system based on LQR 
and PD controllers in the Matlab/Simulink to test the effec-
tiveness of the proposed model.

4. Materials and methods

The object of our study is the process of developing a 
mathematical model of the motion control system of an 
unmanned aerial vehicle (UAV), particularly a quadcopter, 
providing precise control and stabilization in the state space. 
The main hypothesis of the study is that by accurately mod-
eling the six degrees of freedom inherent in a quadcopter’s 
movement, it is significantly possible to enhance its stability 
and control responsiveness. In this work, let’s assume that 
the UAV operates in an environment free from significant 
external disturbances like wind or obstacles. Simplifica-
tions adopted include linearizing the system dynamics and 
neglecting minor aerodynamic effects 
to focus on the primary control mech-
anisms. To perform the control task, it 
is necessary to adjust the flight states 
in accordance with the specified coor-
dinates. The flight states include six 
degrees of freedom: three rotational and three translational 
movements. Along the pitch axis, the pitch angle and trans-
lational movement are controlled; along the roll axis, the roll 
angle and translational movement are controlled; along the 
yaw axis, the yaw angle and flight altitude are controlled. 

To develop a control system, the motion of a mobile robot, 
particularly an unmanned aerial vehicle (UAV) is considered 
in two interconnected coordinate systems – one stationary 
inertial (fixed) frame (X, Y, Z) connected to the Earth, and 
the other is a connected coordinate system (x, y, z) fixed in 
the center of gravity of the mobile robot (as an example, it is 
possible to consider a quadcopter).

The motion of a mobile robot (UAV) is represented as the 
sum of two motions – the motion of the center of mass of the 
UAV in the inertial coordinate system and the motion of the 
connected UAV axes relative to the inertial coordinate system. 
The position of the axes of the quadcopter is shown in Fig. 1.

The orientation of the connected coordinate system 
relative to the inertial is determined by Euler-Lagrange an-
gles [20]. The angle of the roll φ corresponds to the rotation 
of the movable coordinate system around the OX axis, the 
angle of the pitch θ – the rotation around the OY axis, the 
yaw angle ψ – around the OZ axis, respectively.

The position of the UAVs in the inertial coordinate system 
shall be determined by the position vector r=(x,y,z) [21]. The 
transition from the inertial coordinate system to the connected 
coordinate system is carried out by means of three turns: 

1) around the x-axis at an angle φ;
2) around the y-axis of the new coordinate system at an 

angle θ;
3) around the z-axis of the new coordinate system at an 

angle ψ.
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 − θ φ θ φ θ 

Fig. 1. Coordinate systems – inertial coordinate system 	
(X, Y, Z) and connected coordinate system (x, y, z)
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 			   (4)

were , ,k x y z ω = ω ω ω 


 – UAV angular velocity; J – the inertia 
matrix, which is a third-order diagonal matrix with moments of 
inertia relative to the corresponding axes; M



 – the vector of 
moments of traction forces; GM



 – the gyroscopic moment vec-
tor, resulting from the reciprocal influence of the rotational mo-
tion of the UAV and the rotational motion of the UAV screws.

Vector of moments of traction forces M


 is calculated in 
the form of equation (5):
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were L – UAV arm length;
b – thrust factor;
d – drag coefficient.
The gyroscopic moment GM



 caused by the combination 
of rotation of the four propellers is modeled as equation (6):
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were Jp – moment of inertia of one propeller; ωx, ωy – UAV 
angular velocity;

Ωz=ωp1–ωp2+ωp3–ωp4 – propeller angular velocity.
To simplify the equation of motion, let’s denote the 

thrust forces of the propellers and the moments of forces 
applied to the UAV body through the functions u1, u2, u3, u4 

in the form of equations (7):
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Considering the accepted notation and equations (4), (5), 
the UAV equation system as a system of ordinary differential 
equations takes the form:

Equations (3), (8), considered together, completely de-
scribe the nonlinear equation motion of the quadcopter in 
space, as equations (9):
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The simulations were performed using standard 
UAV parameters obtained from technical documenta-
tion for commercially available drones. Although this 
study was conducted exclusively in software simula-
tions, future field tests are planned using real UAVs 
equipped with standard sensors (gyroscopes, accelerom-
eters, GPS) to evaluate control accuracy in real flight  
conditions.

The UAV used in this study for computer simu-
lation of motion control had the following parameter  
values:

– moments of inertia: 
J=0.022; 0.022; 0.022 kgm2;
– moment of inertia of the UAV propeller: 
J=0.044 kgm2;

– UAV weight: 
m=1.017 kg;
– thrust factor: 
b=1.5;
– drag coefficient: 
d=2.7.
The calculated components of 

the feedback matrix are taken 
as feedback coefficients K of the 
optimal controller:
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The computer simulations in this research work were per-
formed in Matlab version R2019 using the Simulink library. 
This software used various internal tools to build models of UAV 
motion control dynamics. Simulink offers a user-friendly graph-
ical interface for developing and visualizing models, making it 
simple to integrate control components like the linear-quadratic 
controller (LQR) and the PD controller. Because of the diversity 
of accessible blocks and capabilities, the simulation included the 
whole control chain, from data processing to signal output. 

5. Results of unmanned aerial vehicle motion dynamics 
modeling 

5. 1. Proportional-derivative controller modelling
UAV motion control based on PD controller. The UAV 

(quadcopter) in question has four flight modes (takeoff/
landing mode, turns along the pitch, roll and yaw axis), the 
transition to which is carried out by changing the rotation 
speed of one or more rotors according to the corresponding 
mathematical law of the given mode.

However, these flight modes do not guarantee the re-
quired position of the quadcopter along the pitch and roll axes. 
The quadcopter’s motion control system adjusts the rotor 
speeds to track the desired pitch, roll, yaw (rotational motion 
of the quadcopter) and altitude (translational motion).

For optimal control of the quadcopter flight, all states 
must be adjusted. This ensures positioning stability and im-
proves the flight reliability of the miniature aircraft.

Let’s consider the control signals for each of the four 
UAV control channels based on the PD controller are cal-
culated as (10):
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where zd, φd, θθ, ψd – required values of height, roll, pitch and yaw 
angles;

Kpz, Kdz, Kpφ, Kdφ, Kpθ, Kdθ, Kpψ, Kdψ – control law feed-
back coefficients.

Since in the case of a quadcopter four propellers are used 
to control its motion, the distribution of control signals (10) 
between the propellers is not very difficult. Because the trac-
tion force should have the form U1, and the moments of the 
traction forces should have the form U2, U3, U4. Then equating 
equations (7), (10), to obtain the basic system of equations for 
determining the required angular velocities of the propellers 
at which the required UAV control mode is achieved:

To achieve the first task, a mathematical model of the UAV 
motion control system was developed based on the PD control-
ler (10), (11) considering all the forces and moments of thrust 
acting on the UAV motion in space as shown in equation (9).

5. 2. Unmanned aerial vehicle control model based on 
linear-quadratic controller

Feedback coefficients and LQR methods of the UAV mo-
tion control. The system of equations of motion of a mobile 
robot (UAV) (9) is a complex nonlinear system of differential 
equations. When designing a control system, there is a need 
for an analytical representation of the dynamic and kinematic 
characteristics of the UAV, therefore various methods are 
used to simplify the equations of motion. One of these simpli-
fications is the linearization of these equations with respect to 
small deviations of the motion parameters: ΔV, Δθ, Δψ, Δγa etc. 
Considering some assumptions and Taylor series expansion, 
the linearized equations of UAV dynamics are written as (12):

1
1

1 1

1

,

,

,

1
,

,

,

x

y

z

x

y

z

x V

y V

z V

U
V U

m m
U U

V
m m

U
V g

m

∆ = ∆
∆ = ∆
∆ = ∆
∆ = ⋅∆θ + ⋅∆


∆∆ = ⋅∆φ −
 ∆∆ = − +













 
2

3

4

,

,

,

1
,

1
,

1
.

x

y

z

x
x

y
y

z
z

U
J

U
J

U
J

∆φ = ∆ω


∆θ = ∆ω
∆ψ = ∆ω


∆ω = ⋅∆


∆ω = ⋅∆

∆ω = ⋅∆














		  (12)

For the convenience of modeling the UAV flight process, 
the LQR method was chosen. The method LQR is one of the 
types of optimal controllers using a quadratic quality func-
tional, in which the dynamic system is described by linear 
differential equations, and the quality indicator is a quadrat-
ic functional. The general shape of the state space of a UAV 
system is described by the following expression in (13):
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where x – state vector, the elements of 
which are called system states; y – output 
vector; u – control vector; A – system ma-
trix; B – matrix control; C – output matrix 
and D – feedforward matrix.

A mathematical model of UAV control 
was developed using a linear-quadratic 
controller (LQR). The main attention is 
paid to the optimization of the control 
system by minimizing the square devia-
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tion of the position and orientation of the device. Within 
the framework of this task, a linear approximation of the 
flight dynamics was carried out, and the coefficients of the 
feedback controller with the linearization of the UAV motion 
equation were determined as shown in formula (12).

5. 3. Simulation of unmanned aerial vehicle control 
based on proportional–derivative controller

In the third task, a simulation model of the UAV control 
system was created using the PD controller in the Matlab/
Simulink environment. This model was built using data on 
the dynamics of the device’s motion collected through the 
linear-quadratic controller, as well as genuine characteristics 
from the external environment. The simulation results re-
vealed that the PD controller successfully stabilized the UAV 
in four major control channels: roll, pitch, yaw, and altitude.

The results of the simulation are as shown in Fig. 2, 3, 
changes in the altitude (z) and roll, pitch and yaw an-
gles (φ, θ, ψ) of the quadcopter are presented when con-
trolled by the proposed method of the described nonlinear 
mathematical model of UAV motion.

5. 4. Modeling of unmanned aerial vehicle control 
system using linear-quadratic controller and proportion-
al-derivative controllers

Analysis of the simulation results and evaluation of 
the control system shows that the use of the LQR and 
PD controller as shown in Fig. 4 (the graph shows the 
change in the coordinates of the quadcopter, particularly 
altitude – z) and Fig. 5 shows the graphs of the change 
in the angles of roll, pitch and yaw (φ, θ, ψ) is presented 
changes in the linearized control system of the UAV mo-
tion based on the PD controller with the integration of 
the LQR method, which ensures high accuracy of UAV 
stabilization, minimizing deviations from the specified  
trajectory

The system displayed steady behavior amid rapid 
changes in flight conditions, confirming its feasibility for 
deployment in real-world scenarios. Based on the data 
collected, conclusions were drawn about the feasibility 
of further optimizing the control system to increase its 
efficiency and flexibility in more complicated circum- 
stances.  

 
 

  
Fig. 2. Graphs of changes in coordinates (x, y, z) 

 
  

Fig. 3. Graphs of changes in roll, pitch and yaw angles (φ, θ, ψ)
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Fig. 4. Graphs of changes in coordinates (x, y, z)

 

 
  

Fig. 5. Graphs of changes in roll, pitch and yaw angles (φ, θ, ψ)
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6. Discussion of the results of the study of unmanned 
aerial vehicles control system simulation using controllers

The study focused on developing a mathematical model of 
the motion control system of an unmanned aerial vehicle based 
on a linear-quadratic controller as shown in formulas (10)–(13) 
and simulating a control system for an unmanned aerial vehi-
cle (UAV) using a combination of linear-quadratic regulator 
(LQR) and proportional-derivative (PD) controllers, as shown 
in Fig. 2–5. The results demonstrated that optimizing the con-
trol system to minimize deviations via the quadratic quality 
criterion significantly enhanced stabilization precision. Specif-
ically, the use of LQR reduced errors in the UAV’s position and 
orientation, as evidenced by the decreased control errors in all 
four channels-roll, pitch, yaw, and altitude-shown in Fig. 4, 5.

These results can be explained by the inherent strengths 
of the LQR in providing optimal control laws that minimize a 
function representing the system’s deviations. The PD control-
ler complements this by offering rapid adaptability to external 
disturbances, ensuring that the UAV can maintain stability 
even under changing conditions.

However, certain limitations must be considered when 
applying this control system in practice. The reliance on ide-
alized simulations may not fully capture the complexities of 
real-world environments. Factors such as unmodeled sensor 
errors, system delays, and adverse weather conditions could af-
fect performance during field testing. Additionally, the control 
algorithms may need refinement to handle nonlinear dynamics 
and a broader range of external disturbances not accounted for 
in the simulations.

The proposed control system offers several advantages 
over existing methods. Unlike standard PID controllers used 
in previous work [11], which may struggle under varying 
external influences like wind gusts or trajectory changes, the 
combined LQR and PD approach provides higher stability and 
control accuracy. Additionally, while model predictive con-
trol (MPC)-based methods presented in studies [15, 21] have 
shown good performance, they require substantial processing 
resources, limiting their practicality in real-world applications. 
In contrast, the LQR-based method developed in this study de-
mands fewer computational resources, making it more suitable 
for real-time autonomous UAV control.

By integrating LQR and PD controllers, the study address-
es issues related to control accuracy and adaptability to exter-
nal disturbances identified in earlier research. The reduction in 
control errors across all channels indicates that the proposed 
solution effectively enhances the UAV’s stability and respon-
siveness, thereby mitigating previously identified problems.

The main shortcomings of the study include its dependence 
on simulation environments and the potential lack of robustness 
when faced with unforeseen real-world variables. These could 
include hardware limitations, sensor inaccuracies, and envi-
ronmental noise that were not present in the simulated models.

The outcomes obtained during the simulation of an un-
manned aerial vehicle (UAV) control system based on a 
linear-quadratic controller (LQR) and a PD controller are 
explained by optimizing the control system to minimize de-
viations using the quadratic quality criterion. In particular, 
the use of LQR enabled great stabilization precision, reducing 
mistakes in the device’s location and orientation. The graphs in 
Fig. 2–5 shows that control errors have been reduced in all four 
channels: roll, pitch, yaw, and altitude.

To develop this research, transitioning from theoretical 
simulations to real-world field experiments using an actu-

al UAV is necessary. This progression involves optimizing 
controller settings to better manage a wide range of external 
disturbances, refining control algorithms to maintain system 
simplicity and resilience, and incorporating adaptive mecha-
nisms to handle unexpected disruptions. Conducting thorough 
hardware testing on a physical UAV will help fine-tune the 
system under actual conditions, ultimately improving perfor-
mance and reliability in practical applications.

7. Conclusions

1. A mathematical model for a UAV motion control system 
based on a PD controller was developed, which demonstrated 
effective stability with a position error margin of less than 5 %. 
This achievement addresses one of the primary objectives of 
enhancing UAV control accuracy and indicates that the PD 
controller can maintain precision even in the presence of mod-
erate external disturbances.

2. A mathematical model for a control system based on a 
linear-quadratic regulator (LQR), enhanced with a feedback 
coefficient, was established. This model resulted in a significant 
decrease in control errors by approximately 30 %, reducing 
variations in the UAV’s position and stabilizing its orientation. 
This substantial improvement over previous control methods 
contributes to the advancement of UAV control systems, ful-
filling another key objective of the study.

3. The simulation of the PD controller’s operation in Mat-
lab/Simulink was conducted, revealing quick reaction times 
and error correction capabilities. The simulation confirmed 
the PD controller’s efficacy in maintaining UAV stability, 
providing quantitative data that serves as a valuable reference 
for future research and enhancements in UAV control systems.

4. Dual modeling of a UAV motion control system using 
both LQR and PD controllers was performed, resulting in an 
overall reduction of total control errors by about 25 %. This 
demonstrates the efficiency of integrating these two control 
techniques in improving UAV performance, making the com-
bined approach suitable for practical applications where robust-
ness is critical.
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