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that can be used may arise due to limited computing or oth-
er resources of devices implementing HMI. An example of 
such a situation can be operator panels, which usually have 
a number of tags clearly defined by the manufacturer that 
can be used in the system.

In the case of PC-based HMI implementation using 
SCADA programs, as a rule, there are no problems with 
computing resources. However, there may be a question of 
the existing license of the SCADA program, or communi-
cation limitations of the device itself, which are not able to 
pass the required number of tags per unit of time. As a rule, 
most modern SCADA programs are licensed based on the 
number of tags used. Therefore, a situation may arise that the 
predicted number of tags, on the basis of which the necessary 
license was chosen, will differ from the actual one, which can 
significantly affect the project budget.

Therefore, the effective use of tags becomes one of the 
key factors for optimizing the operation of HMI systems.

To optimize the number of input/output tags, SCADA 
project developers use various techniques.
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The object of this study is modern Human-Machine 
Interfaces (HMI) and SCADA systems in the industry. 
The subject of research is techniques for optimizing 
the number of tags (variables) in the SCADA/HMI 
environment to enhance resource utilization efficiency.

One of the challenges in creating  
SCADA/HMI-based solutions can be the number of 
tags (variables) in the runtime environment. A large 
number of tags can lead to a problem of limited 
available resources. 

The technique presented here allow for the 
optimization of the number of tags used in Human-
Machine Interface systems built with SCADA software 
and operator panels in combination with Programmable 
Logic Controllers (PLCs).

An evaluation of the efficiency of techniques 
for reducing the number of HMI tags was 
conducted on an experimental configuration 
consisting of objects such as discrete  
input/output, analog input/output, actuators 
such as valves with discrete/analog control, and 
drives with frequency converters. The optimization 
coefficient, defined as the ratio of the number of  
input/output tags used directly to the number of tags 
after applying the optimization principle, was used as 
the efficiency criterion. Depending on the techniques 
and their combinations, the criterion values reached 
orders of 4, 10, and in one case even more than 100. These 
values are explained by the application of multiplexing 
approaches and various packing techniques.

The advantages and disadvantages of the reported 
techniques, as well as their application limitations, have 
been identified. Some techniques are suitable only for 
specific tasks. 

These techniques could be applied in practical 
implementation when designing modern high-efficiency 
Human-Machine Interfaces under conditions of limited 
resources
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1. Introduction

Modern control and monitoring systems, as well as hu-
man-machine interfaces (HMIs), are extremely important 
for automated processes in various industries, including 
manufacturing, energy, transportation, construction, and 
infrastructure. HMI systems provide operators with the 
ability to interact with equipment and control its operation. 
However, it is important to understand that the resources 
available for use in an HMI system are not always limitless. 
Such resources include the amount of memory, computing 
power, bandwidth of communication channels, availability 
of interfaces, and others. One way or another, most of these 
resources are related to the number of real-time database 
variables, which are called different concepts in different 
systems. Hereinafter, the term “input/output tag” or simply 
“tag” means a certain object that is associated with actual 
values. Also, the “tag” has such properties as time stamp, 
quality, and others, according to its external data source, for 
example PLC [1]. Therefore, a limit on the number of tags 
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this problem is proposed by optimizing the representation 
of information to the operator as a means of increasing the 
operator’s situational awareness.

ISA-18.2 (Management of Alarm Systems for the Process 
Industries) focuses on the management of alarm systems [7]. 
According to study [8], optimization of tags helps improve 
the detection and management of abnormal situations and, 
accordingly, affects the effectiveness of the signaling system. 
The authors of study [9] determined that effective manage-
ment of the alarm subsystem involves the implementation of 
the necessary monitoring and configuration system. which 
leads to an increase in the amount of information in the con-
trol system. A similar conclusion was reached in study [10]; 
however, the authors did not emphasize that this, accordingly, 
leads to an increase in the number of HMI tags that must be 
constantly exchanged in the control system, which signifi-
cantly increases the intensity of communication exchange.

ISA-88 (Batch Control) and ISA-95 (Enterprise-Con-
trol System Integration) standardize the control of batch 
processes and the integration of control systems. According 
to study [11], tag optimization contributes to data standard-
ization and facilitates integration between different levels of 
automation. This is confirmed by the authors’ research [12], 
in which practical examples show techniques for imple-
menting the elements of the ISA-88 and ISA-95 standards. 
Paper [13] also provides an example of the development of 
application software for PLC and SCADA/HMI of high 
and medium algorithmic complexity. It gives examples of the 
need for optimal organization of the real-time database, but 
not enough attention is paid to it.

However, the common link between tag optimization in 
SCADA and PLC systems and ISA standards lies in their 
shared focus on improving the efficiency, reliability, and safety 
of production processes. By standardizing, optimizing re-
sources and improving user experience. This allows enterpris-
es to achieve better results in the management and monitoring 
of production processes. All this gives reason to assert that it 
is appropriate to conduct a study on the effectiveness of ways 
to optimize the number of tags in modern human-machine 
interfaces under conditions of limited resources.

3. The aim and objectives of the study

The purpose of our work is to establish the effectiveness 
of ways to reduce the number of tags used in the implemen-
tation of human-machine interfaces built on the basis of 
SCADA programs or operator panels in combination with 
a programmable logic controller (PLC). This will make it 
possible to implement a highly functional human-machine 
interface under conditions of limited available resources.

To achieve the goal, the following tasks were set:
– to systematize tags according to their purpose;
– to consider typical data structures used in PLCs to 

control various types of objects: discrete and analog PLC 
input/output variables, valve with discrete OPEN/CLOSE 
type control, valve with analog control, drive with frequency 
converter;

– to investigate the effectiveness of techniques that will 
make it possible to reduce the number of tags in a conditional 
object of automation based on typical structures, to determine 
the optimization coefficient of each technique, and to give an 
assessment of the possibility of using each of the techniques 
during the practical implementation of real systems.

Thus, the study of the effectiveness of ways to optimize the 
number of tags in modern human-machine interfaces under 
conditions of limited resources is a very relevant topic, and 
scientific research on this topic is important. In particular, this 
is due to the fact that they are aimed at reducing the load on 
the limited resources of the control system (computing power, 
bandwidth of the control network), improving the accuracy of 
data, and reducing the period of their update. The results of such 
studies are needed in practice because they contribute to im-
proving the quality of functioning of industrial control systems.

2. Literature review and problem statement

The relationship between tag optimization in SCADA 
and PLC systems and ISA (International Society of Auto-
mation) standards can be seen through their impact on auto-
mation system design approaches. Much useful information 
and procedures for the development of modern human-ma-
chine interfaces can be obtained from the popular and useful 
standards ISA-101, ISA-18.2, ISA-88, 95, 106, and their IEC 
counterparts. By using these standards when designing an 
automation system, onе can achieve more efficient function-
ing and a better level of optimization.

ISA-101 (Human Machine Interfaces for Process Auto-
mation Systems) provides guidelines for the design of hu-
man-machine interfaces for industrial control systems. One 
of the aspects of the standard is the provision of effective 
ergonomics and interface comprehensibility for operators, as 
indicated by the results of study [2].

Work [3] reports the results of research into high-perfor-
mance human-machine interfaces. They showed that the design 
of modern human-machine interfaces requires the integration 
of a large amount of data, especially for configuration displays, 
which are a key element of high-performance HMIs. This is 
necessary to solve the problem of insufficient formalization 
of information for model-oriented approaches. But the issues 
related to the optimization of the exchange and the shortcom-
ings that arise when the system is saturated with an excessive 
number of tags remained unresolved. The reason for this may be 
the authors’ use of powerful SCADA tools that have sufficient 
computing and communication resources, and the authors’ lack 
of resources for the implementation of the tasks. However, the 
use of powerful SCADA tools mostly leads to an increase in 
the cost of the control system and the installation of excess 
capacity in the project. An option to overcome the relevant 
difficulties can be the use of less powerful HMI devices, which 
do not add excess power to the project and thereby reduce the 
cost of project implementation. This is the approach used in 
work [4], in which the authors, scientists and engineers, deter-
mined that optimizing the number of tags affects the clarity 
and convenience of the interface and allows the use of simpler 
HMI devices. Also, in work [5] it was determined that it is 
necessary to comply with certain requirements regarding the 
design principles of modern HMIs. These include requirements 
for ergonomics, adaptability, and user orientation of the system, 
and to achieve these requirements, it is necessary to properly 
organize the work of the real-time database.

The authors of study [6] faced a similar problem. They 
determined that the introduction of new technologies within 
the framework of Industry 4.0 led to a significant increase in 
the volume of data in HMI systems. This increase, together 
with the limited cognitive capabilities of control system 
operators, complicates their interpretation. The solution to 
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the complexity, time, and resources required for implemen-
tation, as well as possible problems that may arise during 
implementation. Testing optimization methods under real 
conditions makes it possible to obtain objective data about 
their effectiveness and identify possible problems.

Each of these methods contributes to the achievement of 
the main goal of the research – reducing the number of tags in 
human-machine interfaces, which will make it possible to opti-
mize the use of resources and improve the efficiency of systems.

5. Results of investigating the effectiveness of ways to 
optimize the number of tags under conditions of limited 

resources

5. 1. Systematization of tags according to their purpose
The simplest way to implement an HMI is to display 

current values from sensors and buttons to control actuators. 
However, such an HMI will not satisfy even a complete list 
of basic functions. Let’s consider this in more detail.

So, for example, in the ISA-101 standard, which directly 
concerns human-machine interfaces, as well as a number of 
sources on highly effective human-machine interface [2], for 
measurement parameters, it is recommended to use a context 
with which the operator is better situationally aware. That 
is, in addition to the current value of the measurement pa-
rameters, it is necessary to specify the state of the object. In 
the ISA-18.2 standard and its analog IES, HMI components 
must change their state (color, grayscale) depending on the 
state of the alarm associated with it. If alarms are generated 
in PLC, as is often the case when multiple HMIs need to be 
integrated with a single PLC, then the alarm states must be 
passed as part of the context. This all leads to the need for 
structural associations of variables responsible for values 
and states that indicate their context.

The situation with controls is even more complicated. 
In addition to the positional position of the controls, it is 
necessary to provide for the display and control of modes 
(manual/automatic, locked, etc.).

One way or another, to ensure the functionality required 
by modern SCADA/HMI tools in accordance with stan-
dards and best practices, the availability of status (contex-
tual) information is mandatory. Whether this information 
will be combined into one structure with floating values, 
or whether it will be transmitted separately is a matter of 
convenience and compatibility.

The implementation of such functionality is pro-
vided by a number of standards and supported by many  
SCADA/HMI tools. Thus, in accordance with the standards 
ISA-88 (IEC-61512), ISA-95 (IEC-62264) and, more re-
cently, ISA-106, during the design, development, and op-
eration of software for production and technological pro-
cess control systems, each object of automation is considered 
to be a separate entity. From a management point of view, 
the Equipment hierarchy stands out (see below), in which 
each object has its own role. In addition to Equipment, the  
ISA-95 (IEC-62264) standards also distinguish other resourc-
es within the enterprise, such as materials, personnel, and their 
combinations (process and product segments), as well as assets.

At the ASKTP level, according to the ISA-88 (IEC-61512) 
standard, all objects are divided separately into “technology” 
(how to make a product) and “Equipment” (what to use to 
make a product). The automation of “technology construc-
tion” applies only to productions with a variable recipe (the 

4. The study materials and methods

The object of our research is modern human-machine 
interfaces (HMIs) and SCADA systems in the industry.

The main hypothesis of the study assumes that the use 
of certain optimization techniques will make it possible to 
significantly reduce the number of tags used, without signif-
icant loss of functionality.

The following assumptions were made in the research 
methodology:

– in the argumentation of licensing the number of tags 
as a limiting resource, it is assumed that it is the tags (vari-
ables) that count, and not their size in memory; there are 
SCADA programs that calculate limits in bit equivalent, 
they are not the subject of research;

– only external input/output tags are counted in the 
optimality criteria, i.e., those that directly participate in the 
exchange with PLC;

– structural tags are counted by the number of fields, as 
it is mostly accepted in SCADA programs.

In the study, the number of tags was considered a key indi-
cator of resource limitations. This is a deliberate simplification 
adopted specifically for this study, which is typical when target-
ing relevant limitations in SCADA/HMI tools. This indicator 
is not relevant for its use as the main criterion for determining 
the resource intensity of the SCADA/HMI solution as a whole. 
To fully take into account the resource intensity of the solution, 
it is necessary to use a more complex criterion that takes into 
account the allocation of computing resources, I/O bandwidth, 
page update time, response time to the operator’s actions, etc.

In the research, we used the following methods.
Analysis of typical control objects to determine the type 

of variables (tags) according to their purpose, their system-
atization and synthesis into ready-made structures. This 
method allows you to organize tags based on their functional 
purpose, which will help you use them to provide the desired 
functionality, and further understand exactly which vari-
ables are used in the system, how and when they are involved 
in the communication between the PLC and SCADA/HMI, 
and how they can be optimized to reduce the total number.

Analysis of typical data structures used in PLCs, such as 
discrete and analog PLC input/output variables, discrete and 
analog control valves, and frequency converter drives. This will 
help understand the main components of automated systems, 
which is necessary to identify potential areas for optimization.

Specifying a conditional automation object to determine 
the number of tags without optimization. This allows us to 
estimate the initial number of tags used in typical systems 
without applying optimization methods. This forms a basis 
for comparing results after implementation of optimizations.

Investigating the effectiveness of ways to reduce the 
number of tags through quantitative analysis and compari-
son of results. Calculation of indicators such as the optimi-
zation ratio (the ratio of the number of tags before and after 
applying the optimization technique) makes it possible to ac-
curately measure how effective each technique for reducing 
the number of tags is. Using the calculated indicators, one 
can objectively compare different optimization techniques 
and draw conclusions about their effectiveness.

Assessment of practical implementation through im-
plementation complexity analysis and practical tests. It 
is important to evaluate how the implementation of each 
optimization technique affects the overall complexity of the 
system and implementation, which includes an analysis of 
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ISA-88 standard was designed for this purpose). Unlike the 
technological part, Equipment automation applies to all types 
of production, even if only continuous processes with the same 
technology are used.

In all of these Equipment standards, functions and their 
relationships are aggregated into more general entities that 
are perceived as a whole. At the same time, concepts familiar 
to automation engineers such as “control device”, “regulation 
circuit”, “actuator”, etc. become part of Equipment.

In any case, the approach to use in ISA-95, ISA-88, and 
ISA-106 Equipment and the use of contexts (states) have the 
same nature and are implemented in the same way.

For example, a 2-position valve or damper is given, as it 
is represented in a classic automation system:

– a control body (directly a valve or damper);
– actuator with one control pneumatic signal “OPEN”;
– two end position sensors “OPEN”, “CLOSED”.
On the automation scheme (or P&ID) for each of the 

parts there will be one image (Fig. 1), which, as a rule, cor-
responds to one means of automation.

In addition to this valve, there are functions that are 
often not shown on the automation diagram but must be pro-
vided in the PLC and SCADA/HMI algorithm, for example:

– basic control and management functions (for example, 
algorithm management);

– HMI interaction functions, such as manual/auto mode 
switching and manual control;

– alarm functions (for example, “not closed” alarm).
All these functions must be implemented in the controller 

and SCADA/HMI programs, so they will have the correspond-
ing variables/tags and/or functions. 
In the classical representation, it can 
be separate variables and functions 
that are not logically combined into a 
separate entity.

From the point of view of oper-
ation, the valve is perceived not as 
a set of functions but in terms of its 
states, for example: functional (“open”, 
“closed”), mode (“under manual mode”, 
“under automatic mode”), alarm (“did 
not open “). These concepts are spe-
cific to the valve as a whole, not to its 
parts or functions. Therefore, on HMI 
displays, the automation tools can be 
shown as elements grouped together, 
the animation will involve the use of 
all the tags that are relevant for the 
valve. This concept is common to all 
the standards listed above.

Similarly, engineers who are not related to automation 
are related to it. They operate with concepts of states, not 
functions, or means of measurement and control. Therefore, 
during design or operation, they are not interested in the ac-
tivation of end position sensors, and in the end, they may not 
be there at all, or only one of them may be present.

Thus, control over the Equipment is executed through 
the corresponding state variables [14], which must be in the 
program of the controller, SCADA/HMI, or other intelligent 
means. For discrete function states, these are bit states that 
take the values TRUE/FALSE, or a combination thereof.

In addition to measured values and variable states, modern 
HMI requirements include the possibility of setting, i.e., chang-
ing parameters. Examples of such parameters can be settings 
for scaling or filtering of analog input values, alarm settings, 
settings for regulator parameters, and much more. In the end, 
it turns out that the number of such parameters and, accord-
ingly, tags for their implementation is several times more than 
the number of measurement values and control commands. 
However, they have one feature – they need to be changed and 
displayed only when necessary, which mostly happens often 
during debugging, but very rarely during system operation.

Thus, for the implementation of HMI, we can classify 
tags as follows:

– measurement, process control variables, and control 
commands that are required in real time;

– status, which are needed in real time;
– parametric, which are required upon request.

5. 2. Typical data structures
When implementing similar functionality in PLC, it is 

convenient for them to develop structures that will be pro-
cessed as a single entity [15]. We shall assume that these 
structures implement data for Equipment. Consider typical 
data structures used in PLCs to control various types of 
objects, such as PLC Discrete Input/Output Variables, PLC 
Analog Input/Output Variables, OPEN/CLOSE Discrete 
Control Valve, Analog Control Valve, a drive with a frequency 
converter. The structures from PAC Framework [16] are taken 
as a basis as examples, but they may have a different appearance.

DIVAR is a data structure representing discrete process 
input variables (Table 1).

DOVAR is a data structure representing the discrete 
output variables of a process (Table 2).

GS
5-2

GS
5-3

HS
5-5

5-1

Fig.	1.	Image	of	a	valve	on	the	automation	scheme

Table	1

An	example	of	a	data	structure	used	for	a	discrete	PLC	input	variable

No. ID
Data 
type

Description

1 STA_VRAW bool =1 – the value of the discrete signal
2 STA_VALB bool =1 – the value of the discrete input variable after all transformations
3 STA_BAD bool =1 – the data is unreliable
4 STA_ALM bool =1 – alarm

5 STA_ISALM bool =1 – involved as a technological alarm
6 STA_ISWRN bool =1 – involved as a technological warning
7 STA_WRN bool =1 – warning
8 STA_FRC bool =1 – boost mode
9 STA_SML bool =1 – variable in simulation mode

10 PRM_ISALM bool =1 – activate as an emergency alarm
11 PRM_ISWRN bool =1 – use as a warning alarm
12 PRM_INVERSE bool =1 – invert the raw value
13 PRM_NRMVAL bool value of the norm
14 PRM_QALENBL bool =1 – activate the unreliability alarm of the channel
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AIVAR is a data structure representing the analog input 
variables of a process (Table 3).

AOVAR is a data structure representing the analog out-
put variables of a process (Table 4).

Table	3

Example	of	a	data	structure	used	for	a	PLC	analog	input	variable

No. ID Data type Description

1 STA_BRK bool =1 – Channel break

2 STA_OVRLD bool =1 – Short circuit or channel congestion

3 STA_BAD bool =1 – The data is unreliable

4 STA_ALM bool =1 – active technology alarm and inactive BAD

5 STA_LOLO bool =1 – Critically low value

6 STA_LO bool =1 – Low value

7 STA_HI bool =1 – High value

8 STA_HIHI bool =1 – Critically high value

9 STA_WRN bool =1 – active technology warning and inactive BAD and ALM

10 STA_FRC bool =1 – Boost mode

11 STA_SML bool =1 – variable in simulation mode.

12 PRM_LOENBL bool =1 – LO alarm involved

13 PRM_HIENBL bool =1 – HI alarm is involved

14 PRM_LOLOENBL bool =1 – LOLO alarm is involved

15 PRM_HIHIENBL bool =1 – HIHI alarm is involved

16 PRM_BRKENBL bool =1 – a break alarm is involved

17 PRM_OVRLENBL bool =1 – overload alarm involved

18 PRM_PARAISPROC bool =1 – Setting parameters (hysteresis, non-sensory) are set as a percentage

19 LORAW INT Raw (unscaled) minimum value

20 HIRAW INT The raw (unscaled) value of the maximum

21 VAL real scalable value

22 VALFRC real maintains a forced value

23 LOENG real Engineered (scaled) minimum value

24 HIENG real Engineered (scaled) value of the maximum

25 LOSP real LO alarm setpoint

26 HISP real HI alarm setpoint

27 LOLOSP real LOLO alarm setpoint

28 HIHISP real HIHI alarm setpoint

29 THSP real HI technological setpoint

30 TLSP real LO technological setpoint

31 T_FLT uint filtration time in milliseconds (filter – aperiodic link)

32 VRAW int raw value

33 TDEALL uint Delay time for alarm LL to occur in 0.1 seconds

34 TDEAL uint Alarm delay time L in 0.1 seconds (if necessary)

35 TDEAH uint Alarm delay time H in 0.1 seconds (if necessary)

36 TDEAHH uint HH alarm delay time in 0.1 seconds (if necessary)

37 VALPROC real Percentage value

Table	2

Example	of	a	data	structure	used	for	a	discrete	PLC	output	variable

№ ID Data type Description

1 STA_VRAW bool =1 – the value of the discrete signal

2 STA_VALB bool =1 – the value of the discrete input variable after all transformations

3 STA_BAD bool =1 – The data is unreliable

4 STA_FRC bool =1 – Boost mode

5 STA_SML bool =1 – variable in simulation mode

6 PRM_INVERSE bool =1 – invert the raw value

7 PRM_QALENBL bool =1 – activate the unreliability alarm of the channel
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Table	4

An	example	of	a	data	structure	used	for	a	PLC	analog	output	
variable

No. ID
Data 
type

Description

1 STA_BAD bool =1 – The data is unreliable

2 STA_FRC bool =1 – Boost mode

3 STA_SML bool =1 – variable in simulation mode

4 VRAW int raw values

5 VAL real scalable value

6 VALFRC real retains the forced value

7 LORAW int Raw (unscaled) minimum value

8 HIRAW int The raw (unscaled) value of the maximum

9 LOENG real Engineered (scaled) minimum value

10 HIENG real Engineered (scaled) value of the maximum

11 VALPROC real percentage value

VLVD is a data structure representing a discrete-con-
trolled valve of the “OPEN”/”CLOSED” type (Table 5).

Table	5

Example	of	a	data	structure	used	for	an	OPEN/CLOSE	
discrete	control	valve

No. ID
Data 
type

Description

1 STA_IMSTPD bool
=1 stopped in an intermediate 

state.

2 STA_OPNING bool =1 Opens

3 STA_CLSING bool =1 Closes

4 STA_OPND bool =1 Open

5 STA_CLSD bool =1 Closed

6 STA_DISP bool
=1 remote mode  
(from PC/RAM)

7 STA_FRC bool
=1 at least one of the variables 

in the object is forced

8 STA_SML bool =1 simulation mode

9 STA_BLCK bool =1 Blocked

10 ALMOPN bool
=1 Did not open (Control 

circuit malfunction)

11 ALMCLS bool
=1 Did not close (Control 

circuit malfunction)

12 ALMSHFT bool =1 Disturbances 

13 ALM bool =1 VM Error

14 WRN bool =1 VM warnings

15 ALMPWR1 bool = 1 – no power

16 ALMSTPBTN bool = 1 – stop button pressed

17 T_DEASP uint Alarm delay time of 0.1 seconds

18 T_OPNSP uint
Maximum opening time in 0.1 

seconds

19 CMD_OPN bool open

20 CMD_CLS bool close

21 CMD_TGL bool switch

22 CMD_ACK bool confirm the alarm

23 CMD_RESet bool reset alarms

24 CMD_MAN_AUTO bool switch manual/automatic

25 CMD_MAN bool enable manual mode

26 CMD _AUTO bool turn on automatic mode

VLVA is a data structure representing an analog-con-
trolled valve (Table 6).

Table	6

An	example	of	a	data	structure	used	for	an	analog	control	valve

No. ID
Data 
type

Description

1 STA_OPND bool =1 Open
2 STA_CLSD bool =1 Closed

3 STA_DISP bool
=1 remote mode (with 

PC/OP)

4 STA_FRC bool
=1 at least one of the vari-

ables in the object is forced.
5 STA_SML bool =1 simulation mode
6 STA_BLCK bool =1 Blocked

7 POS real
VM position (0–100%) – 

feedback

8 CPOS real
VM position (0-100%) – 

setpoint

9 T_DEASP uint
Alarm delay time of 0.1 

seconds
10 CMD_MAN_AUTO bool switch manual/automatic
11 CMD_MAN bool enable manual mode
12 CMD _AUTO bool turn on automatic mode

DRV is a data structure representing a drive with a fre-
quency converter (Table 7). 

Table	7

Example	of	a	data	structure	used	for	a	variable	frequency	drive

No. ID
Data 
type

Description

1 STA_MAINT bool =1 withdrawn from service.
2 STA_STOPING bool =1 Stops
3 STA_STRTING bool =1 Runs
4 STA_STOPED bool =1 Stopped
5 STA_ISREVERS bool =1 – start with reverse
6 STA_WRKED bool =1 Work in progress
7 STA_DISP bool =1 remote mode (with PC/OP)

8 STA_FRC bool
=1 at least one of the variables 

in the object is forced
9 STA_SML bool =1 simulation mode

10 STA_BLCK bool =1 Blocked
11 ALMSTRT bool =1 Didn’t turn on
12 ALMSTP bool =1 Didn’t disconnect
13 ALMSHFT bool =1 Disturbances
14 ALMINVRTR bool =1 frequency converter error

15 ALMPWR bool
=1 there is no power to the 

contactor
16 ALM bool =1 Drive error (by OR)
17 WRN bool =1 Drive warning (by OR)

18 SPD real
VM speed/frequency 
(0–100 %) – feedback

19 CSPD real
VM speed/frequency 

(0–100 %) is the setpoint
20 T_DEASP uint Alarm delay time of 0.1 seconds
21 CMD_STRT bool run
22 CMD_STOP bool stop
23 CMD_ ISREVERS bool Run with reverse
24 CMD_UP bool More
25 CMD_DWN bool Less
26 CMD_MAN_AUTO bool switch manual/automatic
27 CMD_MAN bool enable manual mode
28 CMD _AUTO bool turn on automatic mode
29 CMD _MAINTON bool decommission
30 CMD _MAINTOFF bool put into operation
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As already mentioned, these structures contain measure-
ment, status, and parametric information and for their im-
plementation in SCADA, appropriate tags are required. At 
the same time, part of the status data may not be displayed 
on HMI as it has a certain redundancy and is needed only 
for the real-time operation of the PLC algorithms. However, 
when debugging, such information is also valuable, which 
will provide flexibility in setting up, configuring, and com-
missioning the system. As a counterweight to this statement, 
it can be pointed out that a large part of the data from the 
above structures does not have to be transferred from PLC 
to HMI, which will make it possible to significantly save the 
number of HMI tags. But at the same time, opportunities 
and flexibility will be significantly lost.

In a large number of SCADA programs, one bit variable 
(bool) and one variable of a larger dimensionally, both udint 
(32 bits) and string (up to 255 bytes), are considered equally 
in terms of the number of HMI tags. Thus, the main ways to 
optimize the number of HMI tags are to combine a certain 
number of tags into one HMI tag with a dimensionality larg-
er than the original tags.

5. 3. Investigating the effectiveness of techniques to 
reduce the number of tags.

This study offers an analysis of techniques to optimize 
the number of used HMI tags without losing the functional-
ity embedded in the above structure.

Generalized data on the number of HMI tags that will 
be used for this configuration of the automation object are 
given in Table 8.

Table	8

Summary	table	of	used	HMI	tags	for	optimization

Type of data 
structure

Number of 
variables in 

the structure

Number of 
structures

Total number of 
HMI tags before 

optimization

DIVAR 14 700 9,800

DOVAR 7 400 2,800

AIVAR 37 100 3,700

AOVAR 11 20 220

VLVD 26 50 1,300

VLVA 12 20 240

DRV 30 30 900

Всього – – 18,960

A conditional automation object was used as the initial 
data for the study, which includes the following elements:

– discrete input variables (DIVAR) – 700 pcs.;
– discrete output variables (DOVAR) – 400 pcs.;
– analog input variables (AIVAR) – 100 pcs.;
– analog output variables (AOVAR) – 20 pcs.;
– valve with discrete control “OPEN”/”CLOSED” – 50 pcs.;
– valves with analog control – 20 pcs.;
– drive with frequency converter – 30 pcs.

5. 3. 1. Combining bit tags (bool) into double un-
signed variables (UDINT/ULONG/DWORD)

One of the most common techniques to optimize the num-
ber of HMI tags is to combine a certain number of Boolean 
tags (usually up to 32) into one HMI tag with a size of 16 or 
32 bits, for example, udint. It is fair to note that some systems 
have support for specific 64-bit data types, such as ULINT for 
S7-1500 PLCs. But since these types of data are not very 

common among most PLC/SCADA links today, they were 
not considered in this study.

The essence of the technique boils down to the fact that on 
the part of PLC, all bit variables that need to be transferred to 
SCADA must be pre-packaged, for example, into 32-bit vari-
ables. To this end, one can use the basic bitwise OR operation.

As a result of such manipulations, in theory, instead of 
32 HMI tags of the bool type, from the point of view of SCADA, 
we shall receive only one HMI tag, in which each individual bit 
will determine the state of the corresponding variable in PLC.

From the SCADA side of the program, various tech-
niques can be used to perform the reverse operation of “un-
packing” a 32-bit variable. In many SCADA programs, there 
are built-in functions that allow one to immediately refer to 
a separate bit in one or another HMI tag. If there are no such 
functions, then one can use the bit AND bitwise operation 
with the appropriate mask.

If one analyzes the data structures, the following trans-
formations can be performed in order to apply the specified 
technique to them.

All bit variables responsible for the state in the data 
structure should be combined into one 32-bit state variable 
(STA), and parametric bit variables responsible for the con-
figuration of a particular object should be combined into one 
32-bit parameter variable (PRM).

On the example of the DIVAR data structure – a data 
structure representing discrete process input variables, 
one can see that all the variables included in this structure 
have the bool data type. After applying the transformations 
proposed by this optimization technique, the DIVAR data 
structure will have the updated form given in Table 9.

Table	9

Representation	of	the	DIVAR	structure	after	concatenation	
of	bit	variables

No. ID Data type Description 

1 STA UDINT State bits

2 PRM UDINT Parametric bits

Thus, in terms of the number of HMI tags used, the 
non-optimized data structure used 14 HMI tags, and the one 
optimized in this way used 2 HMI tags.

It can be noted that 14 bit variables can be easily “packed” 
into one 32-bit HMI tag, but at this stage of the study we sep-
arate the bits responsible for the state and the parametric bits 
for ease of use when designing HMI. We shall return to this 
issue in the following optimization techniques.

The structure responsible for the actuator is considered 
separately. DRV is a data structure representing a drive with 
a frequency converter. In this data structure, one can also eas-
ily distinguish the bit variables responsible for the state of the 
actuator. We combine these variables into one 32-bit UDint 
type STA variable. Having analyzed this structure, we can 
conclude that this data structure does not include bit variables 
responsible for configuration but there are bit variables respon-
sible for controlling this mechanism. Therefore, it is advisable 
to “pack” such variables into one 32-bit CMD variable. After 
all, assuming that only one command is transmitted at a time, 
it can be transmitted in a number that increases the number of 
commands to the bit size of the CMD word to the power of 2. 
Also, further optimization can lead to combining CMD and 
STA into a single structure, for example CSTA, but this may be 
more difficult to implement.
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After applying these transformations, the data structure 
of the DRV type will have the form given in Table 10.

Table	10

Representation	of	the	DRV	structure	after	merging	the		
bit	variables

No. ID Data type Description 

1 STA UDINT State bits

2 SPD real
VM speed/frequency (0–100 %) – 

feedback

3 CSPD real
VM speed/frequency (0–100 %) – 

setpoint

4 T_DEASP uint Alarm delay time of 0.1 seconds

5 CMD UDINT Control command bits

As a result, it can be seen that in terms of the number of 
HMI tags used, the non-optimized data structure used 30 
HMI tags, while the optimized one used 5 HMI tags.

Having optimized all the structures in this way, we ob-
tained the results given in Table 11.

Table	11

The	result	of	optimization	by	combining	bit	
variables

Type of data 
structure

Number of 
variables in 

the structure

Number 
of struc-

tures

Total number of 
HMI tags after 

optimization

DIVAR 2 700 1,400

DOVAR 2 400 800

AIVAR 21 100 2,100

AOVAR 9 20 180

VLVD 2 50 100

VLVA 5 20 100

DRV 5 30 150

Total – – 4,830

A comparative diagram of the number of tags 
before and after optimization is shown in Fig. 2.

Fig.	2.	Comparison	of	the	number	of	tags	before	
optimization	and	after	using	the	technique	for	

combining	bit	variables

The optimization coefficient for this technique is calcu-
lated according to the formula:

,nopt
opt

opt

N
K

N
=     (1)

where Kopt is the optimization factor; Nnopt is the number of 
HMI tags before optimization; Nopt – number of HMI tags 
after optimization.

For a given optimization technique:

18,960
3.93.

4,830optK = =     (2)

This approach is successfully used by many integrators. 

5. 3. 2. Using the configuration buffer
As already noted, in addition to real-time data (values 

of variables, statuses), a large amount of parametric or so-
called configuration data (CFG DATA) is associated with 
each data structure, which must be transferred to/from 
SCADA/HMI only when necessary.

Therefore, to reduce the large amount of configuration 
data circulating between the SCADA/HMI and the control-
ler, it is suggested to use a buffer. For each array (set) of the 
same type of data structures or other objects, one can use a 
separate buffer.

To implement such an approach, each data structure 
must have a unique identifier within the set, by which it can 
be associated with a buffer. The structural diagram of the 
exchange of configuration data through the buffer is shown 
in Fig. 3.

The buffer structure variable from the SCADA/HMI 
point of view must contain the same fields as those struc-
tures that were given for the first technique of our study. 
The presence of a buffer makes it possible to abandon the 
use of configuration HMI tags in each of the data struc-
tures.

It is worth noting that the technique of optimization us-
ing a buffer is already based on the first technique described 
above and includes it.

Consider for example the AIVAR structure – a data 
structure representing analog input process variables. After 
optimization by the first technique, it takes the form given 
in Table 12.

Having analyzed this structure, we can conclude that 
real-time data includes the following elements of this 
structure: STA, VAL, VALPROC. The rest of the ele-
ments are configurational. Therefore, using a buffer, it 
is possible to optimize the AIVAR structure to the form 
given in Table 13.
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Fig.	3.	Structural	diagram	of	buffer	configuration	data	exchange



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/2 ( 130 ) 2024

60

Table	12

Representation	of	the	AIVAR	structure	after	optimization	by	
technique	1

No. ID Data type Description 

1 STA udint Status bits

2 PRM udint Parametric bits

3 LORAW INT
The raw (unprocessed) value of 

the minimum

4 HIRAW INT
The raw (raw) value of the 

maximum

5 VAL real scaled value

6 VALFRC real stores the forced value

7 LOENG real
Engineering (scaled) minimum 

value

8 HIENG real
Engineering (scaled) maximum 

value

9 LOSP real LO alarm setting

10 HISP real HI alarm setting

11 LOLOSP real LOLO alarm setting

12 HIHISP real HIHI alarm setting

13 THSP real Technological setting HI

14 TLSP real Technological setting LO

15 T_FLT uint
filtering time in milliseconds 

(filter – aperiodic link)

16 VRAW int raw value

17 TDEALL uint
The delay time for the oc-

currence of the LL alarm in 
0.1 seconds

18 TDEAL uint
Delay time for alarm occurrence 

L in 0.1 seconds (if necessary)

19 TDEAH uint
Delay time for H alarm occur-

rence in 0.1 seconds  
(if necessary)

20 TDEAHH uint
Delay time for HH alarm occur-

rence in 0.1 seconds  
(if necessary)

21 VALPROC real Value in percentage

Table	13

Representation	of	the	AIVAR	structure	after	real-time	data	
separation

No. ID Data type Description 

1 STA UDINT Status bits

2 VAL real scaled value

3 VALPROC real Value in percentage

That is, it makes it possible to reduce the value of the 
number of used HMI tags from 21 to 3. But at the same time, 
there must be at least one buffer containing a complete set of 
data (Table 12).

It is worth noting that the data structure of the buffer 
may differ significantly from that given in Table 12, as it 
may be necessary in additional parameters, for example, the 
identifier of the current structure currently in the buffer.

After introducing a buffer to all data structures and their 
optimization, the general pattern regarding the number of 
used HMI tags takes the form given in Table 14.

A comparative diagram of the number of tags before and 
after optimization in this way is shown in Fig. 4.

Table	14

The	result	of	optimization	technique	by	adding	a	
configuration	buffer

Type of data  
structure

Number of 
variables in 

the structure

Number of 
structures

Total number of 
HMI tags after 

optimization

DIVAR 1 700 700

DOVAR 1 400 400

AIVAR 3 100 300

AOVAR 3 20 60

VLVD 2 50 100

VLVA 4 20 80

DRV 4 30 120

DIVAR_BUFER 2 1 2

DOVAR_BUFER 2 1 2

AIVAR_BUFER 21 1 21

AOVAR_BUFER 9 1 9

VLVD_BUFER 2 1 2

VLVA_BUFER 5 1 5

DRV_BUFER 5 1 5

Total 1806

Fig.	4.	Comparison	of	the	number	of	tags	before	
optimization	and	after	using	the	technique	for	combining	bit	

variables,	after	using	the	buffer

The optimization coefficient for this technique is calcu-
lated as follows:

18,960
10.5.

1,806optK = =     (3)

Despite the significant saving of resources, the use of 
the buffer is accompanied by a number of limitations. The 
most significant limitation is the impossibility of using a 
buffer of 2 or more HMI tools. When used simultaneous-
ly, the buffer is “selected” by the last user. In the ISA-88 
standard, this use is termed allocation of a resource with 
exclusive access, however, in practice, to implement the 
impossibility of selection, quite complex algorithms must 
be developed, so the buffer is “selected” by those who re-
quested it without any blocking.

Another disadvantage of exchanging configuration data 
through a buffer is the rejection of tabular views of PLC 
maps and technological variables. In practice, there are 
solutions that allow one to bypass this limitation, but this 
option requires significant costs for writing scripts from the 
SCADA/HMI side, which is not always possible.
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Another problem with using a buffer is that there are of-
ten elements on the human-machine interface that visualize 
certain configuration data. And the use of a buffer in this 
case makes such visualization impossible.

For example, an element of visualization of an analog 
variable is shown in Fig. 5.

Fig.	5.	An	example	of	visualization	of	the	display	of	an	
analog	variable

Such indicators are highly effective from the point of 
view of transmitting information about the state of the 
parameter because in addition to the actual value of the 
parameter, the user is presented with additional informa-
tion in the form of limits of normal functioning. The limits 
of triggering accidents of the HiHi, Hi, Lo, LoLo type are 
given in [17–21]. The problem is that such additional data 
in the proposed variant of optimization of the number of 
HMI tags can be obtained only through the buffer. Thus, 
only one such element can be displayed on the screen at 
a time.

Several solutions can be proposed for this problem.
Given that such parametric data rarely changes, it 

can be stored in internal SCADA/HMI tags that do not 
affect the exchange. In addition, the number of “external” 
HMI tags often appears in the resource limits – that is, 
those tags for which the data source is an external device. 
At the same time, this implementation requires the user 
to update them when, for example, new alarm limits are 
set via the configuration buffer. The disadvantage of this 
implementation is that often additional parameters that 
need to be displayed to the user can be changed not by 
the user, through the configuration buffer, but program-
matically, according to the algorithm embedded in PLC. 
Accordingly, the proposed idea makes it impossible to 
update the data stored in the internal variables of the 
SCADA program.

The solution to the update problem can be imple-
mented using a “shadow buffer”. The task of the “shadow 
buffer” is to periodically update all the configuration data 
stored in the internal variables of the SCADA program 
without the user’s participation. When implementing a 
“shadow buffer”, another data structure responsible for 
the buffer is introduced into the system. The task of the 
HMI developer is to implement the cyclic loading of all 
variables into this buffer one by one, and the rewriting of 
data from the buffer into the corresponding set of internal 

SCADA variables. From a SCADA perspective, this can 
be implemented using a built-in scripting subsystem. As 
well as systems of planned tasks. This implementation 
solves the problem of updating data in internal variables. 
But its main drawback is the time it takes to update all 
variables. An experiment using 92 variables of the AIVAR 
type showed that it takes about 5 minutes to update all 
variables.

Another option for transferring configuration data, 
which must be periodically updated, can be implemented by 
packing this data into string variables of type string.

These approaches are successfully used by a number of 
integrators and are part of the PACFramework [21]. The use 
of the buffer requires additional improvement, which we are 
currently working on.

5. 3. 3. Using the configuration buffer to manage ac-
tuators

The essence of this technique is that in order to reduce 
the number of used HMI tags, it is possible to implement 
control over all actuators using a buffer. This will make it 
possible to opt out of the CMD variable in each data struc-
ture responsible for the execution mechanism. All control 
will be executed through the buffer variable. This technique 
has a significant drawback – with this implementation, only 
one actuator can be managed simultaneously with HMI. In 
the case of using an operator panel, this may still be accept-
able. But in the case of full-fledged SCADA, when very often 
the operator needs to simultaneously open several pop-up 
windows to control various actuators, this approach is not 
acceptable.

The effect of using this technique is illustrated in Ta-
ble 15.

Table	15

The	result	of	optimization	by	using	the	configuration	buffer	
to	manage	actuators

Type of data 
structure

Number of 
variables in the 

structure

Number of 
structures

Total number of 
HMI tags after 

optimization

DIVAR 1 700 700

DOVAR 1 400 400

AIVAR 3 100 300

AOVAR 3 20 60

VLVD 1 50 50

VLVA 3 20 60

DRV 3 30 90

DIVAR_BUFER 2 1 2

DOVAR_BUFER 2 1 2

AIVAR_BUFER 21 1 21

AOVAR_BUFER 9 1 9

VLVD_BUFER 2 1 2

VLVA_BUFER 5 1 5

DRV_BUFER 5 1 5

Total 1706

A comparative diagram of the number of tags before and 
after optimization in this way is shown in Fig. 6.

The optimization factor for this technique is:

18,960
11.11.

1,706optK = =    (4)
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5. 3. 4. Using string variables of type STRING to op-
timize the number of used tags

Many PLCs and SCADA/HMIs have the ability to 
convert numbers to strings and vice versa. This makes it 
possible to store numbers as strings and convert them back 
to numbers when needed. The peculiarity of the string 
data type from the point of view of the SCADA program is 
that very often one HMI tag of the string data type allows 
storing up to 255 characters. On the one hand, it allows for 
serialization, similar to CSV or JSON in the IT world, and it 
also reduces the number of I/O tags.

The procedure is as follows: several numbers to be stored 
must be concatenated into a string, separated by, for exam-
ple, a semicolon or any other separator. For the reverse pro-
cedure, it is necessary to break this string using a delimiter 
and get back the original numbers.

While this approach may prove useful in some scenarios, 
it also has limitations and drawbacks, which further add to 
the limitations of serialization:

– complexity of working with data: Working with numbers 
in the form of strings can be more difficult and less efficient 
than working with them in their original numerical format;

– increased probability of errors: There is an increased 
probability of errors when processing strings, especially if the 
format of the string is not followed or it contains incorrect data.

In general, the algorithm for using this technique is as 
follows:

– on the part of PLC, the conversion of numerical data 
into string data types;

– concatenation of several string variables into one, a 
separator is inserted between the variables (for example, a 
semicolon);

– transfer of a variable to SCADA/HMI in the form of 
an HMI tag;

– from the side of the SCADA program, with the help of the 
script subsystem, the HMI tag of the string type is separated, 
and the symbols are converted into output numerical data;

– received numerical values are stored in internal SCA-
DA tags.

It is worth noting that in practice, the use of this al-
gorithm contains a number of features that determine the 
limits of the use of this approach:

– the technique has the feasibility of use only in the case 
when the internal variables of the SCADA program are not 
limited in number, for example, by the cost of the license;

– the technique is convenient only for reading variable 
values from PLC, but not for writing new values;

– it is necessary to ensure a stable cycle of 
execution of this algorithm on the part of the 
SCADA program. And thereby provide the sys-
tem with up-to-date data;

– there is a feature of saving floating point 
numbers. The peculiarity is that in the original 
form such variables can occupy a large number 
of characters. Therefore, to concatenate several 
floating-point numbers, it is necessary to know 
the predicted size of these variables. For the uni-
versality of the technique, one can specify a cer-
tain redundant format for saving floating-point 
numbers, which will be suitable for saving all 
variables and have a certain number of charac-
ters, and all floating-point variables should be 
rounded to this format.

In this study, it is proposed to choose the 
results of optimization of the number of HMI 
tags for the technique “Using the configuration 

buffer to control actuators” as the initial data. In this way, 
the control over actuators, the configuration of variables is 
proposed to be performed through a buffer, without applying 
the technique of packing into a string variable. And the rest 
of the variables, which are only needed for display and do 
not require changes by SCADA, are implemented using this 
technique.

Separately, worth specifying is the format for saving 
floating-point variables. For universality, let’s set one format 
for all variables, which would ensure data transmission with 
the required accuracy. The format is chosen as follows:

####,###�,S     (5)

where “S” defines a+or – sign, and the # sign indicates the 
number of characters.

If necessary, one can change the format individually for 
some variable separately.

The following information was used to determine the 
number of string variables to transfer all necessary variables:

– up to 255 characters can be transferred in one string 
variable;

– one UDINT type variable occupies 9 characters. When 
transmitting in the hexadecimal number system, the max-
imum value is FFFFFFFF (8 characters) + 1 separator “;”;

– one variable of type REAL takes 11 characters – 
10 characters from the formula 5+1 separator “;”.

Thus, the number of used HMI tags of the STRING type 
is given in Table 16.

Taking into account that buffer variables were not con-
verted, the total number of HMI tags will be equal to that 
given in Table 17.

A comparative diagram of the number of tags before and 
after optimization in this way is shown in Fig. 7.

The optimization factor for this technique is:

18,960
169.286.

112optK = =    (6) 

Thus, this technique showed an extremely high degree 
of optimization of the number of HMI tags. But it is worth 
noting that this technique already included previous optimi-
zation techniques. It should also be noted that this technique 
is the most resource-intensive in terms of both SCADA de-
velopment and PLC application development.
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The advancement of this technique is the implementation 
of configuration data exchange using approaches similar in 
nature to HTTP REST.

6. Discussion of results of investigating the techniques to 
optimize the number of tags

The technique of combining bit tags (bool) into dou-
ble unsigned variables showed the result of reducing the 

number of HMI tags from 18,960 to 4,830 (Table 11) (by 
4 times) (Fig. 2).

The value of the coefficient will fundamentally differ de-
pending on the number of bool type tags. For 100 % of such 
tags only, the coefficient increased to 16 or 32, depending on 
the size of the variable packaging. Therefore, this approach 
has a very high efficiency when using a large number of tags 
of the bool type.

The advantages of this technique include relative sim-
plicity, versatility, i.e., the ability to use it for various SCA-

Table	16

The	number	of	used	HMI	tags	of	type	STRING

Type of data 
structure

Number of 
variables in 

the structure
Type of data

Number of 
data structures

Number of variables 
to be packed into a 

string type

Number of 
characters 

in 1 variable
Total characters

The required number 
of variables of type 

STRING
DIVAR 1 UDINT 700 700 9 6,300 25
DOVAR 1 UDINT 400 400 9 3,600 15

AIVAR
1 UDINT

100
100 9 900 4

2 Real 200 11 2,200 9

AOVAR
1 UDINT

20
20 9 180 1

2 Real 40 11 440 2
VLVD 1 UDINT 50 50 9 450 2

VLVA
1 UDINT

20
20 9 180 1

2 Real 40 11 440 2

DRV
1 UDINT

30
30 9 270 2

2 Real 60 11 660 3
Total 66

Table	17

The	result	of	optimization	using	string	variables	of	type	STRING

Type of data structure Number of variables in the structure Number of structures Total number of HMI tags after optimization
DIVAR 1 700 25
DOVAR 1 400 15
AIVAR 2 100 13
AOVAR 2 20 3
VLVD 1 50 2
VLVA 2 20 3
DRV 2 30 5

DIVAR_BUFER 2 1 2
DOVAR_BUFER 2 1 2
AIVAR_BUFER 21 1 21
AOVAR_BUFER 9 1 9
VLVD_BUFER 2 1 2
VLVA_BUFER 5 1 5
DRV_BUFER 5 1 5

Total – – 112
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DA programs/operator panels. A side positive effect is the 
consistency of bit states since they are always transmitted 
by the same tag, which the exchange of bit variables may not 
guarantee.

The technique of using the configuration buffer showed 
the result of reducing the number of HMI tags from 18,960 
to 1,806 (10 times) (Table 14, Fig. 4).

This reduction is due to the use of one set of variables of 
the same type to multiplex many parametric variables that 
must be used only on demand.

This technique includes technique 1 and supplements it 
with the presence of a buffer (Fig. 3).

The technique of using a configuration buffer to control 
actuators (Table 15) is an evolution of technique 2, the 
essence of which is that the buffer is used not only for con-
figuring objects but also to control actuators (Fig. 6). Unlike 
technique 2, real-time data is also multiplexed here, and 
therefore the coefficient increases depending on the number 
of multiplexed objects and can reach tens of times.

The technique of using string variables of type STRING 
showed the result of reducing the number of HMI tags from 
18,960 to 112 (more than 150 times) (Table 16). This is 
explained by the use of commonly accepted IT approaches 
termed serialization and archiving.

A separate advantage of the technique for using string 
variables, in addition to extremely high optimization effi-
ciency (Fig. 6), is that it can be used to solve the problem 
of displaying configuration parameters on visualization 
screens without using a shadow buffer.

The task of reducing the number of HMI tags is import-
ant in two aspects:

– reducing the load on communication channels and, 
accordingly, increasing the bandwidth;

– reducing the number of HMI tags when building a 
human-machine interface for operator panels, where the 
maximum number of HMI tags is strictly limited;

– reducing the number of HMI tags when implementing 
SCADA systems, where the number of tags is limited by the 
existing license of the execution environment.

As noted above, a high-performance human-machine 
interface requires a large amount of context data and con-
figuration parameters that circulate between SCADA/HMI 
and PLC, which in turn leads to the need for a large number 
of human-machine interface resources, which are not always 
available. Reducing the number of tags/input-output solves 
this problem, as it is one of the parameters that directly 
affects the resources used. Our study provides several ways 
to do this.

The disadvantages and limitations of these optimization 
techniques include the following.

In the technique of combining bit tags (bool) into dou-
ble unsigned variables, the following restrictions can be 
attributed: the situation when the SCADA program or the 
operator panel does not allow access to specific bits in the 
HMI thesis. Also, the situation when SCADA/HMI when 
working with alarms does not make it possible to use a sepa-
rate bit in the tag as a trigger.

The technique to use a configuration buffer, compared 
to the technique to combine bit tags (bool), into double 
unsigned variables, has more significant disadvantages. In 
particular, the impossibility of using a buffer of 2 or more 
HMI tools at the same time. This shortcoming can be com-
pensated by increasing the number of buffers from one to the 
required number of HMI devices or make an asynchronous 

buffer (without allocation). Limitations include the display 
of configuration parameters on visualization screens, for 
example, the inability to display value ranges for analog 
variables. This limitation can be solved by the shadow buffer 
technique.

In the technique of using the configuration buffer to 
control the actuators, compared to the technique of using 
the configuration buffer, the feature is that it is not possi-
ble to control several actuators at the same time – this is 
a significant disadvantage. It is not recommended for use 
without significant reasons, as it significantly limits the 
use of HMI.

In the technique of using string variables of the STRING 
type, the main limitations are the demand for computing 
power, as well as the presence of a developed scripting sub-
system. Therefore, this technique is appropriate for use only 
for advanced SCADA programs and has a limited possibility 
of use in operator panels. The disadvantage of this approach 
is the use of significant computing resources, which nega-
tively affects the speed of processing and the complexity of 
development and maintenance.

These techniques demonstrate high efficiency of opti-
mization but require more time for implementation from 
the developer. It is also worth noting that our paper does 
not provide an exhaustive list of techniques but only those 
that we have used in practice. In addition, work is currently 
underway to improve some of the techniques.

The effectiveness of the above techniques was evaluated 
exclusively in terms of the number of input/output tags, which 
is one indicator of the used resources, but not the only one.

In the future, it is worth analyzing the above tech-
niques in relation to their impact on other properties of 
the automated control/management system. In particular, 
such indicators include the impact on communication 
exchange, the impact on direct indicators of work produc-
tivity, and the impact on system reliability. Empirically, 
the communication load as the number of tags is reduced 
should decrease as the number of tags is reduced. This in 
turn can increase the bandwidth of the communication 
channel and therefore potentially reduce the response time 
of the system when needed. However, some of the above 
techniques require additional computing resources, which 
may have the opposite effect. This requires experimental 
studies for several typical configurations. The most chal-
lenging task here is the selection of relevant typical sets 
of network protocols, PLC, and SCADA/HMI facilities 
in various configurations. All these component systems 
have a significant impact on the results of experiments, 
so they can differ tens and hundreds of times depending 
on the chosen configuration and adopted development 
approaches. Even the version or subversion of the software 
or hardware significantly affects the performance. The 
same can be said about the reliability of the system. Direct 
indicators of work productivity mean criteria that charac-
terize the final functionality of the system, in particular 
the speed of updating data on the display mnemonics, the 
speed of the system’s response to user action, page update 
time, etc. All the difficulties of network exchange analysis 
are typical for this study; however, an additional challenge 
is also to define techniques for measuring indicators for 
further criteria calculations.

The above list of techniques is not exhaustive, it is worth 
thinking about other, alternative approaches or their com-
bination.
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7. Conclusions 

1. We have systematized and classified HMI I/O tags 
according to their purpose. That has made it possible to 
highlight the necessary variables used in the system, to 
determine how and when they are involved in the communi-
cation between the PLC and SCADA/HMI, and how they 
could be optimized to reduce the total number.

In particular, it was determined that:
– control data requires a lot of additional contextual data 

that complements the main measurement data with status 
information;

– contextual data should be kept in single structures 
with controlled and managed variables, they are updated in 
real time;

– for the grouping of main variables and context vari-
ables, worth using are the approaches from modern stan-
dards based on Equipment;

– additional data are configuration parameters: their 
number is many times greater than real-time data; they need 
to be updated on demand, not in real time, so they should be 
separated in the exchange.

2. Typical data structures used in PLCs to control vari-
ous types of objects were selected for the study. Among the 
typical structures that cover most of the typical tasks, the 
following were identified as the most used:

– responsible for discrete measuring (input for PLC) and 
controlled (output for PLC) parameters;

– responsible for analog measuring (input for PLC) and 
controlled parameters (output for PLC);

– responsible for actuators: shut-off and regulating 
valves, engine drives.

A list of typical status (contextual) and configuration 
parameters for structures has been compiled, in particular:

– measurement/control data;
– position data;
– alarm status bits;
– mode bits;
– commands;
– processing function setting parameters;

– setting parameters of actuators;
– alarm setting parameters;
– service commands.
3. The effectiveness of techniques that could make it 

possible to reduce the number of tags in the conditional auto-
mation object has been studied. The optimization coefficient 
was calculated for each technique:

– for the technique of combining bit tags in (bool), in 
double unsigned variables (UDINT/ULONG/DWORD), 
the optimization factor is 3.93;

– for the technique using the configuration buffer – 10.5;
– for the technique using the configuration buffer to 

control actuators – 11,11;
– for the technique of using string variables of type 

STRING to optimize the number of used HMI tags – 169,286.
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