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This paper considers a heat conduction process for 
isotropic layered media with internal thermal heating. 
As a result of the heterogeneity of environments, signifi-
cant temperature gradients arise as a result of the ther-
mal load. In order to establish the temperature regimes 
for the effective operation of electronic devices, linear and 
non-linear mathematical models for determining the tem-
perature field have been constructed, which would make 
it possible to further analyze the temperature regimes in 
these heat-active environments. The coefficient of thermal 
conductivity for the above structures was represented as 
a whole using asymmetric unit functions. As a result, the 
conditions of ideal thermal contact were automatically ful-
filled on the surfaces of the conjugation of the layers. This 
leads to solving one heat conduction equation with discon-
tinuous and singular coefficients and boundary conditions 
at the boundary surfaces of the medium. For linearization 
of nonlinear boundary value problems, linearizing func-
tions were introduced. Analytical solutions to both linear 
and nonlinear boundary value problems were derived in  
a closed form. For heat-sensitive environments, as an 
example, the linear dependence of the coefficient of thermal 
conductivity of structural materials on temperature, which 
is often observed when solving many practical problems, 
was chosen. As a result, analytical relations for deter-
mining the temperature distribution in these environments 
were obtained. Based on this, a numerical experiment was 
performed, and it was geometrically represented depend-
ing on the spatial coordinates. This proves that the con-
structed linear and nonlinear mathematical models testify 
to their adequacy to the real physical process. They make it 
possible to analyze heat-active media regarding their ther-
mal resistance. As a result, it becomes possible to increase 
it and protect it from overheating, which can cause the 
destruction of not only individual nodes and their elements 
but also the entire structure
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1. Introduction 

Modern society is characterized by a high level of use of 
electronic devices of modern technology for various needs. 
They are operated under certain temperature regimes, which 
require ensuring reliable operation, reducing mass and dimen-
sions (miniaturization), and increasing the service life. The 
requirement for the compactness of devices and their elements 
predetermines the concentration of high power of heat genera-
tion. At the same time, the constant operation of microelectro
nic devices is affected by both internal and external heat flows. 
Therefore, the task of determining temperature fields and ana-
lyzing temperature regimes in individual elements and nodes of 
these devices remains relevant since temperature is an impor
tant factor that significantly affects their effective operation.

Individual elements and nodes of microelectronic devices 
function in a wide range of temperatures due to the action of 
high thermal loads. In the process of their design and opera-

tion, a number of complex engineering problems arise, for the 
solution of which it is necessary to have reliable information 
about their thermal state and temperature regimes. Since ex-
perimental studies are often impossible to conduct due to high 
temperatures and hermetic properties of heat removal sys-
tems, such information can only be obtained by calculation.  
This method, at the same time, requires the solution to 
complex boundary value problems of thermal conductivity 
obtained on the basis of mathematical models, which maxi-
mally reflect the most important features of thermophysical 
processes manifested in the above structures.

Composite materials, the development of which is one 
of the leading problems of modern materials science, are of 
particular importance for the production of modern techno
logy devices. The emergence of new composite materials with 
improved operational physical and mechanical properties 
contributes to the creation of new technologies in aviation, 
space, shipbuilding, energy, electronic industry, mechanical 
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engineering, and transport. Layered structures occupy an 
important place among composite materials. They are widely 
used in the construction of microelectronic devices, in par-
ticular, in built-in sensors for temperature and humidity con-
trol, light-emitting elements for dynamic LED illumination, 
in smartphones, etc.

In particular, smartphone manufacturers are focusing on 
increasing processor speed and battery life, creating wire-
less charging sources, improving monitor performance, and 
equipping them with various functions. Large companies 
are introducing wireless charging of batteries, abandoning 
cables, and offering charging using various stations. In the 
future, frameless smartphones may appear, owing to which it 
is possible to increase the size of the screen and the complete-
ness of the representation of information. There is a trend to 
transform gadgets that currently serve as a camera, payment 
device, etc., into a source of medical information acquisition.

The design and development of such devices, the individual 
elements and nodes of which have a layered and homogeneous 
structure, consists not only in expanding the possibilities and 
improving their parameters. These devices often function un-
der conditions of intense heating or cooling, which requires 
ensuring their stable operation, high reliability, and heat resis-
tance. It also enables high reliability and heat resistance during 
operation. Increasing the power of such devices and their 
integration into the system greatly complicates the problem of 
thermal resistance to thermal loads of their structures, which 
partially or completely fail due to thermal overloads.

Such structures work in a wide range of temperatures. 
Their high operating parameters require the consideration 
and solution of nonlinear boundary value problems. This is 
due to the dependence of the thermophysical parameters 
of the materials on the temperature and conditions of heat 
exchange on the surfaces. Calculations of temperature fields 
based on linear heat conduction models do not always give 
satisfactory results. Therefore, in order to build adequate 
mathematical models for a real physical process, it is neces-
sary to take into account the dependence of thermophysical 
parameters on temperature, the density of surface flows, and 
the intensity of internal heat sources, as well as changes in 
the shape of the environment. In addition, phase and struc-
tural transformations of media are important.

Fig. 1 shows a diagram of the influence of various external 
factors on the reliability of microelectronic devices [1].
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Fig. 1. Diagram of the influence of various 	
external factors on the reliability of microelectronic devices: 	

1 – humidity – 19.00 %; 2 – dust – 6.00 %; 	
3 – vibration – 20.00 %; 4 – temperature – 55.00 %

As a result, construction of mathematical models of the 
heat conduction process is an urgent task since as a result 
of the operation of modern electronic devices, they heat up.  
The heterogeneity of environments and the intensity of heating 

leads to the emergence of significant temperature gradients, 
which contribute to the appearance of defects, which leads 
to destruction. To prevent this, it is necessary to establish 
acceptable temperature regimes for the effective operation of 
the devices. Without conducting expensive experiments for 
media with a layered structure, our research results make it 
possible to achieve this goal.

2. Literature review and problem statement

Work [2] reports a methodology for effective determina-
tion and research of the thermal stress state of bodies with 
thin multilayer coatings based on the procedure of modeling 
these coatings with shells with the appropriate geometric, 
thermal, and thermomechanical properties of the coating. 
In this approach, the effect of coatings on the thermal stress 
state of the body-coating system is described by special 
generalized boundary conditions. The effectiveness of this 
approach is demonstrated by the analysis of test tasks. Solu-
tions to non-classical linear and nonlinear boundary-value 
problems of thermoelasticity for bodies with layered thin 
coatings subjected to thermal load are presented. The coat-
ings are thin and, as a result, their geometric parameters are 
not taken into account, which leads to an error in the results.

Study [3] proposed a method for determining the tempera-
ture fields arising in the plate, taking into account thermal 
radiation, temperature dependence of thermal parameters, 
densities of surface and volume heat sources with uneven 
distribution of the initial temperature. The Kirchhoff trans-
formation, Green’s function, generalized functions and linear 
splines were used, and heat conduction problems were re-
duced to solving a recurrent nonlinear algebraic equation to 
determine the values of the Kirchhoff variable at the spline 
nodes on the corresponding boundary surface. The results of 
the numerical analysis are given. The study was performed 
for a homogeneous plate, which made it possible to apply the 
Kirchhoff transformation to linearize the nonlinear boundary 
value problem. The given approach does not make it possible 
to conduct research for environments with a layered structure.

In paper [4], partial boundary elements are considered as 
a variant of the indirect method of boundary elements. Using 
the example of two-dimensional problems of the potential  
theory, the accuracy and efficiency of their use were investi-
gated. For objects of canonical form (circle, square, rectangle, 
ellipse) and arbitrary polygons, the effectiveness of partial 
boundary elements is shown. The use of this method ensures 
the accuracy of the solution commensurate with the accu-
racy of the boundary element method. It is also an order of 
magnitude higher than when using the boundary element 
method. At the same time, the calculation time is reduced by 
2–2.5 times, compared to when applying the boundary ele-
ment method. The software implementation of the proposed 
approach was carried out using the Python programming lan-
guage. The given approach has been tested for the problems of 
electro profiling and vertical electrical probing in a half-plane 
with polygonal inclusion. Recommendations for the use of 
partial boundary elements in geophysical practical tests are 
given. The study was performed for homogeneous media of the 
canonical form, which is a fairly simple geometric form.

An analytical-numerical approach for determining phy
sical scalar quantities (temperature, potential, pressure) or 
vector quantities (components of the electromagnetic field) 
is given. This approach is applied in a piecewise homogeneous 
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region of arbitrary shape with mixed boundary conditions.  
It also takes into account the conditions of ideal contact at 
the media interface [5]. Using the method of indirect boundary 
elements and the scheme of the time sequence of initial con-
ditions, software was developed, computational experiments 
were performed to estimate the errors of discretization of 
boundary regions and approximation of the mathematical 
model. The effect of piezoelectric coefficients on the pressure 
distribution in composite formations was investigated. The 
given method is approximate and with its use there is a signi
ficant accumulation of errors in the results.

Improving the accuracy and efficiency of temperature 
field prediction is an important requirement for iterative 
calculation and online monitoring of the temperature field, 
especially for combined structures. The movement of the 
heat flow is hindered by the incomplete contact of the in-
terface, which leads to a temperature jump. To solve this 
problem, paper [6] gives an equivalent thin layer temperature 
field model (ETTM) instead of the interface thermal contact 
conductivity (TCC) model. First, based on fractal geometry, 
a fractal model of the TCC bolted connection is obtained. 
Subsequently, the contact surface of the circular bolted joint 
is considered to be a parallel connection of several bolted 
thermal resistances. The TCC of the equivalent thin layer 
is obtained. Based on this, the ETTM of the built-in rotor 
structure was developed and the temperature field model of 
the bolted rotor was obtained. The reliability of the models 
was checked by comparing the given model with the results 
of previous studies and the results from ANSYS analysis. 
Numerical simulation results show that TCC is affected by 
several factors: contact pressure, nominal contact area on the 
surfaces of the fractal domain, fractal dimensionality, fractal 
roughness, and root mean square (RMS) height. In addition, 
the influence of the thickness of the thin layer model and 
the thermal conductivity of the material on heat transfer 
was investigated. Ultimately, the results indicate that the 
heat transfer at the interface is significantly hindered by the 
thermal contact resistance due to the different temperature 
boundary conditions. Notably, lower contact pressure in-
creases this impedance. There is an accumulation of errors in 
research results. It is difficult to predict the behavior of the 
temperature field according to the predictive model.

Paper [7] presents the basic equations and data set of 
the thermal model for predicting temperature fields and 
heating rates when applying localized laser treatments to  
the Fe-C-Ni alloy. The model takes into account the transient 
properties of the material and the relationship between tem-
perature and microstructure with an emphasis on the phase 
dependence of thermal parameters and hysteresis in the 
phase change. The model provides temperature fields that are 
consistent with experimental microstructures in the zones of 
laser exposure. The given model can be applied to other ma-
terials that exhibit solid-state transformations during laser 
processing. Thermophysical parameters are averaged, which 
leads to errors in the reported results. 

The temperature is important for controlling the shape 
of the plate due to its hardening by the roller. The shape of  
the plate has an important effect on the efficiency of using the 
steel plate. Paper [8] provides a model of the temperature field 
that can be used to control the shape of the plate. First, the cool-
ing mechanism during quenching was analyzed and the heat 
transfer coefficients of each surface were obtained. Secondly, 
the model of the temperature field was determined by the heat 
conduction equation and the uniformity of cooling in the di-

rections of width and thickness was investigated. Third, based 
on the model of temperature field and uniformity of cooling,  
a typical plate shape control structure was developed. Finally, 
the temperature field model was tested; the results show that it 
can simulate the temperature of the steel plate. An experimen-
tal model of the temperature field is given, and for a homoge-
neous medium. The research results contain significant errors.

Work [9] considered a one-dimensional non-stationary 
thermal state in a medium with a temperature dependence of 
thermal conductivity. For this case, the corresponding heat 
conduction equation becomes nonlinear, and a weakening 
boundary condition is applied to the surfaces. This condition 
is time-dependent, which approaches a certain time-indepen-
dent condition as time passes. This behavior at the surfaces 
of the medium occurs naturally in some physical systems.  
As an example, a simple model system that generates a Di-
richlet condition or a convective relaxing boundary con-
dition is proposed. Due to the dependence of the thermal 
conductivity coefficient on temperature, the convective 
state is non-linear. For the solution of the boundary value 
problem, a numerical approach is given, which makes it 
possible to discretize the heat conduction equation in time, 
as a result of which a sequence of two-point boundary value  
problems (TPBVP) is obtained. The authors used implicit 
discretization of time, which ensures unconditional stability 
of the method. If the initial condition is given, then for this 
case it is possible to successively solve the TPBVP and obtain 
approximate values of the temperature at different time levels. 
The finite difference method was used to solve the TPBVP. The 
resulting systems of nonlinear algebraic equations are solved 
by Newton’s method. A number of simple model problems are 
presented that confirm the effectiveness of this approach.

Thermal modeling of electronic devices is one of the most 
important tools for assessing their reliability under various 
operating modes. In [10], a thermal model of electronic devi
ces is presented, which is based on experimental temperature 
measurement data obtained by an infrared camera. These 
data are input to the constructed mathematical model, which 
is based on the method of finite differences and some known 
physical dependences. The model built was verified by com-
paring simulation data with experimental data. It can be used 
to study the thermal behavior of the device under various 
operating conditions. The temperature distribution is deter-
mined experimentally, which introduces an error into the con-
structed mathematical model based on the finite difference 
method. As a result, the results contain significant errors.

In most portable electronic devices, in addition to the 
temperature of several heat sources, i.e., the junction tem-
perature, the body temperature, i.e., the skin temperature, 
must also be monitored to protect the user. Thus, creating 
a compact device-level thermal model to predict skin tem-
perature will not only improve the efficiency of thermal 
design at an early stage but also help devise a model-based 
temperature control strategy. In paper [11] dynamic compact 
thermal models of two portable electronic devices, including 
a smartphone and a laptop, were built based on the convolu-
tion method. Under the assumption of linear time-invariant 
systems, the skin temperature for the two test devices can 
be quickly determined after the step response of each heat 
source is obtained. The model built is experimental and does 
not make it possible to determine temperature regimes for 
more than two portable electronic devices.

The increase in the specific power of electronic devices, 
due to high performance and miniaturization requirements, 
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has prompted researchers to search for new and alternative 
methods of temperature control. Most electronic devices are 
frequently subjected to high frequency power cycles. Cooling 
systems must be able to manage transient thermal profiles 
to delay the temperature response and reduce temperature 
gradients within the device that can lead to thermal stresses. 
In the long run, this can lead to the failure of the electronic 
device. The integration of phase change materials (PCM) 
in heatsinks for electronic devices represents an interesting 
technical system to increase the thermal inertia of the cooling 
system while providing a more stable operating temperature 
in the electronic components. Paper [12] discusses recent 
research trends in this field, with special emphasis on electric 
batteries, power electronics, and portable device applica-
tions. In the studies, the value of the working temperature 
was determined experimentally. The errors contained in 
these values significantly affect the efficient operation of the 
components of electronic devices.

Much of the effort in electronics thermal management 
has focused on devising cooling solutions that provide 
steady-state operation. However, electronic devices are in-
creasingly used in applications with time-varying workloads. 
These include microprocessors (especially those used in 
portable devices), power electronic devices, and arrays of 
powerful semiconductor laser diodes. Transient solutions for 
temperature management are becoming essential to ensure 
the performance and reliability of such devices. New require-
ments for temperature control in transient processes are 
defined in [13]; cooling recommendations described in the 
literature for such applications are given, focused on the time 
scales of the thermal response. Control over temperature re-
gimes is executed experimentally, which significantly limits 
the establishment of optimal values of the temperature field 
for the effective functioning of electronic devices.

Work [14] analyzed the features of the temperature field 
distribution and the reaction of the heat-conducting material 
as a function of its grinding parameters. Grinding of rails is 
widely used as a technique for re-profiling the surfaces of 
rails in the case of wear and tear, as well as for eliminating 
missing damage. However, grinding can burn the surface and 
form a white etching layer. Taking into account the position 
of the rail surface, the result of the study was the construc-
tion of an analytical thermal model based on an unevenly 
distributed heat source for predicting the temperature field 
during the grinding process. The temperature as a result 
of the rail grinding experiment was measured using special 
thermocouples. At the same time, the reaction of the rail 
material from the point of view of surface heating and the 
white etching layer was analyzed in detail. The results show 
that at a grinding temperature of about 400 °C, WEL starts 
to appear on the rail surface. Remains of austenite were found 
on the polished surfaces of the rails, which indicates the exis-
tence of martensite as a result of the effect of a combination 
of thermal and mechanical interactions. In order to describe 
the relationship between grinding temperature, surface burn-
out and WEL, suitable diagrams have been constructed 
for use in real production. To obtain a high-quality surface 
of the rails during grinding, it would be advisable to build  
a mathematical model of the heat conduction process, which 
would significantly increase the accuracy of determining 
temperature gradients.

An analytical solution to the three-dimensional problem 
of thermal conductivity together with the field of tempera-
ture and heat flow is one of the important tasks that are not 

solved in the mechanics of solid bodies. Taking into account 
the temperature dependence of the thermomechanical pa-
rameters of the material complicates the task. In paper [15], 
the authors first reduce the nonlinear three-dimensional 
problem of heat conduction to the solution of the three-di-
mensional Laplace equation by introducing an intermediate 
function. Then a generalized ternary function is proposed, 
and a general solution to the three-dimensional Laplace 
equation is given. Finally, analytical solutions to three spe-
cific problems were obtained and corresponding tempera-
ture-heat flow fields were analyzed. The results show that the 
heat flow field of the nonlinear three-dimensional problem 
coincides with the results obtained by the classical method 
for the linear problem, and the temperature field differs.  
The heat flow at the flat boundary of the defect has a singu-
larity of r –1/2, and its intensity is proportional to the root 
of the fourth power of the width of the defect. On the other 
hand, when it is blocked by a planar defect, its distribution is 
rearranged so that it flows at the same speed from all sides of 
the planar defect.

A functional defect leads to high temperature, as well as 
significant thermal stress in thermoelectric materials, which 
is one of the main mechanisms of reducing the reliability 
of thermoelectric devices. In this perspective, thermoelec-
tric-elastic fields around an elliptical functional defect in  
a two-dimensional thermoelectric plate are analyzed based 
on the complex variable method, and the field distribution 
is obtained in closed form. The results of work [16] show 
that the temperature at the top of the defect increases with 
the size of the defect and can exceed the temperature at the 
hot end and even exceed the melting temperature of the 
material. In addition, both the von Mises stresses within the 
matrix and the defect can exceed the yield strength of many 
materials. These results can be used for fracture studies and 
reliability analysis of thermoelectric materials.

Existing methods have been improved and new approa
ches have been devised to construct mathematical models 
that make it possible to analyze heat exchange in piecewise 
homogeneous media [17, 18]. Planar and spatial models of 
heat exchange are given, in which the differential equations 
contain coefficients that depend on the thermophysical prop-
erties of the phases and the geometric structure. Approaches 
for determining analytical and analytical-numerical solu-
tions to boundary value problems of thermal conductivity 
are presented in [19]. Heat exchange processes occurring in 
homogeneous and layered structures with foreign inclusions 
of canonical form were analyzed in [20, 21]. In the cited 
works [17–21], models that take into account local heating, 
the heterogeneity of environments and the thermal sensiti
vity of their structural materials have remained little studied. 
The use of classical analytical and numerical methods does 
not make it possible to effectively take into account the given 
factors for individual elements and nodes of electronic device 
structures. Therefore, a technique for building mathematical 
models of thermal conductivity, in which these factors are 
taken into account, is given.

Our review of the literature reveals that there is no strict, 
logical, theoretically grounded technique for building linear 
and nonlinear mathematical models of thermal conductivity 
for media with a layered structure. Since the components of 
modern digital devices are small in size and have concentrated 
significant thermal power, it is important to take into account 
the heterogeneity of these elements, the thermal sensitivity of 
structural materials, and the locality of thermal heating.
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3. The aim and objectives of the study

The purpose of our study is to construct linear and nonlin-
ear mathematical models of thermal conductivity for isotropic 
layered media that are subject to internal heating. As a result, 
there is an opportunity to increase the accuracy of determin-
ing temperature fields, which will further affect the effective-
ness of the design methods of modern electronic devices.

To achieve this goal, the following tasks must be solved:
– to build a linear mathematical model for determining 

the temperature field in a layered environment with inter-
nal  heating;

– to build a non-linear mathematical model for deter-
mining the temperature field in a thermosensitive (thermo-
physical parameters of the material depend on temperature) 
layered environment with internal heating;

– to build a linear mathematical model for determining 
the temperature field in a two-layer environment with inter-
nal heating on the surface of the conjugation of layers;

– to build a non-linear mathematical model for deter-
mining the temperature field in a thermosensitive two-layer 
environment with internal heating on the surface of the con-
jugation of layers.

4. The study materials and methods

The object of research is the heat conduction process for 
isotropic layered media heated by internal heat sources.

Our research hypothesis assumes that adequate mathe
matical models of the heat conduction process in layered 
media can be derived when it is possible to obtain solutions 
to the corresponding linear and nonlinear boundary value 
problems by an analytical method.

Accepted assumptions and simplifications in the research 
process: the media are not anisotropic, that is, the values of ther-
mophysical parameters are constant in spatial directions. The 
heat conduction process is stationary since the change in the 
temperature field is determined only by the spatial coordinate.

The theory of generalized functions was used to construct 
linear and nonlinear mathematical models for determining the 
temperature field and analyzing temperature regimes in layered 
environments with internal thermal heating. This approach led 
to an effective representation of thermophysical parameters of 
materials for layered environments. This led to the solution of 
boundary value problems of heat conduction, which contain 
one differential equation with a singular right-hand side and 
boundary conditions on the boundary surfaces of the medium. 
Linearizing functions were introduced to linearize nonlinear 
mathematical models of thermal conductivity due to the ther-
mal sensitivity of materials in a layered environment.

An isotropic layered plate of thickness 2δ and width 2l 
is given, with heat-insulated front surfaces |z| = δ, |x| = l and 
uniformly distributed internal heat sources with power 
q0 = const, which consists of n layers. The given construc-
tion is attributed to the Cartesian rectangular coordinate 
system (x, y, z), on the surfaces K x z x l z0 0= ( ) ≤ ≤{ }, , : , ,δ  
K x y z x l zn n= ( ) ≤ ≤{ }, , : , δ  of which boundary conditions 
of the first kind are set. On the surfaces of the layers 
K x y z x l zi i= ( ) ≤ ≤{ }, , : , δ  ( , )i n= −1 1  there is an ideal ther-

mal contact ti = ti+1, λ λi
i

i
idt

dy
dt
dy

= +
+

1
1  (Fig. 2). In the given 

structure, it is necessary to determine the temperature distri-

bution t(y) along the spatial coordinate y, which is obtained 
by solving the heat conduction equation:

d
dy

y
dt
dy

qλ( )







 = − 0,	 (1)

with boundary conditions:

t t y tn0 0( ) = ( ) = ,	 (2)

where t0 is the specified value of the temperature on the 
boundary surfaces of the plate; λ(y) is the thermal conduc-
tivity coefficient of the laminated plate.

 
Fig. 2. Isotropic multilayer plate under the action of internal 

heat sources

An isotropic thermosensitive layered plate is given, in 
which the thermophysical parameters of the materials de-
pend on temperature. The plate has a thickness of 2δ and 
a width of 2l with thermally insulated front surfaces |z| = δ 
and |x| = l. It has uniformly distributed internal heat sources 
with power q0 = const and consists of n layers. Due to ther-
mal sensitivity, the conditions of ideal thermal contact on 
the surfaces of the layers K i ni ( , )= −1 1  are set in the form 

ti = ti+1, λ λi
i

i
it

t
y

t
t
y

( ) ∂
∂

= ( ) ∂
∂+

+
1

1  (Fig. 1). In the given structure,
 

it is necessary to determine the temperature distribution t(y) 
along the spatial coordinate y, which is obtained by solving 
the nonlinear heat conduction equation:

d
dy

y t
dt
dy

qλ , ,( )







 = − 0 	 (3)

with boundary condition (2). Here, λ(y, t) is the coefficient 
of thermal conductivity of the thermosensitive layered plate.

An isotropic two-layer plate with a thickness of 2δ and 
a width of 2l with heat-insulated front surfaces |z| = δ, |x| = l 
is given. It is located in the Cartesian rectangular coor-
dinate system (x, y, z). The plate is heated by uniformly 
distributed heat sources on the surface of the conjugation 
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of layers K x z x z0 0= ( ) < ∞ ≤{ }, , : , δ  with power q0 = const. 
On this surface, there is an ideal thermal contact t1 = t2, 

λ λ1
1

2
2dt y

dy

dt y

dy
( )

=
( )

 for y = 0 (1, 2 – for the first and se

cond layers of the plate, respectively). Boundary condi-
tions of the first kind are set on the boundary surfaces 
K x y z x l z− = −( ) ≤ ≤{ }, , : ,1 δ  and K x y z x l z+ = ( ) ≤ ≤{ }, , : ,2 δ  
of the plate (Fig. 3).

 
Fig. 3. Double-layer plate under the influence 	

of internal heating

For the given structure, the temperature distribution t(y) 
was determined by solving the thermal conductivity equation:

d
dy

y
dt
dy

q yλ δ( )







 = − ( )0 ,	 (4)

with boundary conditions:

t t t t
y y y y=− =−

= =
1 2

1 2, ,	 (5)

where δ(z) is the Dirac delta function. 
An isotropic thermosensitive two-layer plate is gi

ven (Fig. 2). Taking into account thermal sensitivity, the 
conditions of ideal thermal contact are written as t1(y) = t2(y), 

λ λ1
1

2
2t

dt y

dy
t

dt y

dy
( ) ( )

= ( ) ( )
 for y = 0 (1, 2 – for the first and 

second layers of the plate, respectively).
For the given structure, the temperature distribution t(y)  

was determined by solving the nonlinear heat conduc-
tion  equation:

d
dy

t y
dt
dy

q yλ δ, ,( )







 = − ( )0 	 (6)

with boundary conditions (5).

5. Research results related to the process of constructing 
mathematical models of thermal conductivity  

for isotropic layered media

5. 1. Linear mathematical model for determining the 
temperature field in a layered plate with internal heating

The coefficient of thermal conductivity of a layered plate 
is represented in the form:

λ λ λ λy S y yi i i
i

n

( ) = + −( ) −( )+ +
=

−

∑1 1
1

1

,	 (7)

where λi is the coefficient of thermal conductivity of the 
material of the i-th layer ( , )i n= 1  of the plate; S±(ζ) are asym-
metric unit functions:

S± ( ) =
>
=
<






z

z
z
z

1 0

0 5 0 5 0

0 0

, ,

. . , ,

, .



The following function has been introduced:

T y y t y( ) = ( ) ( )λ ,	 (8)

and it was differentiated by the variable y taking into account 
expression (7) for the thermal conductivity coefficient λ(y). 
As a result, the ratio was obtained:

λ λ λ δy
dt
dy

dT
dy

t y y yi i i i
i

n

( ) = − −( ) ( ) −( )+ +
=

−

∑ 1
1

1

,

which made it possible to transform the original equation (1) 
into the following form:

d T
dy

t y y y qi i i i
i

n2

2 1
1

1

0− −( ) ( ) ′ −( ) = −+ +
=

−

∑ λ λ δ .

Here δ z z z+ +( ) = ( )dS d  is Dirac’s asymmetric delta func-
tion, and ′ ( )+δ z  is its derivative.

The general solution to this equation was determined 
from the following relation:

T y t y S y y
q

y c y ci i
i

n

i i( ) = −( ) ( ) −( ) − + ++
=

−

+∑ λ λ1
1

1
0 2

1 22
,	 (9)

and the temperature value on the surfaces of the conjugation 
of the medium layers t(xi) ( , )i n= −1 1  using this expression 
was found in the form:

t y c y c
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Taking into account boundary conditions (2) and rela-
tion (9), the constants of integration c1 and c2 were determined:

c
q

y y

y y

n
i i

i n
i

n

n
i i

i

1
0 1

2 2

1

1

1
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1 1
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+=

−

+

∑λ
λ λ

λ
λ λ nn
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∑
1

1
; c t2 1 0= λ .

As a result, the temperature field in a layered plate with 
uniformly distributed internal heat sources is fully deter-
mined by expression (9).

Analysis of numerical results. Fig. 4 shows the behavior of 
temperature field in the structure of a five-layer assembly of 
a lithium-ion battery, in which the material of the first, third, 
and fifth layers is aluminum (λ1 = λ3 = λ5 = 282 W/(degree·m) 
at a temperature of 627 °C) , and the second and fourth – 
lithium (λ2 = λ4 = 52.9 W/(degree· m) at a temperature of 
627 °C), for the following values of the spatial coordinate y: 
y1 = 0.05 m; y2 = 0.25 m; y3 = 0.3 m; y4 = 0.5 m; y5 = 0.55 m.

As can be seen from Fig. 4, the temperature reaches its 
highest value in the middle aluminum layer and monotoni-
cally decreases as a function of the spatial coordinate y to the 
value t0 = 627 °C, given in the boundary conditions (2).
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Fig. 4. Temperature distribution in the structure of 	
the lithium-ion battery unit for different values of power q0 
of heating sources: 1 – q0 = 250 W/m3; 2 – q0 = 500 W/m3; 

3 – q0 = 750 W/m3; 4 – q0 = 1000 W/m3

The presence of corner points on the curves in the area 
of the inner surfaces of the first and fifth aluminum layers 
of the assembly of lithium-ion batteries indicates a change 
in the temperature field. This phenomenon occurs during 
the transition from a solid phase state (aluminum) to li
quid (lithium).

5. 2. Nonlinear mathematical model for determining the 
temperature field in a layered plate with internal heating

The coefficient of thermal conductivity for a thermosen-
sitive laminated plate is given in the form:

λ λ λ λy t t t t S y yi i i
i

n

, ,( ) = ( ) + ( ) − ( )( ) −( )+ +
=

−

∑1 1
1

1

	 (10)

where λi(t) is the coefficient of thermal conductivity of the 
i-th layer material ( , )i n= 1  of the thermosensitive plate.

A linearizing function has been introduced:

J λ z z

λ z λ z z

y

S y y

t y

i i i
t y

t y

i
i

( ) = ( ) +

+ −( ) ( ) − ( ) 
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( )

( )

∫

∫

1
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d

d
==

−

∑
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1n

,	 (11)

it was differentiated by the variable y and the ratio was ob-
tained:

λ
J

y t
t
y y

, ,( ) ∂
∂

=
∂
∂

taking into account which the original nonlinear heat con-
duction equation (3) is transformed into an ordinary diffe
rential equation of the second order with constant coeffi-
cients relative to the function J(y):

d
dy

q
2

2 0

J
= − ,	 (12)

the general solution to which is defined as:

J y
q

y c y c( ) = − + +0 2
1 22

.

The linearizing function (11) made it possible to transform 
the boundary conditions (2) for determining the integration 
constants c1, c2 into the following form:
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As a result, the solution to the boundary value prob-
lem (12), (13) is obtained:
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.	 (14)

As an example, a two-layer thermosensitive plate is 
given. To solve many practical tasks, the dependence of the 
coefficient of thermal conductivity of structural materials on 
temperature is used in the form:

λ λ= −( )m mk t0 1 ,	 (15)

where λm
0 , km is the reference and temperature coefficients 

of thermal conductivity of materials for the first (m = 1) and 
second (m = 2) layers of the plate. The material of the first 
layer of the plate is silicon, and germanium is chosen for the 
second layer. By interpolation, the temperature dependence 
of the thermal conductivity coefficient in the temperature 
range [0 °C; 1127 °C] for the given materials, as partial 
case (15), is determined from the following ratios:

– for silicon:

λ t t( ) =
⋅

−




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67 9 1 0 0005. . ;
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degree m
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degree

– for germanium:

λ t t( ) =
⋅

−




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60 3 1 0 0008. . .
W

degree m
1

degree

Taking into account these ratios and expressions (11), 
(14) to determine the temperature distribution t(y) in 
the given structure, quadratic equations were obtained for  
the first {(x,y,z): |x| < ∞, 0 ≤ y ≤ y1, |z| ≤ δ}:

λ λ λ J1
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1
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1
0

1
0

0 1 02 2 0k t t t k t y− + −( ) + ( ) = ,	 (16)

and the second {(x,y,z): |x| < ∞, y1 < y ≤ y2, |z| ≤ δ}:

λ λ λ

λ λ

2
0

2
2

2
0

1
0

0 1 0

1 2
0

2 1 1
0

1

2 2

2 2

k t t t k t

t y k t y k t y

− + −( ) +

+ ( ) − ( )( ) − − 11 0( )( )  + ( ) =J y ,	 (17)

layers of the plate and on the surface of their conjugation  
K1 = {(x,y1,z): |x| < ∞, |z| ≤ δ}:
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where

J y y q y y
y
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1 12 2= − ( )( ) − − ( )( )λ λk t y k t y .

Based on numerical calculations, the behavior of the tem-
perature field t(y) in a two-layer plate is depicted in Fig. 5. For 
constant values of the coefficient of thermal conductivity for 
the structural materials of the plate: λ1 = 67.9 W/(degree·m),  
λ2 = 60.3 (W/(degree·m) at a temperature of 27 °C, curve 1  
is shown. For a linearly variable coefficient of thermal conduc-
tivity from the temperature, curve 2 is shown. The values of the  
power of the internal heat sources q0 and the temperature t0 
on the boundary surfaces of the plate are equal to 200 W/m3 
and 100 °C. The values of the thickness of the plate layers are 
chosen as y1 = 0.2 m and y2 = 0.4 m. As can be seen from Fig. 4, 
the curves describing the temperature t(y) as a function of the 
spatial coordinate y are continuous without corner points on 
the surface of the conjugation of layers, where the conditions 
of ideal thermal contact are specified.

 

Fig. 5. Temperature distribution t (y) in an isotropic two-layer 
plate for linear (curve 1) and nonlinear (curve 2) models

This testifies to the correctness of mathematical models, 
both linear and non-linear. The numerical experiment con-
firms that taking into account the thermal sensitivity leads 
to a decrease in the temperature values t(y) for the given 
materials of the plate layers.

5. 3. Linear mathematical model for determining the 
temperature field in a two-layer plate with internal heating

The coefficient of thermal conductivity for a two-layer 
plate is represented in the form:

λ λ λ λy S y( ) = + −( ) ( )−1 2 1 ,	 (19)

where λ1, λ2 are thermal conductivity coefficients of the 1st 
and 2nd layers of the plate, respectively.

The function (8) was introduced, it was differentiated 
with respect to the variable y taking into account expression 
(19) for the thermal conductivity coefficient λ(y). As a re-
sult, the ratio is obtained:

λ λ λ δy
dt
dy

dT
dy

t y( ) = − −( ) ( ) ( )−2 1 0 ,

taking into account which the original equation (4) is trans-
formed into the following form:

d T
dy

t y q y
2

2 2 1 00= −( ) ( ) ′ ( ) − ( )−λ λ δ δ ,

which is integrated and its general solution is obtained as  
a result:

T y t S y y c q S y c( ) = −( ) ( ) ( ) + − ( )( ) +−λ λ2 1 1 0 20 .

The use of boundary conditions (5) made it possible to 
obtain a solution to problem (4), (5) in the form:

T y
y y t y q t y y t

y y

yq S
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0
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yy t S y( )+ −( ) ( ) ( )−λ λ2 1 0 .

Using this solution, the relationship for determining  
the temperature t(y) in the first layer of the plate (–y1 ≤ y < 0) 
is obtained:

t y
y y t y q t y y t

y y
( ) =

+( ) + − −( ) ( )  + −( )
+( )

1 2 2 2 0 2 1 2 1 1

1 1 2
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,	(20)

on the conjugation surface of the plate layers (y = 0):

t
y t y q y t

y y
0 1 2 2 2 0 2 1 1

1 2 2 1

( ) =
+( ) +

+
λ λ

λ λ
,	 (21)

and in the second layer of the plate (0 ≤ y ≤ y2):

t y

y y t y q t y y t
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+( ) +1 2 2 2 0 2 1 2 1 1
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λ
2 1 0

2

0t yq
. 	 (22)

The resulting expressions (20) to (22) describe the tem-
perature field in an isotropic two-layer plate, which is heated 
by internal heat sources concentrated on the surface of the 
layer junction.

5. 4. Nonlinear mathematical model for determining the 
temperature field in a two-layer plate with internal heating

The coefficient of thermal conductivity for a thermosen-
sitive two-layer plate is given in the form:

λ λ λ λy t t t t S y, ,( ) = ( ) + ( ) − ( )  ( )−1 2 1

where λ1(t), λ2(t) are thermal conductivity coefficients of the 
1st and 2nd layers of the thermosensitive plate, respectively.

A linearizing function has been introduced:

J λ z z λ z λ z zy S y
t

t

t

t

( ) = ( ) + ( ) ( ) − ( ) ∫ ∫−1 2 1

1 0

d d ,	 (23)

it was differentiated by the variable y, and as a result the ratio 
was obtained:
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λ
J

t y
dt y

dy

d y

dy
, ,( ) ( )

=
( )

using which equation (6) is reduced to an ordinary linear 
differential equation of the second order with constant coef-
ficients and a singular right-hand side relative to the linea
rizing function J(y):

d
dy

q y
2

2 0

J
δ= − ( ),	 (24)

with boundary conditions:
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Equation (24) was integrated, and the general solution is 
obtained in the following form:
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where t0 = t(0).
The material of the first and second layer of the plate 

is U12 and 08 steel, respectively. In the temperature range 
[0 °C; 700 °C] the temperature dependence of the thermal 
conductivity coefficient on temperature for these materials is 
determined by interpolation of the relations:

λ1 47 5 1 0 00037t t( ) =
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
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. . .
W

degree m
1

degree
	 (27)

Taking into account expressions (22), (25), and (26) to 
determine the temperature distribution t(y) in the given struc-
ture, quadratic equations were obtained for the first:
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and the second:
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layers of the plate and on the surface of the conjugation 
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Numerical calculations of the temperature field t(y) 
were performed for the linear model (constant coefficient 
of thermal conductivity of the materials of the plate layers; 
λ1 = 38.7 W/(degree∙m), λ2 = 48.7 W/(degree∙m)) according 
to the formulas (20) to (22) (Fig. 6, curve 1).

The temperature distribution for the nonlinear model 
is determined by solving quadratic equations (28) to (30). 
In this model, the coefficient of thermal conductivity of 
the materials of the plate layers, which varies linearly with 
temperature, is expressed by relations (27). The results are 
shown in Fig. 6 (curve 2); in this case, y1 = y2 = 1 m.

°C

m

Fig. 6. Dependence of temperature t on coordinate y 	
for constant (curve 1) and linearly variable (curve 2) 
coefficient of thermal conductivity of the materials 	

of plate layers

The behavior of the curves indicates the correspondence 
of the mathematical model to the real physical process, since 
on the surfaces of the plate layer conjugation (y = 0) we 
observe the fulfillment of the conditions for ideal thermal 
contact (there is no temperature jump). The results obtained 
for the selected materials based on the linear dependence of 
the coefficient of thermal conductivity on temperature differ 
from the results obtained for a constant coefficient of thermal 
conductivity by 15 %.

6. Discussion of research results related  
to the constructed mathematical models for determining 

temperature fields in layered environments

The boundary value problems of thermal conductivity are  
stated in accordance with the real physical process, which is 
given in the considered environments. As a result, differen-
tial equations of heat conduction and boundary conditions 
rigorously describe mathematical models of the stationary 
process of heat conduction, which correspond to the cor-
responding physical models. The shape of the curves in 
Fig. 4–6, which are constructed on the basis of determined 
numerical values of temperature as a function of the spatial 
coordinate, obtained using analytical solutions to boundary 
value problems, testifies to the correspondence of the results 
to the physical process. This is confirmed by the smoothness 
of the temperature function along the spatial coordinate, the 
presence of corner points due to the phase transition in the 
layered structure, and the fulfillment of the given boundary 
conditions on the boundary surfaces of the medium.

In our studies, the theory of generalized functions was 
used, which made it possible to effectively describe the stra
tification of environments and local temperature disturban
ces, as a result of which the obtained differential equations 
contain singular right-hand parts. For the linearization of 
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nonlinear boundary value problems (2), (3), and (5), (6), 
linearizing functions (11) and (23) were introduced, respec-
tively, which made it possible to effectively obtain the cor-
responding linear boundary value problems (12), (13), and 
(24), (25). Subsequently, this made it possible to derive qua-
dratic equations (16) to (18) and (28) to (30), the solutions 
to which determine the temperature distribution, which is 
geometrically represented in Fig. 5, 6.

It should be noted that the reviewed works did not con-
sider an approach for linearization of boundary value prob-
lems of thermal conductivity for thermosensitive media by 
an analytical method. In contrast to [2], in which a homoge-
neous environment is considered, and the use of the Kirch-
hoff transformation made it possible to linearize the boun
dary value problem. In our studies, new linearizing functions 
were introduced; by applying them to nonlinear problems, 
their analytical solutions were effectively obtained. And 
this, in turn, leads to a minimal error in the obtained results, 
in contrast to the use of numerical methods, which was not 
achieved in [3, 4]. The use of generalized functions makes it 
possible to effectively describe thermophysical parameters 
for layered media, which leads to the solution of one differ-
ential equation of heat conduction with a singular right-hand 
side, which was not done in [1].

The current studies concern only the stationary process 
of heat conduction, and these studies were performed for lay-
ered media. In the future, such studies can be continued for 
layered media with foreign inclusions, for non-stationary heat 
conduction processes, as well as for anisotropic layered media.

Since the architecture of modern electronic devices in-
cludes separate heat-active nodes and their elements in the 
form of structures with foreign inclusions, there is a need 
to construct mathematical models of the heat conduction 
process. These models can be linear or nonlinear for isotro-
pic layered media containing foreign heat-active inclusions.  
As a result, the given mathematical models of heat conduc-
tion are simplified, but they make it possible to build more 
complex mathematical models of the heat conduction process 
for composite media based on them.

Based on the obtained analytical solutions to both linear 
and nonlinear boundary value problems of heat transfer, it is 
proposed to develop computational algorithms and software 
tools for their numerical implementation. This will make it pos-
sible to carry out research for a number of materials used in the 
process of designing digital electronic devices, regarding the ef-
fect of their thermal sensitivity on the temperature distribution.

It is proposed to take into account the thermal sensitivity 
of structural materials, which significantly complicates the 
process of solving the corresponding nonlinear boundary va
lue problems of thermal conductivity. The sought-after solu-
tions to these problems describe the temperature behavior as 
a function of spatial coordinates somewhat more adequately 
to the real physical process.

Our study was carried out for a stationary heat conduc-
tion process, as a result of which the constructed models are 
limited, as they allow determining the temperature change 
only by spatial coordinate. Heat conduction problems con-
tain boundary conditions of the first kind at the boundary 
surfaces of media, which is a disadvantage, although this does 
not reduce the generality of research.

Further research may involve the construction of mathe-
matical models for determining temperature fields in layered 
media for the non-stationary process of heat conduction and 
for more complex boundary conditions.

7. Conclusions

1. A linear mathematical model for determining the 
temperature field, and subsequently for the analysis of 
thermal regimes in layered structures of electronic devices 
due to internal heating, has been built. An analytical solu-
tion to the boundary value problem was obtained and on 
its basis the behavior of the temperature as a function of  
the spatial coordinate for a five-layer structure was deter-
mined graphically.

2. A non-linear mathematical model for determining 
the temperature field, and subsequently for the analysis of 
thermal regimes in thermosensitive layered structures of 
electronic devices due to internal heating, has been built.  
A linearizing function was introduced, using which a non-
linear boundary value problem is linearized. On this basis, 
quadratic equations for determining the temperature were 
derived for the linear dependence of the thermal conduc-
tivity coefficient of the layer materials. They determine the 
temperature in a two-layer structure both inside the layers 
and on their conjugation surface. The temperature behavior 
as a function of the spatial coordinate is graphically displayed 
both for constant values of the thermal conductivity coeffi-
cient and for a linearly variable one.

3. A linear mathematical model for determining the tem-
perature field, and subsequently for the analysis of thermal 
regimes in two-layer structures of electronic devices due 
to their internal heating on the surface of the conjugation 
of layers, has been built. Analytical solutions to the linear 
boundary value problem were obtained, which determine 
the temperature in the layers of the structure and on their 
surfaces of conjugation.

4. A nonlinear mathematical model has been construc
ted for determining the temperature field, and subse-
quently for the analysis of thermal regimes in two-layer 
thermosensitive structures of electronic devices due to 
their internal heating on the surface of the layer junction.  
A linearizing function was introduced, using which a  non-
linear boundary value problem is linearized. On this basis, 
for the linear dependence of the coefficient of thermal 
conductivity of the materials of the layers, quadratic 
equations were derived for determining the temperature 
in a two-layer structure both inside the layers and on their 
mating surface. The behavior of the temperature as a func-
tion of the spatial coordinate is graphically displayed both 
for constant values of the thermal conductivity coefficient 
and for a linearly variable one. The results obtained for the 
selected materials based on the linear dependence of the 
coefficient of thermal conductivity on temperature differ 
from the results obtained for a constant coefficient of ther-
mal conductivity by 15 %.

Conflicts of interest

The authors declare that they have no conflicts of interest 
in relation to the current study, including financial, personal, 
authorship, or any other, that could affect the study, as well 
as the results reported in this paper.

Funding

The study was conducted without financial support.



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 4/5 ( 130 ) 2024

44

Data availability

All data are available, either in numerical or graphical 
form, in the main text of the manuscript.

Use of artificial intelligence

The authors confirm that they did not use artificial intel-
ligence technologies when creating the current work.

References

1.	 Havrysh, V. I. (2021). Mathematical Models of the Temperature Field in Heat-sensitive Elements of Electronic Devices. Electronic 

modeling, 43 (6), 19–33. https://doi.org/10.15407/emodel.43.06.019 

2.	 Shevchuk, V. A. (2024). Methodology of Investigations of the Thermal Stressed State of Bodies with Thin Multilayer Coatings. 

Journal of Mathematical Sciences, 278 (5), 780–794. https://doi.org/10.1007/s10958-024-06961-0 

3.	 Protsiuk, B. V. (2023). Nonstationary Problems of Heat Conduction for a Thermosensitive Plate with Nonlinear Boundary Condi-

tion on One Surface. Journal of Mathematical Sciences, 272 (1), 135–150. https://doi.org/10.1007/s10958-023-06405-1 

4.	 Zhuravchak, L. M., Zabrodska, N. V. (2020). Using of partly-boundary elements as a version of the indirect near-boundary ele

ment method for potential field modeling. Mathematical Modeling and Computing, 8 (1), 1–10. https://doi.org/10.23939/

mmc2021.01.001 

5.	 Zhuravchak, L. (2019). Mathematical Modelling of Non-stationary Processes in the Piecewise-Homogeneous Domains by Near-Boun

dary Element Method. Advances in Intelligent Systems and Computing, 64–77. https://doi.org/10.1007/978-3-030-33695-0_6 

6.	 Zhao, Y., Zhou, J., Guo, M., Xu, Y. (2024). Equivalent thin-layer temperature field model (ETTM) for bolted rotors to describe 

interface temperature jump. International Journal of Heat and Mass Transfer, 222, 125086. https://doi.org/10.1016/j.ijheatmas-

stransfer.2023.125086 

7.	 Breukelman, H. J., Santofimia, M. J., Hidalgo, J. (2023). Dataset of a thermal model for the prediction of temperature fields during 

the creation of austenite/martensite mesostructured materials by localized laser treatments in a Fe-Ni-C alloy. Data in Brief, 48, 

109110. https://doi.org/10.1016/j.dib.2023.109110 

8.	 Zhang, W., Wu, M., Du, S., Chen, L., Hu, J., Lai, X. (2023). Modeling of Steel Plate Temperature Field for Plate Shape Control in 

Roller Quenching Process. IFAC-PapersOnLine, 56 (2), 6894–6899. https://doi.org/10.1016/j.ifacol.2023.10.493 

9.	 Filipov, S. M., Farag , I., Avdzhieva, A. (2023). Mathematical Modelling of Nonlinear Heat Conduction with Relaxing Boundary 

Conditions. Lecture Notes in Computer Science, 146–158. https://doi.org/10.1007/978-3-031-32412-3_13 

10.	 Evstatieva, N., Evstatiev, B. (2023). Modelling the Temperature Field of Electronic Devices with the Use of Infrared Thermog-

raphy. 2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE). https://doi.org/10.1109/

atee58038.2023.10108375 

11.	 Liu, H., Yu, J., Wang, R. (2023). Dynamic compact thermal models for skin temperature prediction of portable electronic devices 

based on convolution and fitting methods. International Journal of Heat and Mass Transfer, 210, 124170. https://doi.org/10.1016/ 

j.ijheatmasstransfer.2023.124170 

12.	 Bianco, V., De Rosa, M., Vafai, K. (2022). Phase-change materials for thermal management of electronic devices. Applied Thermal 

Engineering, 214, 118839. https://doi.org/10.1016/j.applthermaleng.2022.118839 

13.	 Mathew, J., Krishnan, S. (2021). A Review On Transient Thermal Management of Electronic Devices. Journal of Electronic Packaging. 

https://doi.org/10.1115/1.4050002 

14.	 Zhou, K., Ding, H., Steenbergen, M., Wang, W., Guo, J., Liu, Q. (2021). Temperature field and material response as a function of rail grind-

ing parameters. International Journal of Heat and Mass Transfer, 175, 121366. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121366 

15.	 Zhang, Q., Song, H., Gao, C. (2023). The 3-D problem of temperature and thermal flux distribution around defects with tempera-

ture-dependent material properties. Thermal Science, 27 (5 Part B), 3903–3920. https://doi.org/10.2298/tsci221003028z 

16.	 Song, H., Song, K., Gao, C. (2019). Temperature and thermal stress around an elliptic functional defect in a thermoelectric material. 

Mechanics of Materials, 130, 58–64. https://doi.org/10.1016/j.mechmat.2019.01.008 

17.	 Havrysh, V., Kochan, V. (2023). Mathematical Models to Determine Temperature Fields in Heterogeneous Elements of Digital 

Devices with Thermal Sensitivity Taken into Account. 2023 IEEE 12th International Conference on Intelligent Data Acquisition 

and Advanced Computing Systems: Technology and Applications (IDAACS). https://doi.org/10.1109/idaacs58523.2023.10348875 

18.	 Havrysh, V. I., Kolyasa, L. I., Ukhanska, O. M., Loik, V. B. (2019). Determination of temperature field in thermally sensitive lay-

ered medium with inclusions. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 76–82. https://doi.org/10.29202/

nvngu/2019-1/5 

19.	 Havrysh, V., Ovchar, I., Baranetskyj, J., Pelekh, J., Serduik, P. (2017). Development and analysis of mathematical models for the 

process of thermal conductivity for piecewise uniform elements of electronic systems. Eastern-European Journal of Enterprise Tech-

nologies, 1 (5 (85)), 23–33. https://doi.org/10.15587/1729-4061.2017.92551 

20.	 Havrysh, V. I., Kosach, A. I. (2012). Boundary-value problem of heat conduction for a piecewise homogeneous layer with foreign 

inclusion. Materials Science, 47 (6), 773–782. https://doi.org/10.1007/s11003-012-9455-4 

21.	 Gavrysh, V., Tushnytskyy, R., Pelekh, Y., Pukach, P., Baranetskyi, Y. (2017). Mathematical model of thermal conductivity for piece-

wise homogeneous elements of electronic systems. 2017 14th International Conference The Experience of Designing and Applica-

tion of CAD Systems in Microelectronics (CADSM). https://doi.org/10.1109/cadsm.2017.7916146 


