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depends on a complex interplay of variables, including hole 
inclination, angle, hole and drill pipe diameter, drill pipe 
rotation speed, drill pipe eccentricity, penetration speed, 
the characteristics of the cuttings (e. g., particle size and 
rock porosity), and the properties of the drilling fluid (e. g., 
flow rate, fluid velocity, flow regime, drilling fluid type, and 
non-Newtonian fluid rheology). Key factors for optimizing 
well cleanup include a sound drilling plan, appropriate mud 
properties, and extensive drilling experience [3–5].

Despite ongoing research into well cleaning techniques, 
several unresolved challenges remain. A key area of con-
cern is the optimization of drilling fluid parameters such as 
density, viscosity, and transport speed to ensure efficient 
removal of cuttings. Numerous studies have emphasized 
the importance of developing and applying new models and 
techniques for predicting optimal drilling fluid parameters. 
For instance, in this work [4] demonstrated the significance 
of drilling fluid parameters for effective cleaning of vertical 
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The object of the study is effective well 
cleaning during drilling. The subject of the study 
is the development of a machine learning model 
based on a neural network for predicting the 
optimal minimum drilling fluid flow rate. The 
challenge is the need to improve well cleaning 
efficiency to prevent stuck pipes and the 
associated downtime and costs.

During the study, a neural network model 
was developed and tested to predict the minimum 
flow rate for cleaning wells. The model was 
trained and tested on data showing its high 
accuracy and reliability. The mean square 
error (MSE) reached 0.019169 for LSTM and 
0.0828 for GRU, indicating the accuracy of the 
predictions. Neural network architectures such 
as Long-Short Term Memory (LSTM) and Gated 
Recurrent Unit (GRU) were used to efficiently 
process time series of data and consider long-
term dependencies.

The results are explained using advanced 
neural network architectures and machine 
learning algorithms, which made it possible to 
achieve good accuracy of predictions. These 
architectures enable efficient model training 
on large amounts of data, allowing complex 
dependencies and influencing factors to be 
considered. 

Distinctive features of the results include 
good accuracy of predictions and the ability 
to use the model in real-world conditions. The 
model demonstrates good performance and 
reliability in predicting the minimum flow rate.

The results of the study can be used to 
optimize the processes of well drilling. Practical 
applications include using the model to predict the 
optimal minimum flow rate in various conditions, 
which will reduce the risks of stuck pipes and 
increase the efficiency of drilling operations. The 
model can be integrated into existing monitoring 
and control systems for drilling processes to 
improve their performance
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1. Introduction

The topic of wellbore cleaning during drilling operations 
is of critical importance to the oil and gas industry, partic-
ularly due to the significant impact of stuck pipe incidents. 
Stuck pipe is a common, unplanned event that accounts for 
at least 25 % of non-productive time (NPT), equating to the 
annual cost of two drilling years [1]. The duration of a stuck 
pipe incident can vary significantly, from a few days to more 
than a month, during which additional repair costs-such as 
tool retrieval, lost tools, and workaround expenses-are often 
incurred [2]. Therefore, optimizing wellbore cleaning to 
prevent such incidents is not only relevant but essential for 
reducing operational costs and improving drilling efficiency.

Ineffective cleaning of the wellbore from drill cuttings is 
one of the primary causes of stuck pipe. This issue can arise 
at various stages of drilling, particularly in horizontal and 
directional wells. The efficiency of cuttings transportation 
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show that effective wellbore cleanout under these conditions 
requires careful management of drilling fluid properties and 
flow rate. They also highlight the difficulties in maintaining 
effective wellbore cleanout as borehole diameter and inclina-
tion increase, leading to increased drilled solids concentra-
tions and potential plugging. The research focuses on clean-
ing in large and high-angle wells but points out the difficulty 
in maintaining cleaning efficiency as borehole inclination 
and diameter increase, leading to unresolved challenges in 
managing increased cuttings concentration.

This paper [12] discusses the implementation of intelli-
gent action planning and automation in well construction 
operations. It is shown that automated systems can improve 
wellbore cleanout efficiency by dynamically adjusting drill-
ing parameters in response to real-time data. However, the 
complexity of developing and integrating such systems pres-
ents significant challenges. However, significant challenges 
remain in developing and integrating intelligent systems ca-
pable of making real-time adjustments to drilling parameters 
based on dynamic conditions.

This study [13] explores the use of machine learning 
models to optimize wellbore cleanout parameters. It is shown 
that these models can provide accurate predictions and ad-
justments to drilling fluid properties, but their application is 
still limited by the need for large amounts of data and com-
putational resources. Although promising, challenges persist 
in the need for large datasets and computational resources to 
improve model accuracy and practical application.

This review [14] provides a detailed analysis of wellbore clea-
nout challenges and strategies in horizontal wells. The review 
highlights the importance of understanding the interactions 
between drilling fluids and wellbore conditions and identifies 
gaps in current knowledge that need to be addressed through 
further research. This paper identifies gaps in understanding 
the interaction between drilling fluids and wellbore conditions 
in horizontal wells, however further research is needed to op-
timize drilling fluid properties across diverse well conditions.

This study [15] discusses the development of adaptive 
systems for real-time wellbore cleanout problem detection. 
The study shows that adaptive algorithms can significantly 
improve wellbore cleanout problem detection and resolution, 
but their effectiveness depends on the quality of real-time 
data and the robustness of the underlying models. However, 
the challenge lies in ensuring the robustness of these algo-
rithms and improving the quality of real-time data.

This paper [16] presents an automated model for real-time 
wellbore cleanout performance evaluation. The study demon-
strates that such models can significantly improve the rate 
of penetration (ROP) by optimizing drilling parameters and 
making timely interventions based on real-time data. The im-
plementation of these models shows potential to reduce operat-
ing costs and improve drilling efficiency, but further research 
is required to refine them and validate their effectiveness in 
various drilling scenarios. Even though this study presents a 
real-time model for evaluating wellbore cleaning performance, 
yet there are unresolved challenges in refining the model’s 
accuracy for various wellbore conditions and validating its 
effectiveness in diverse field scenarios.

Despite advances in wellbore cleanout, there remain un-
resolved issues related to the optimal combination of drilling 
fluid properties, flow rates, and real-time adjustments re-
quired to maintain effective wellbore cleanout under varying 
wellbore conditions. The reasons for these unresolved issues 
can be attributed to several factors, including:

wells, while authors [6] highlighted the role of drilling fluid 
rheology and annulus velocity in well cleaning under various 
conditions. Furthermore, this study [7] combined Larsen mod-
els and Moore’s correlation to predict the minimum flow rate 
required for cuttings removal in wells with different inclina-
tions. Authors [8] used artificial neural networks to model well 
conditions and predict cuttings concentrations, showcasing the 
potential of machine learning to improve prediction accuracy.

However, significant challenges persist in optimizing 
well cleaning processes, particularly in the face of complex 
drilling conditions, the high costs associated with research 
and field experiments, and the limitations of existing models 
and correlations, which may not fully account for the com-
plexities encountered in real-world drilling scenarios.

As drilling operations become more complex and effi-
ciency requirements increase, efficient well cleanup becomes 
critical to reduce costs and prevent accidents. Traditional 
methods of calculating the minimum flow rate often fail to 
cope with the multitude of factors and complex nonlinear 
dependencies. In this regard, the use of machine learning, in 
particular neural networks, is becoming a relevant technol-
ogy to address this problem, providing more accurate pre-
dictions and improving the efficiency of drilling processes.

2. Literature review and problem statement

In this paper [4] authors discuss the challenges associat-
ed with effective wellbore cleaning in vertical drilling. It is 
shown that wellbore cleaning efficiency is highly dependent 
on several parameters such as drilling mud density, viscosity, 
pour point, and transport velocity. The study highlights that 
inadequate wellbore cleaning can lead to serious operational 
problems including slower drilling rates, increased costs, and 
the risk of pipe jamming due to accumulation of drilled par-
ticles in the annulus and on the borehole walls. This paper 
highlights the relationship between drilling mud properties 
and wellbore cleaning efficiency. However, unresolved chal-
lenges include the precise optimization of fluid properties 
under varying conditions, such as borehole diameter, incli-
nation, and fluid dynamics in different well configurations.

This paper [9] discusses the application of artificial 
intelligence to predicting drilled particle concentrations in 
non-vertical wells. It is shown that machine learning models 
can significantly improve the accuracy of predicting drilled 
particle transport, however, challenges remain in integrating 
these models in real-time and taking into account complex 
conditions at depth. The study discusses the use of artificial 
intelligence in predicting drilled particle concentrations but 
identifies gaps in real-time integration of AI models, partic-
ularly under complex conditions at greater depths.

This study [10] discusses the use of mud flushes to im-
prove wellbore cleaning efficiency in non-vertical wells. It 
has been shown that flushes can effectively remove drilled 
solids, but their effectiveness depends on factors such as 
fluid properties, flow rate, and borehole geometry. The study 
highlights the unresolved issues associated with optimizing 
flush parameters for different borehole conditions. This work 
examines the impact of mud flushes on wellbore cleaning. 
While the study provides insight into the effectiveness of 
flushes, the unresolved challenge is optimizing flush param-
eters for various well conditions and fluid properties.

This paper [11] presents comprehensive analyses of well-
bore cleanouts in large and high-angle wells. These studies 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/2 ( 131 ) 2024

78

simplifications was to reduce the data prediction range from 0 
to 1 so that the model could better and more accurately predict 
the behavior of the curve on the graph. 

In this study, various neural network architectures 
were employed to predict the optimal minimum flow rate of 
drilling fluid required for effective wellbore cleaning. The 
architectures were selected based on their ability to handle 
complex time-series data and nonlinear relationships, which 
are characteristic of drilling operations. The primary ar-
chitectures used in this research are Feed-Forward Neural 
Networks (FNN), Long Short-Term Memory (LSTM) net-
works, and Gated Recurrent Unit (GRU) networks.

Feed-Forward Neural Network. Classification. Using this 
neural network architecture, let’s aim to identify potential 
complications in the flow rate during drilling. To achieve this, 
the output data to range from 0 to 1 was configured, where 
0 indicates minimum possible flow rate for hole cleaning and 
1 indicates the maximum possible flow rate for hole cleaning.

Let’s utilize the leaky ReLU activation function for the 
input and hidden layers, and the sigmoid function for the 
output layer. Additionally, the binary cross-entropy loss 
function and the Adam optimizer to train the model were 
employed. The loss function measures the discrepancy be-
tween the model’s predictions and the actual values, with the 
objective of minimizing this error during training.

Selecting the appropriate loss function depends on the 
specific machine learning task, whether it is classification, 
regression, or another type of problem. Similarly, choosing 
the right optimizer is crucial, as it updates the model’s 
weights based on the calculated gradients of the loss func-
tion, thereby minimizing the loss.

There are several optimizers available, each with distinct 
characteristics. Some of the most commonly used optimizers 
include Stochastic Gradient Descent (SGD), Adam, and 
RMSprop, among others. Each optimizer has its own ad-
vantages and disadvantages depending on the nature of the 
problem and the structure of the model.

Using binary cross-entropy to create a classification model 
is nothing more than an optimizer for the model. The classifi-
cation model in this case is not used as a way to classify, say, a 
bad well cleanup from a good one. Moreover, our task implies 
obtaining data of fluid flow rate from depth and other various 
factors, i.e. there is no classification. The use of classification 
models was needed only to reduce the range of data that the 
model has to predict. For example, if to use an ordinary model, 
it will need to predict numbers from 0 to infinity, since the fluid 
flow rate can be anything but negative. However, when using a 
classification model, it is possible to narrow the range of data 
to be predicted, from 0 to 1. Then the model can be trained 
to predict the data. However, this is still not classification in 
our understanding, because the data are not 0 and 1, but from 
0 to 1, i. e. they can be 0.75, 0.33, 0.553235 and so on. However, 
you may ask: “but how are you going to use this data for real 
cases, you are not going to use 0.66 liters to clean a well”. For 
this purpose 2 more models were created that predict the min-
imum possible flow rate and the maximum possible flow rate 
(more precisely scroll down below, so everything is described 
in detail), and then by matching that 0 from the classification 
model is the minimum predicted flow rate, and 1 is the maxi-
mum predicted flow rate. 

The following Fig. 1 illustrates the number of neurons 
and layers used in the model.

The binary cross-entropy loss function was utilized, 
which is appropriate for binary classification tasks. The 

– objective difficulties associated with accurately modeling 
and predicting fluid dynamics in real-world drilling conditions;

– principles the general impossibility of achieving a uni�-
versal solution due to the variability of wellbore conditions 
and drilling environment;

– high costs of implementing advanced drilling fluid sys�-
tems and monitoring technologies, making complex studies 
and adjustments in real time economically challenging.

One option to overcome these difficulties may be the 
integration of machine learning and artificial intelligence 
methods for dynamic optimization of drilling parameters. 
This approach is explored in several papers, where the au-
thors propose to use machine learning models to predict and 
adjust drilling fluid properties in real time, which improves 
well cleaning efficiency and reduces operational risks. How-
ever, the implementation of such technologies is in the early 
stages, and further research is required to improve them and 
test their effectiveness in various drilling scenarios.

All this allows to state that it is worthwhile to conduct 
a study devoted to the development of a comprehensive re-
al-time well cleaning optimization system for drilling opera-
tions. This research will focus on integrating advanced com-
putational models, real-time data collection and machine 
learning techniques to create a robust system for predicting 
and adjusting drilling parameters, thereby improving well 
cleaning efficiency and reducing operational risks.

3. The aim and objectives of the study 

The aim of this study is to predict the optimal minimum 
flow rate for effective hole cleaning in drilling operations, 
thereby preventing pipe sticking.

To achieve this aim, the following objectives are accom-
plished:

– to create a model that accurately predicts the minimum 
flow rate of drilling mud necessary for efficient hole cleaning;

– to validate the accuracy and reliability of the devel-
oped neural network using real-world field data.

4. Materials and Methods

4. 1. Object and hypothesis of the study
The object of the study is effective well cleaning during 

drilling. The subject of this study is the models themselves 
and the process of model creation.

The main hypothesis of the study is to possibility of building 
a neural model or models to predict the minimum flow rate for 
cleaning the borehole. The main assumption in the dataset that 
was used to train the models. The logical question here would 
be “will the model be universal for all wells or will it be only for 
wells from one field?”. The fact is that depending on the field, 
the physical properties of the rock may differ from each other, 
and accordingly the minimum flow rate will be quite different. 
Another of the assumptions in the data that were collected in 
one dataset. For the model to be able to train and find relation-
ships between the proposed data and the data we want to get, 
it is necessary that these data can be different from each other, 
otherwise the model may be trained incorrectly. Therefore, it is 
possible to select those data that differed from well to well, but 
the assumption is that these data may not be indirectly or at all 
related to those characteristics that really affect the minimum 
flow rate This is a simplification. Another of the model training 
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Adam optimizer, known for its efficiency in handling sparse 
gradients and its suitability for large datasets, was used to 
minimize the loss function. 

To get accuracy results about 
our model we need to use the 
model.evaluate method and the 
mean_squared_error method 
from the sklearn library.

As for precision and recall 
metrics, they are most often used 
for tasks where it is necessary to 
find certain classes – i.e. classi-
fication task. There is no clas-
sification task, and besides, the 
obtained data is continuous, i.e., 
it can be in the range from 0 to 1, 
not 0 and 1. This was explained  
in the paragraph above.

Feed-forward neural network 
(all real numbers). This version 
of the FNN was developed to 
predict continuous, real-valued 
outputs instead of binary classi-
fications, providing precise flow 
rate predictions.

Fig. 2 shows visualization of 
the model.

As illustrated, the mod-
el consists of four dense layers. 
The first layer contains 11 input 
nodes, followed by the second 
layer with 8 nodes, the third layer 
with 16 nodes, and finally, a sin-
gle output node.

In the compile function, 
let’s use the mean squared er-
ror (MSE) as the loss metric 
and Adam as the optimizer, with 
a learning rate set to 0.1. The 
learning rate is a crucial tunable 
parameter in the optimization al-
gorithm, determining the step 
size at each iteration as the mod-
el moves toward minimizing the 
loss function.

The learning rate plays a sig-
nificant role in finding the opti-
mal weights and minimizing the 
loss for the model. If the learning 
rate is set too low, the model 
would require an exceptionally 
long time to train, as the weight 
updates would be minimal, po-
tentially causing the model to 
stall in its training process. On 
the other hand, if the learning 
rate is too high, the model might 
“overshoot” the global minimum 
of the loss function, leading to 
undertraining or overtraining.

Through experiments with 
various learning rates, it is pos-
sible to determine that a learning 
rate of 0.1 is optimal for training 

this model, providing a good balance between training time 
and model accuracy.

 
 

  Fig. 1. Forward neural network architecture (output range from 0 to 1)

 
 

  Fig. 2. Forward neural network architecture



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/2 ( 131 ) 2024

80

Long-short term memory (LSTM). Recurrent Neural Net-
work. The LSTM network was implemented to capture long-
term dependencies in the time-series data, which are crucial 
for accurately predicting flow rates over extended periods of 
drilling operations.

Recurrent neural network – a type of neural network where 
the connections between elements form a directed sequence. 
This makes it possible to process series of events in time or 
sequential spatial chains. Unlike multilayer neural networks, 
recurrent networks can use their internal memory to process 
sequences of arbitrary length. Therefore, RNNs are applica-
ble in such tasks: speech recognition, time-series prediction, 
etc. [17]. Fig. 3 shows how recurrent neuron looks.

In the diagram above, the 
fragment of the neural network  
takes the input value inputt and 
returns the value outputt. The 
presence of feedback allows to 
transfer information from one 
step of the network to another.

A recurrent network can be 
thought of as multiple copies of 
the same network, each pass-
ing information to a subsequent 
copy. This is what happens if to 
deploy a recurrent network. The 
next Fig. 4 shows the disclosed 
recurrent neuron.

The next figure, Fig. 5, illus-
trates the design of the LSTM 
neural network. 

To create the LSTM network, it is possible to start with 
11 LSTM units. The output from the LSTM layer is then 
passed to a traditional Deep Neural Network (DNN), and 
finally, it is possible to obtain the output through a sigmoid ac-
tivation function. Since it is possible to use a sigmoid activation 
function in the output node, our outputs will range from 0 to 1.

Normalization across the FNN [0:1], LSTM, and GRU mod-
els was implemented. When predicting data, the results are de-
normalized from the 0 to 1 range back to their real-world values. 
In parallel to the main neural networks, two additional neural 
networks were developed to predict the minimum and maximum 
possible flow rates. These values are then used for denormaliza-
tion, ensuring that our predictions reflect the true range of 
flow rates from the minimum to the maximum possible values.

 

 
  

Fig. 4. The Disclosed Recurrent neural network

 

 
 

  Fig. 5. Long-short term memory network architecture

 
  

Fig. 3. A single recurrent unit
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For compiling the model, let’s select RMSprop as our 
optimizer with a learning rate of 0.01, and use Mean Squared 
Error (MSE) as the loss function.

It is possible to train the model for 500 epochs with a batch 
size of 8. Through experimentation, it was found that 500 ep-
ochs provided the optimal balance, as the model consistently 
performed best around this point. Although with 1000 and 
1500 epochs were also experimented, it was not possible to 
observe significant improvements beyond 500 epochs.

Gated recurrent unit (GRU) Networks. The GRU network 
was chosen as a simpler and faster alternative to LSTM while 
still maintaining the ability to process sequential data effectively.

A gated recurrent unit (GRU) is a type of recurrent neural 
network (RNN) that is similar to the Long Short-Term Mem-
ory (LSTM) architecture. Developed in 2014, GRU was de-
signed to simplify and speed up the training process compared 
to LSTM, while still maintaining much of its effectiveness, 
particularly in data sequence processing tasks.

Unlike LSTM, GRU does not have a separate long-term 
cell state. Instead, GRU uses update and reset gates to modu-
late the past state and new input data. At each step, the hidden 

state is updated, allowing information to propagate throughout 
the network.

Similar to LSTM, GRU does not utilize a distinct memory 
cell. Instead, it updates the hidden state directly. The model deter-
mines how much of the previous hidden state should be retained 
using an update gate, which integrates new and prior information.

The update gate creates a new hidden state based on the 
data received from the reset gate, which controls how much of 
the past state is needed for the current input. This mechanism 
provides GRU with enhanced control over the flow of data.

To update its state, GRU employs various mathematical 
operations, such as the sigmoid function for the gates and the 
hyperbolic tangent function to generate new state candidates. 
These operations enable GRU to manage the data flow dynam-
ically and effectively [8].

Fig. 6 below illustrates the key differences between 
Recurrent Neural Networks (RNN), Long Short-Term 
Memory (LSTM), and Gated Recurrent Unit (GRU) ar-
chitectures, highlighting the distinct characteristics and 
functionalities of each model.

Fig. 7 illustrates the design of the GRU network. 
 

 
  Fig. 6. Comparison of recurrent neural network vs. long-short term memory vs. gated recurrent unit [14]

 
 

  Fig. 7. Gated recurrent unit network architecture
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This figure highlights the similarities in architecture 
between GRU and LSTM, showcasing how both models 
are structured to efficiently handle sequential data while 
addressing challenges like long-term dependencies.

The GRU architecture shown above has been reduced 
by a factor of 4, as displaying the actual number of neurons 
would have made the illustration too large to fit properly.

For compiling the model, binary cross-entropy was se-
lected as the loss metric and Adam as the optimizer, with a 
learning rate of 0.0001.

4. 2. Data preparation and training
The data used for training the neural networks was 

sourced from both real-world field measurements and simu-
lated data representative of typical drilling operations. The 
dataset included key drilling parameters such as flow rate, 
wellbore depth, drill pipe rotation speed, and properties of 
the drilling fluid, all of which influence the efficiency of 
wellbore cleaning.

Data normalization. To ensure that all input features con-
tributed equally to the model’s learning process, the data was 
normalized. This step was crucial for preventing any single fea-
ture from dominating the learning process due to its scale. The 
normalization process involved scaling the input data to a range 
between 0 and 1, which is particularly important for neural net-
works as it speeds up convergence and improves performance.

At the bottom is the equation used to convert the nor-
malized values to actual values:

min

max min

,ix x
x

x x
−=
−  

			    (1)

where xmin – 11.73; xmax – 36.06; xi – predicted (range 0–1).
The xmin and xmax are the values that were predicted by 

the two separate neural networks that are trained to find 
the maximum possible and minimum possible flow rate for 
the given depth.

Training process. The models were trained using a su-
pervised learning approach, where the model weights were 
iteratively updated using the backpropagation algorithm. 
Different numbers of epochs and batch sizes were employed 
to optimize the training process. After extensive experimen-
tation, the best results were achieved using 500 epochs and 
a batch size of 8 for the LSTM model, as this configuration 
provided a good balance between training time and model 
performance. The training data was split into training and 
validation sets, where the model was trained on the training 
set and validated on the validation set to ensure that it could 
generalize to new, unseen data.

Model evaluation. During training, the model’s perfor-
mance was continuously monitored using loss values. Let’s 
aim to minimize the loss function as much as possible to 
improve the model’s predictive accuracy. After training, the 
model’s performance was further evaluated using a separate 
test set, which was not involved in the training process. This 
holdout validation approach ensured that the model’s predic-
tive capabilities were assessed in a realistic scenario.

4. 3. Model evaluation metrics
The performance of the neural networks was evaluated 

using several key metrics, each chosen to provide insights 
into different aspects of model performance.

Mean squared error (MSE). MSE was used to quantify 
the average squared differences between the actual and pre-

dicted values [18]. It is a standard metric for regression tasks, 
where lower MSE values indicate better predictive accuracy. 
For the models developed in this study, MSE was particularly 
critical in assessing how well the models could predict flow 
rates that are essential for effective wellbore cleaning:

( )2

1

1
,

n

actual redictedMSE y y
n

= −∑ 			   (2)

where n – number of observations; yactual – actual represents 
the actual values; ypredicted – predicted represents the pre-
dicted values.

Basically, the lower value of MSE the better. 
Accuracy. Accuracy was calculated as the ratio of cor-

rectly predicted instances to the total number of instances. 
This metric was particularly relevant for the classification 
tasks handled by the Feed-forward neural network [0:1]. 
While accuracy is less commonly used in regression tasks, it 
was still computed to provide a general sense of the model’s 
ability to make correct predictions:

.predicted

actual

y
Accuracy

y
=  				    (3)

Loss. The loss function provided a direct measure of 
how well the model’s predictions matched the actual values 
during training. Lower loss values indicate that the model 
is making fewer errors. For each neural network, the loss 
during training was monitored to ensure that the model was 
learning effectively and not overfitting to the training data.

5. Results predicting the optimal minimum flow rate for 
effective hole cleaning 

5. 1. Results of models
Feed-Forward Neural Network [0:1]. The Feed-Forward 

Neural Network (FNN) designed for binary classification 
performed adequately in predicting potential complications 
in flow rates. The model achieved an MSE of 0.023135, in-
dicating a relatively low error margin in its predictions. The 
accuracy was recorded at 44 %, which, while modest, is rea�-
sonable considering the binary nature of the task. The loss 
value was observed to be 0.059, suggesting that the model’s 
predictions were fairly close to the actual outcomes. Fig. 8 
illustrates the validation results for the feed-forward neural 
network [0:1], highlighting the distribution of predicted 
versus actual values. 

As seen in the Fig. 8, the model’s predictions are general-
ly consistent with the actual data, although there is room for 
improvement in accuracy.

Feed-forward neural network (all real numbers). The 
feed-forward neural network (all real numbers) was tasked 
with predicting continuous values for the flow rate. This 
model exhibited a significantly higher MSE of 19.1819, in-
dicating a larger deviation from actual values. This suggests 
that predicting real-valued outputs in this context is chal-
lenging, likely due to the complexity of the underlying data 
and the limitations of the model in capturing all influencing 
factors. The loss was recorded at 0.0, which is unexpected 
and suggests potential issues with model training or data 
preprocessing. Fig. 9 provides a visual representation of the 
Feed-Forward Neural Network’s performance, showing the 
comparison between predicted and actual flow rates.
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The Fig. 9 demonstrates that while the model can 
follow the general trend of the data, it struggles with 
precise predictions, particularly in regions with com-
plex flow dynamics.

Long-short term memory (LSTM). The Long-short 
term memory (LSTM) network, designed to handle 
sequential data, performed well in predicting the flow 
rates. The model achieved an MSE of 0.019169, one of 
the lowest among all models tested, indicating high 
predictive accuracy. The loss value was similarly low 
at 0.019, reflecting the model’s ability to effectively 
capture long-term dependencies in the data. Fig. 10 
displays the LSTM model’s performance, showing the 
predicted values alongside the actual values. 

The tight alignment between the two sets of 
values highlights the LSTM’s strength in handling 
time-series data, making it a robust choice for re-
al-time applications in drilling operations.

Gated recurrent unit (GRU). The gated recur-
rent unit (GRU) model, designed as a more stream-

lined alternative to LSTM, showed moderate perfor-
mance [19]. The MSE for the GRU model was 0.0828, 
which is higher than that of the LSTM but still within 
an acceptable range for predictive tasks. The loss value 
was 0.5297, indicating that while the model is capable, 
it may not capture all the nuances of the drilling data 
as effectively as the LSTM. Fig. 11 provides a visual 
summary of the GRU model’s results, comparing the 
predicted flow rates with the actual values. 

The Fig. 11 shows that the GRU model generally 
follows the data trends but with less precision than 
the LSTM model, particularly in complex regions of 
the dataset.

Combined neural networks analysis. To enhance 
prediction accuracy, the outputs from all neural 
networks were combined. This approach aimed to 
create a more generalized model by averaging the 
predictions from the different networks. The com-
bined model was found to smooth out the errors ob-
served in individual models, leading to more reliable 
predictions across the depth range. Fig. 12 shows the 
process of denormalization applied to the network 
outputs, translating the normalized predictions back 
into real-world values. 

The Fig. 12 clearly depicts the transition from 
model output to actionable data, which can be direct-
ly applied in drilling operations.

Fig. 13 consolidates the predictions from all the 
neural networks into a single plot, allowing for a 
direct comparison of their performances. The plot 
indicates that while individual models may show 
variations, their combined output provides a more 
consistent and reliable prediction.

Finally, Fig. 14 presents the generalized plot cre-
ated by averaging the outputs of all neural networks.

By obtaining the results from all neural networks, 
denormalizing the results and then creating the com-
bining all models into one Fig. 15 and then creating 
the generalized plot in Fig. 16.

This final model is recommended for use in drill-
ing operations due to its balanced performance, cap-
turing both the general trend and specific details 
across the entire dataset.

 
 

  Fig. 8. Feed-forward neural network [0:1] results

 
 

  Fig. 9. Feed-forward neural network plot
 

 
 

  Fig. 10. Long-short term memory (LSTM) plot
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  Fig. 11. Gated recurrent unit (GRU) plot
 

 
  a                                                                                                            b

Fig. 12. Denormalization process: a – prediction plot [0:1] before; b – prediction plot after

 
  

Fig. 13. All Neural Networks combined
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5. 2. Validation of neural network accuracy 
using real-world data

To evaluate the accuracy of the neural networks, 
the dataset was split into training and test sets. The 
test set was used to validate the models, ensuring 
that their predictions were accurate and generalizable 
to new data. The following tables present the valida-
tion results for each neural network model.

Feed-forward neural network [0:1]. Table 1 pro-
vides the validation results for the feed-forward 
neural network [0:1]. The model’s performance is 
assessed using metrics such as mean squared er-
ror (MSE), accuracy, and loss. 

Table 1

MSE, accuracy, and loss values for FFNN [0:1]

Metric Value

MSE 0.023135

Accuracy 0.44

Loss 0.059

These metrics indicate the model’s ability to 
predict binary outcomes related to flow rate com-
plications.

Feed-forward neural network (all real numbers). 
The validation results for the feed-forward neural 
network designed to predict continuous values are 
shown in Table 2. 

Table 2

MSE, accuracy, and loss values for FFNN 	
(all real numbers)

Metric Value

MSE 19.1819

Accuracy 19.1819

Loss 0.0

This Table 2 includes the MSE, accuracy, and 
loss values, reflecting the model’s performance in 
predicting real-valued flow rates.

Long-short term memory (LSTM) network. Ta-
ble 3 presents the validation results for the LSTM 
model. 

Table 3

MSE, accuracy, and loss values for (LSTM) network

Metric Value

MSE 0.019916

Accuracy 0.0592

Loss 0.0199

The Table 3 shows the MSE, accuracy, and 
loss values, highlighting the model’s effectiveness 
in handling time-series data and predicting flow 
rates.

Gated recurrent unit (GRU) network. The GRU 
model’s validation results are summarized in Table 4. 
The Table 4 includes MSE and loss values, providing 
insights into the model’s performance in predicting 
flow rates with a simpler architecture compared to 
the LSTM.

 

 
 

  Fig. 14. Generalized plot of neural networks
 

 
 

  Fig. 15. Results of artificial well
 

 
 

  Fig. 16. Generalized plot of neural networks
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Table 4

MSE and loss values for GRU network

Metric Value

MSE 0.0828

Loss 0.5297

Generalized plot of neural networks. Finally, Table 5 
shows the MSE results for the generalized plot, which com-
bines the predictions of all neural networks. 

Table 5

MSE for generalized plot

Metric Value

MSE 10.739

This Table 5 illustrates the overall accuracy achieved by 
averaging the outputs of the individual models.

6. Discussion of received predicted minimum flow rate for 
hole cleaning 

The findings from this study indicate that the developed 
neural network models, particularly the long short-term 
memory (LSTM) and gated recurrent unit (GRU) models, 
provide accurate predictions for the minimum flow rate nec-
essary for efficient hole cleaning in drilling operations.

The LSTM model’s superior performance, with a mean 
squared error (MSE) of 0.019169, can be attributed to its 
ability to retain information over extended periods, effec-
tively capturing long-term dependencies in time-series data. 
This capability is critical for predicting drilling parameters 
that are influenced by historical data. The LSTM’s effective-
ness in understanding dynamic changes in drilling condi-
tions over time allows for more precise predictions, making it 
particularly suitable for complex drilling scenarios (Table 3 
and Fig. 10).

Similarly, the GRU model also demonstrates solid per-
formance with an MSE of 0.0828. The GRU model balances 
accuracy and computational efficiency, thanks to its simpler 
architecture compared to LSTM. This simplicity results in 
faster training times and lower computational costs, making 
the GRU model well-suited for real-time applications where 
quick adjustments are necessary (Table 4 and Fig. 11). The 
difference in MSE values between the LSTM and GRU 
indicates that while both models are effective, the LSTM’s 
more complex structure offers a slight edge in accuracy, 
particularly for datasets with more extensive temporal de-
pendencies.

The neural network models developed in this study, 
including LSTM and GRU, offer significant improvements 
over traditional prediction models used in drilling opera-
tions. Traditional models often struggle with the non-linear 
relationships inherent in drilling data, whereas the advanced 
architectures of our neural network models are better 
equipped to capture these complexities. This capability leads 
to more accurate predictions across various drilling condi-
tions, which is crucial for enhancing operational efficiency 
and minimizing risks, such as pipe sticking (Tables 3, 4).

Compared to existing models, our approach has several 
advantages. Firstly, the adaptability of neural networks 
allows for real-time data integration, enabling dynamic ad-

justments to drilling operations as conditions change. This 
contrasts with traditional static models that require manual 
recalibration and are less responsive to sudden changes in 
drilling conditions. Moreover, by incorporating machine 
learning techniques, our models continuously improve as 
more data becomes available, further enhancing their predic-
tive accuracy and operational applicability.

The solutions developed in this study directly address 
the core problem identified in Section 2: the need for an 
accurate and reliable method to predict the optimal flow 
rate of drilling mud to enhance hole cleaning efficiency 
and prevent pipe sticking. By employing LSTM and GRU 
models, the study provides a robust solution that effective-
ly captures the complex, non-linear relationships between 
drilling parameters and hole cleaning efficiency, offering sig-
nificant improvements over traditional models (Fig. 10, 11). 
Additionally, by averaging the outputs of multiple models, a 
more accurate and reliable prediction was achieved, as this 
approach mitigates the errors that individual models might 
make at certain depths (Fig. 14).

The high predictive accuracy of these models allows 
for better planning and execution of drilling operations, 
reducing the likelihood of equipment failure and minimiz-
ing non-productive time. This demonstrates that the study 
has successfully filled a critical gap in the field, providing a 
valuable tool for drilling engineers.

While this study presents a promising approach to 
predicting drilling parameters, several limitations should 
be considered. One key limitation is the dependency on 
high-quality, comprehensive data for training the neural 
network models. The accuracy of these models is directly 
linked to the quality and diversity of the data available; thus, 
their effectiveness may diminish in environments where such 
data is scarce or incomplete. This suggests that the models 
are best suited for applications where robust data collection 
systems are in place, and continuous monitoring is feasible.

Another limitation is that the models were developed 
and tested primarily under specific geological conditions. 
Therefore, their generalizability to other regions with dif-
ferent geological characteristics may be limited without 
further calibration or retraining. While the models provide 
high accuracy within their training scope, significant ad-
justments may be required to maintain effectiveness in new 
environments.

Beyond the identified limitations, the study also has 
some shortcomings that could impact the practical appli-
cation of its findings. One major shortcoming is that the 
models do not currently incorporate all potential variables 
that could affect drilling operations, such as unexpected 
geological anomalies or equipment malfunctions. The exclu-
sion of these variables could lead to less accurate predictions 
in scenarios where such factors play a significant role. Addi-
tionally, the computational demands of running LSTM and 
GRU models, especially in real-time applications, may pose 
challenges in field settings with limited resources.

There is also a concern about the risk of overfitting to 
the specific training data. If the dataset used to train the 
models is not sufficiently diverse, the models may perform 
well on the training data but fail to generalize to new data. 
This overfitting could limit the models’ practical utility, 
necessitating ongoing validation and tuning to maintain 
performance across different drilling operations.

Future research should focus on expanding the dataset to 
include a broader range of geological conditions and drilling 
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scenarios, enhancing the models’ generalizability and reduc-
ing the risk of overfitting. Additionally, incorporating more 
variables into the models, such as real-time equipment per-
formance data and indicators of geological anomalies, could 
further improve their predictive capabilities.

Exploring alternative neural network architectures or 
developing hybrid models that combine machine learn-
ing techniques with traditional physics-based approaches 
could also enhance prediction accuracy and computational 
efficiency. Furthermore, research into optimizing these 
models for real-time applications, possibly through hard-
ware accelerations like edge computing devices, could 
facilitate their practical deployment in diverse drilling 
environments.

The findings from this study indicate that the developed 
neural network models, particularly the Long Short-Term 
Memory (LSTM) and Gated Recurrent Unit (GRU) mod-
els, provide accurate predictions for the minimum flow rate 
necessary for efficient hole cleaning in drilling operations.

The LSTM model’s superior performance, with a Mean 
Squared Error (MSE) of 0.019169, can be attributed to its 
ability to retain information over extended periods, effec-
tively capturing long-term dependencies in time-series data. 
This capability is critical for predicting drilling parameters 
influenced by historical data. The LSTM’s effectiveness in 
understanding dynamic changes in drilling conditions over 
time allows for more precise predictions, making it partic-
ularly suitable for complex drilling scenarios (Table 3 and 
Fig. 10). In contrast to traditional linear models like those 
used in previous studies [2], which often fail to capture these 
temporal dependencies, the LSTM model leverages its re-
current architecture to continuously update its predictions, 
resulting in more accurate and reliable outputs.

Similarly, the GRU model demonstrates solid perfor-
mance with an MSE of 0.0828. This balance between accu-
racy and computational efficiency is crucial for real-time ap-
plications. The GRU model’s simpler architecture allows for 
faster training times and lower computational costs, making 
it particularly suitable for real-time applications where quick 
adjustments are necessary (Table 4 and Fig. 11). When 
compared with Support Vector Machines (SVM) models, 
such as those discussed by [8] in the context of fiber sweeps 
for hole cleaning, the GRU model’s adaptability to dynamic 
drilling conditions presents a significant advantage.

The neural network models developed in this study, 
including LSTM and GRU, offer significant improvements 
over traditional prediction models. Traditional approaches, 
such as those detailed by [3] for optimizing hole cleaning 
in horizontal wells, often struggle with the non-linear rela-
tionships inherent in drilling data. In contrast, the advanced 
architectures of our neural network models are better 
equipped to capture these complexities, leading to more 
accurate predictions across various drilling conditions. This 
capability is crucial for enhancing operational efficiency and 
minimizing risks, such as pipe sticking (Tables 3, 4).

Compared to existing SVM-based models, which require 
extensive data preprocessing and feature selection [8], our 
LSTM and GRU models handle sequential dependencies and 
real-time data integration with greater ease. These neural 
network models continuously improve as more data becomes 
available, further enhancing their predictive accuracy and 
operational applicability. This contrasts with static models, 
which are less responsive to sudden changes in drilling con-
ditions and require manual recalibration, as noted by [4].

The solutions developed in this study directly address 
the core problem identified in Section 2: the need for an 
accurate and reliable method to predict the optimal flow 
rate of drilling mud to enhance hole cleaning efficiency 
and prevent pipe sticking. By employing LSTM and GRU 
models, the study provides a robust solution that effective-
ly captures the complex, non-linear relationships between 
drilling parameters and hole cleaning efficiency, offering sig-
nificant improvements over traditional models (Fig. 10, 11). 
Additionally, by averaging the outputs of multiple models, a 
more accurate and reliable prediction was achieved, as this 
approach mitigates the errors that individual models might 
make at certain depths (Fig. 14).

The high predictive accuracy of these models allows 
for better planning and execution of drilling operations, 
reducing the likelihood of equipment failure and minimiz-
ing non-productive time. This demonstrates that the study 
has successfully filled a critical gap in the field, providing a 
valuable tool for drilling engineers.

While this study presents a promising approach to 
predicting drilling parameters, several limitations should 
be considered. One key limitation is the dependency on 
high-quality, comprehensive data for training the neural 
network models. The accuracy of these models is directly 
linked to the quality and diversity of the data available; thus, 
their effectiveness may diminish in environments where such 
data is scarce or incomplete. This suggests that the models 
are best suited for applications where robust data collection 
systems are in place, and continuous monitoring is feasible.

Another limitation is that the models were developed and 
tested primarily under specific geological conditions. There-
fore, their generalizability to other regions with different 
geological characteristics may be limited without further cali-
bration or retraining. While the models provide high accuracy 
within their training scope, significant adjustments may be 
required to maintain effectiveness in new environments.

Beyond the identified limitations, the study also has 
some shortcomings that could impact the practical appli-
cation of its findings. One major shortcoming is that the 
models do not currently incorporate all potential variables 
that could affect drilling operations, such as unexpected 
geological anomalies or equipment malfunctions. The exclu-
sion of these variables could lead to less accurate predictions 
in scenarios where such factors play a significant role. Addi-
tionally, the computational demands of running LSTM and 
GRU models, especially in real-time applications, may pose 
challenges in field settings with limited resources.

There is also a concern about the risk of overfitting to 
the specific training data. If the dataset used to train the 
models is not sufficiently diverse, the models may perform 
well on the training data but fail to generalize to new data. 
This overfitting could limit the models’ practical utility, 
necessitating ongoing validation and tuning to maintain 
performance across different drilling operations.

Future research should focus on expanding the dataset to 
include a broader range of geological conditions and drilling 
scenarios, enhancing the models’ generalizability and reduc-
ing the risk of overfitting. Additionally, incorporating more 
variables into the models, such as real-time equipment per-
formance data and indicators of geological anomalies, could 
further improve their predictive capabilities.

Exploring alternative neural network architectures or 
developing hybrid models that combine machine learning 
techniques with traditional physics-based approaches could 
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also enhance prediction accuracy and computational effi-
ciency. Furthermore, research into optimizing these models 
for real-time applications, possibly through hardware accel-
erations like edge computing devices, could facilitate their 
practical deployment in diverse drilling environments.

During the development of various neural network models, 
one of the key challenges encountered was related to model 
training. At a certain point, the models reached a stage where 
further training did not significantly improve their perfor-
mance, indicating that the results had plateaued. This high-
lights the critical importance of the quality of the data used for 
training. High-quality, comprehensive datasets are essential for 
achieving the best possible outcomes when developing neural 
networks for applications in the oil and gas industry.

To optimize the effectiveness of neural network models 
in drilling operations, it is advisable to use the largest and 
most accurate datasets available. Moreover, the model’s 
universality can be significantly enhanced by incorporating 
data from diverse geographic locations, reflecting various 
geological conditions. This approach ensures that the model 
is exposed to a wide range of scenarios, improving its ability 
to generalize and perform accurately in different settings. 
Since the geology can vary greatly across different regions, 
collecting data from multiple parts of the world is crucial for 
developing a robust and reliable model.

Once a neural network model, or a set of models, is 
successfully developed-as demonstrated in this study – it 
can be implemented either as standalone software or inte-
grated into existing systems. However, this process requires 
the expertise of a software development team or software 
engineers to ensure that the implementation is smooth and 
effective. It’s important to note that, as this study did not 
extend into the implementation phase, the recommendations 
provided here are based on theoretical understanding and 
may need further validation during practical deployment.

To enhance overall drilling efficiency, it is recommended 
to integrate the neural network model into existing monitor-
ing and control systems. This integration will enable real-time 
adjustments to drilling fluid parameters, optimizing the hole 
cleaning process. By continuously monitoring and predicting 
the optimal flow rates, drilling operations can achieve higher 
efficiency, reduce non-productive time, and lower operational 
costs. The implementation of this model provides a proactive 
approach to managing drilling challenges, ensuring smoother 
operations and improved productivity. Also, it is worth men-
tion that these models can be retrained with better dataset 
and for given field, thus increasing the accuracy.

In conclusion, the neural network model developed in 
this study offers a significant advancement in predicting the 
optimal minimum flow rate for effective hole cleaning. Its 
validated accuracy and practical recommendations for im-
plementation make it a valuable tool for enhancing drilling 
operations and achieving better overall efficiency. 

7. Conclusions

1. The neural network model developed in this study 
effectively predicts the minimum flow rate required for 
efficient hole cleaning. By leveraging advanced architec-
tures such as long short-term memory (LSTM) and gated 
recurrent unit (GRU), the model accurately captures the 
complex, nonlinear relationships between various drilling 
parameters and the efficiency of hole cleaning. The results 
demonstrate that the model can handle time-series data, 
making it suitable for real-time applications in dynamic 
drilling environments.

2. The model’s accuracy and reliability were validated 
using real-world field data. The mean square error (MSE) 
values obtained-0.019169 for LSTM and 0.0828 for 
GRU-indicate high predictive accuracy. The validation 
process confirmed that the model could reliably predict the 
necessary flow rates under different drilling conditions, 
thereby minimizing the risk of stuck pipes and associated 
downtime. The robust performance across varied datasets 
highlights the model’s potential for broader application in 
the industry.
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