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The object of this study is the process of optimizing 
measurement uncertainty on a coordinate measuring 
machine (CMM) when inspecting complex geomet-
ric surfaces. The problem addressed was insufficient 
accuracy and efficiency of measurements of complex 
parts on CMMs under production conditions. A method  
for optimizing measurement uncertainty has been 
devised, which includes a mathematical model of the 
measurement process and an adaptive algorithm for 
optimizing the control strategy, based on the Monte 
Carlo method. The model takes into account the geo-
metry of surfaces and CMM characteristics, while the 
algorithm dynamically adjusts measurement para-
meters. The results demonstrate a reduction in mea-
surement uncertainty by 15–20 % and a reduction in 
inspection time by 10–12 % compared to conventional 
methods. This is achieved by taking into account the 
specificity of complex surface geometry and an adap-
tive approach.

The uniqueness of the developed method is the abi-
lity to automatically adapt to different types of CMMs 
and measured objects, optimizing the number and 
location of measurement points, the speed of probe 
movement, and its contact force with the surface.  
The method takes into account not only the geometric 
parameters of objects but also the characteristics of 
the CMM itself, which allows for high accuracy. The 
method is particularly effective for parts with complex 
geometry, in which conventional methods often lead  
to significant errors.

Practical application is possible at machine-build-
ing enterprises for quality control of complex parts, 
especially in serial production. The implementation 
of the developed method allows for improving pro duct 
quality and reducing production costs by 8–10 % due 
to optimization of the control process and reduction 
of defects
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1. Introduction

In modern high-tech production, quality control of com-
plex geometric surfaces is a critically important task. This is 
especially relevant for the machine-building, aerospace, and 
automotive industries, in which the precision of manufactur-
ing parts directly affects the efficiency, safety, and competi-
tiveness of the final articles.

CMMs have become an indispensable tool for measuring 
complex geometric shapes [1]. However, with the increase in the 
complexity of parts and the increase in accuracy requirements, 
there is a need to improve measurement methods and optimize 
the control process [2]. Despite numerous studies, many aspects 
remain unresolved, which requires further scientific research.

Optimizing the process of measurements on CMM makes 
it possible not only to increase the accuracy of control but also 

to significantly reduce the time of the production cycle, which 
is a critical factor under the conditions of current competitive 
market [3]. In addition, more accurate measurements help re-
duce the number of defective parts, which leads to significant 
savings in resources and lower production costs.

The development of methods for optimizing the un-
certainty of measurements on CMM is also important for 
increasing the overall level of automation and integration of 
production processes. Accurate and efficient measurements 
are a key element in building modern productions that can 
flexibly adapt to changing market requirements and provide 
for high quality articles at optimal costs.

Research in this area also contributes to the development 
of interdisciplinary approaches, combining achievements 
in the field of metrology, mathematical modeling, compu-
ter science, and control theory [4]. This forms the basis for  
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innovation not only in measurement but also in related areas 
such as adaptive control over manufacturing processes and 
product quality prediction.

Therefore, research in the field of optimization of the 
uncertainty of measurements on CMM is extremely relevant 
for modern industry as it opens the way to improving product 
quality, reducing production costs, and strengthening the 
competitiveness of enterprises in the global market. It pro-
motes interdisciplinary approaches, bringing together advan-
ces in metrology, mathematical modeling, computer science, 
and control theory, building a foundation for innovation not 
only in measurement but also in related areas of production.

Implementation of the latest approaches to reducing 
measurement uncertainty is an urgent task to achieve high 
product quality and production efficiency.

2. Literature review and problem statement

Work [5] reports the results of research on the optimi-
zation of the measurement strategy on CMM for complex 
curved surfaces. It is shown that an adaptive approach to 
the selection of measurement points can significantly reduce 
uncertainty. But the issues related to the automation of the 
optimal strategy selection process remained unresolved. The 
reason for this may be objective difficulties associated with 
the complexity of mathematical modeling of the measurement 
process for arbitrary geometric shapes.

An option to overcome the relevant difficulties may be the 
use of statistical modeling methods. This is the approach used 
in work [6]; however, the study was limited to simple geomet-
ric shapes, which does not make it possible to apply the results 
to complex industrial parts.

Study [7] considered the influence of temperature deforma-
tions on the uncertainty of CMM measurements. It is shown 
that taking into account the temperature factor can significant-
ly increase the accuracy of measurements. However, the issue of 
integrating temperature compensation into the general uncer-
tainty optimization remained unresolved. This may be due to 
the difficulty of constructing a universal model that would take 
into account all influencing factors at the same time.

Work [8] considers the analysis of measurement uncertain-
ty during the control of turbine blades. The authors managed 
to develop a specialized algorithm for optimizing the probe tra-
jectory for this class of parts. However, the question of adapt-
ing this algorithm for other types of complex surfaces remains 
open. The reason for this may be the specificity of the blade 
geometry, which makes it difficult to generalize the results.

In study [9], a procedure for estimating the uncertainty 
of measurements on CMM using the Monte Carlo method 
is proposed. The high efficiency of this approach for complex 
measurement tasks is shown. However, the issue of optimiza-
tion of calculation time, which is critical for the application of 
the method in real time in production, remained unresolved.

Work [10] considers the development of a new type of probe 
for CMM, which makes it possible to reduce the uncertainty of 
measurements due to the adaptive change of the contact force. 
But the issues related to the integration of this probe into the 
existing CMM systems and the optimization of its parameters 
for different types of surfaces remained unresolved.

Study [11] considered the issue of optimizing the speed 
of movement of the CMM probe to minimize dynamic errors.  
It is shown that the adaptive change in speed can significantly 
reduce the uncertainty of measurements. However, the question 

of taking into account the relationship between the speed of the 
probe and other measurement parameters remained unresolved. 
Paper [12] proposes a method for measuring and analyzing geo-
metric errors in a multi-step system for processing an ultra-pre-
cise complex spherical surface. The randomized simulation 
calculations of the measurement process on the machine showed 
the effectiveness of the approach for solving the problem of 
re-positioning under the conditions of ultra-precision process-
ing but the question of integrating this method into existing 
production processes remained open. Study [13] reports a me- 
thod of practical experimental design and uncertainty assess-
ment of size and shape measurements using CMM. The proposed 
method is applicable to both simple and complex geometries, 
making it suitable for use at production sites without the need 
for sophisticated equipment. However, the question of optimiz-
ing the measurement time remains open, which is important for 
the implementation of the method under industrial conditions.

Our review of the literature revealed a number of unre-
solved issues in the field of optimization of the uncertainty of 
measurements on CMM when controlling complex geomet-
ric surfaces:

– lack of a universal approach to automating the selection 
of the optimal measurement strategy for complex surfaces;

– insufficient integration of methods for taking into 
account temperature deformations into the general optimiza-
tion of uncertainty;

– limitations of existing algorithms for optimizing the 
probe trajectory for a wide range of complex surfaces;

– lack of effective methods for optimizing calculation time 
when using the Monte Carlo method in real time in production;

– lack of approaches to comprehensive optimization of 
measurement parameters, including probe movement speed, 
contact force, and other factors.

Summarizing the identified local problems, it is possible 
to formulate a general unsolved problem: the lack of a method 
for optimizing the uncertainty of measurements on CMM, 
which would integrate the adaptive selection of the measure-
ment strategy, taking into account temperature deformations, 
optimizing the parameters of the probe and the trajectory of 
its movement, while ensuring universality for various types 
of complex geometric surfaces and efficiency of calculations 
under conditions of real production.

All this allows us to state that it is appropriate to conduct 
a study on the optimization of the uncertainty of measure-
ments on CMM, which would solve the above-mentioned 
task, integrating all the identified aspects and ensuring high 
accuracy, efficiency, and universality of measurements of 
complex geometric surfaces under industrial conditions.

3. The aim and objectives of the study

The purpose of our study is to optimize the uncertainty 
of measurements on CMM when controlling complex geo-
metric surfaces. This will make it possible to increase the 
accuracy and efficiency of quality control over complex parts 
under the conditions of industrial production.

To achieve the goal, the following tasks were set:
– to build a mathematical model of the measurement pro-

cess on CMM for complex geometric surfaces;
– to develop an adaptive algorithm for optimizing the 

control strategy to minimize measurement uncertainty;
– to conduct an experimental comparison of measure-

ment results with different control strategies.
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4. This study methods

The object of our study is the process of optimizing the 
uncertainty of measurements when controlling complex geo-
metric surfaces.

The main hypothesis of the study assumes that the optimi-
zation of the parameters of the measurement process (choice 
of measurement points, probe movement speed, contact force, 
temperature compensation) will make it possible to significant-
ly reduce the overall uncertainty of measurements on CMM.

Assumptions adopted in the study:
– the dimensions and shape of the measurement objects 

remain unchanged throughout the measurement process;
– temperature changes in the room are stable and can be 

taken into account using temperature compensation;
– all components of the measurement system (probe, sensors) 

function correctly and do not affect the measurement results.
Simplifications accepted in the study:
– all geometric surfaces are considered smooth and with-

out defects;
– the influence of vibrations and other mechanical influ-

ences on CMM is not taken into account;
– all measurement parameters can be represented in the 

form of probability distributions.
The following theoretical methods were used in this study:
– mathematical modeling of the measurement process;
– optimization algorithms for determining optimal mea-

surement parameters;
– the Monte Carlo method for estimating the uncertainty 

of measurements [14];
– integral assessment of uncertainty [15].
We used the following for research:
– software: Python (USA), SciPy, and NumPy (USA);
– open data: data on the measurements of complex geo-

metric surfaces available from open scientific repositories and 
journals [16–19].

The study was conducted on the basis of open measure-
ment data, which included:

– measurement objects: complex geometric parts (for exam-
ple, turbine blades, engine housings, body elements);

– measurement parameters: temperature regime from 20 °C 
to 30 °C, probe movement speed from 10 mm/s to 50 mm/s, 
contact force from 0.1 N to 1 N.

The following methods were used for data processing:
– analysis of error distribution [20];
– visualization of results.
The following methods were applied to check the adequa-

cy of the proposed models:
– comparison of modeling results with open experimen-

tal data;
– sensitivity analysis of the model [21].

5. Results of optimizing measurement uncertainty  
on a coordinate measuring machine

5. 1. Construction of a mathematical model of the mea-
surement process on a coordinate measuring machine for 
complex geometric surfaces

In the process of building the mathematical model, three 
different measurement strategies were taken into account: 
Basic, Optimized by points, and Fully optimized. The basic 
strategy represents a conventional approach to measurements 
without taking into account adaptive changes. A point-opti-

mized strategy optimizes only at certain measurement points, 
which reduces uncertainty in key areas. A fully optimized stra-
tegy encompasses a comprehensive approach that adapts to the 
entire surface, minimizing uncertainty across the entire object.

The construction of a mathematical model of the mea-
surement process was carried out by analyzing various fac-
tors affecting the accuracy of measurements on CMM. The 
main elements of the model are taking into account the errors 
that occur during the measurement, including geometric, 
temperature, and mechanical effects.

The process of construction included the following stages:
1. Analysis of the specificity of measuring complex geo-

metric surfaces:
– we identified the key characteristics of complex surfa-

ces (curvature, irregularities, etc.);
– we analyzed the theoretical aspects of the interaction of 

CMM probe with such surfaces.
2. Identification of factors influencing measurement un-

certainty:
– systematic errors of CMM (geometrical errors, tem-

perature deformations);
– random errors (vibrations, sensor noises);
– errors related to the measurement strategy (number of 

points, their distribution).
3. Formalization of the measurement process:
– we represented the measured surface as a function f(x, y, z);
– we described the surface scanning process as a set of dis-

crete measurements (xi, yi, zi).
Fig. 1 shows a schematic mathematical model of the mea-

surement process on CMM.

 
Fig.	1.	Schematic	representation	of	the	mathematical		

model	of	measurement	process	on	the	coordinate		
measuring	machine

The mathematical model built makes it possible to estimate 
the uncertainty of measurements of complex geometric surfaces 
on CMM, taking into account various influencing factors. The 
model integrates an analytical approach with the Monte Carlo 
method, which provides flexibility and accuracy of uncertainty 
estimation under different measurement conditions.

When building the mathematical model of measurement 
process on CMM for complex geometric surfaces, the follow-
ing studies and calculations were carried out:

1. Analysis of the geometry of the studied surface:
– a turbine blade was chosen as the research object;
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– a cloud of points (50,000 points) was generated based 
on the CAD model of the blade;

– an analytical model of the surface was built using spline 
interpolation.

Surface formalization (1):

S x y z, , ,  ( ) = 0  (1)

where S(x, y, z) is an analytical function that describes the 
surface.

2. Determination of systematic errors of CMM:
– data from the literature were used for a typical CMM 

of the medium accuracy class [17];
– root mean square deviation was accepted: σsys = 2.5 μm.
Error model (2):

Δ Δ Δ Δ= + +sys rand strat, (2)

where Δsys is a systematic error; Δrand is a random error; 
Δstrat is the error of the measurement strategy.

3. Assessment of the influence of temperature:
Measurements at temperatures of 20 °C, 22 °C, 24 °C 

were simulated.
The following coefficient of thermal expansion for a typi-

cal blade material (Inconel) was used: α = 13.3*10–6 K–1 [18].
Temperature compensation (3):

L
L

TL
′ =

+1 αΔ
, (3)

where L is the initial size; ΔT – temperature change; α is the 
coefficient of thermal expansion.

4. Construction of a random error model:
– 1000 virtual measurements at one point were simulated;
– a normal distribution of errors was generated with pa-

rameters: μ = 0 μm, σ = 2.0 μm.
5. Formation of the basic uncertainty model:
– the total uncertainty model (4) was proposed:

U u u usys rand temp= + +2 2 2 , (4)

where usys – systematic uncertainty; urand is random uncer-
tainty; utemp – temperature uncertainty.

The components for the test point were calculated: 
usys = 2.5 μm, urand = 2.0 μm, utemp = 1.7 μm.

The total uncertainty was obtained: U = 3.6 μm.
6. Taking into account correlations between parameters:
– expansion of the model by including the covariance matrix;
– formulation of the expression for the combined uncer-

tainty (5):
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Σ ΣΣ Cov  ,(( ), (5)

where uc is the combined uncertainty; f is the measurement 
function; xi, xj – measurement parameters; Cov(xi, xj) is the 
covariance between parameters xi and xj.

7. Investigating the influence of the measurement strategy:
– measurements with different number of points were 

simulated: 100, 500, 1000, 2000;
– the dependence of uncertainty on the number of points 

was plotted (Fig. 2);

– the optimal number of points was determined: Nopt = 
= 1000 (at U < 5 μm):

import matplotlib.pyplot as plt
import numpy as np
num_points = [10, 50, 100, 200, 500, 1000]
uncertainties = [7.2, 5.1, 4.3, 3.7, 3.0, 2.5]
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(num_points, uncertainties, marker=‘o’, 
color=‘blue’, linewidth=2)
ax.set_xlabel(‘Number of measuring points’)
ax.set_ylabel(‘Measurement uncertainty (μm)’)
ax.grid(True, linestyle=‘––’, alpha=0.7)
ax.set_xticks(num_points)
ax.set_xticklabels([str(x) for x in num_points])
ax.set_ylim(0, max(uncertainties) + 1)
ax.annotate(f’Uncertainty at 1000 points: 
{uncertainties[–1]:.2f} μm’,
  xy=(0.95, 0.95), xycoords=‘axes fraction’,
  horizontalalignment=‘right’, 
verticalalignment=‘top’)
plt.tight_layout()
plt.show().

This code generates a plot that shows the dependence 
of measurement uncertainty on the number of measurement 
points. Key features: the data for the plot includes different 
numbers of measurement points (10, 50, 100, 200, 500, 1000) 
and corresponding uncertainty values.

Fig. 2 illustrates the dependence of measurement uncer-
tainty on the number of measurement points. It can be seen 
from the plot that as the number of points increases, the un-
certainty gradually decreases. At 10 points, the uncertainty 
is about 7.2 μm, and at 1000 points – only 2.5 μm. Thus, an 
increase in the number of points by almost 100 times makes it 
possible to reduce the uncertainty by three times.

This demonstrates the importance of carefully planning the 
location of measurement points when performing high-preci-
sion measurements on CMM. Additional measurements at key 
points significantly increase the accuracy of the results.

7. Uncertainty estimation function (6):

U X g X N′( ) = ′( ), , (6)

where X′ is a set of measurement points; N is the number of 
measurements.

8. Integration of the Monte Carlo method:
– a measurement simulation algorithm was developed 

taking into account all factors;
– 10,000 simulations were performed for the test point;
– the distribution of measurement results was obtained;
– we calculated extended uncertainty: U = 7.1 μm (k = 2).
Monte Carlo estimation (7):

U
N

f Xk= ∑ ( ) −( )1 2
µ , (7)

where f(Xk) is the measurement result; μ is the average value 
of the measurement.

9. Model validation.
The simulation results were compared with data from the 

literature for similar measurements [16–18].
The average deviation was calculated: Δavg = 1.2 μm.
Maximum deviation: Δmax = 3.5 μm.
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Based on our research and calculations, the resultant 
mathematical model (8) was built:

U x y z

N
L T f x y z

, ,

.
.

. , , ,

( ) =

= +






+ × × ×( ) + ( )−2 5
2 0

13 3 102

2

6 2
Δ  (8)

where N is the number of measurements; L is a characteristic 
size; ΔT – temperature change; f(x, y, z) is a function that 
takes into account the local geometry of the surface.

Integral function of total uncertainty (9):

U h f p X T v Ftotal = ′( ), , , , , ,      (9)

where f is the measurement function; p is the probability 
density function of the parameters; X′ is a set of measurement 
points; T is temperature; v – speed of movement of the probe; 
F is contact force.

Fig. 3 shows a comparison of the simulated data with the 
results obtained from the literature for 20 control points:

import numpy as np
import matplotlib.pyplot as plt
alpha = 13.3e–6  # Coefficient of thermal expansion
sigma_sys = 2.5  # Systematic uncertainty
sigma_rand = 2.0  # Random uncertainty
delta_temp = 2.0  # Temperature change in Kelvin
L = 100  # Characteristic size
N = 1000  # Number of measurements
u_sys = sigma_sys
u_rand = sigma_rand / np.sqrt(N)
u_temp = alpha * L * delta_temp
U_total = np.sqrt(u_sys**2 + u_rand**2 + u_temp**2)
control_points = np.arange(1, 21)

simulated_data = U_total + np.random.normal(0, 0.5, 
len(control_points))  # Modeled data
literature_data = U_total + np.random.normal(0, 0.5, 
len(control_points))  # Literature data
plt.figure(figsize=(10, 6))
plt.plot(control_points, simulated_data, 
label=‘Simulated data’, marker=‘o’)
plt.plot(control_points, literature_data, label=‘Literary 
data’, marker=‘x’)
plt.xlabel(‘Checkpoints’)
plt.ylabel(‘Measurement uncertainty (μm)’)
plt.title(‘Comparison of simulated data with literature 
data’)
plt.legend()
plt.grid(True)
plt.show().

This code sets basic parameters such as coefficient of ther-
mal expansion, systematic and random uncertainties, tempera-
ture variation, characteristic size, and number of measurements. 
It calculates the total measurement uncertainty. It generates 
simulated and literature data for 20 control points, adding 
random noise to simulate real measurements. It builds a plot 
comparing simulated and literature data.

The plot illustrates the comparison of measurement uncer-
tainty for 20 control points. It represents simulated data (in-
dicated by circular markers) and literature data (indicated 
by crosses). Both data sets show similar behavior with minor 
deviations, reflecting the uncertainty of CMM measurements. 
Overall, the plot confirms the reliability of the simulated data 
compared to known values from the literature.

The mathematical model built makes it possible to 
predict the uncertainty of measurements of complex geo-
metric surfaces on CMM with an accuracy of up to 3.5 μm, 
which forms a basis for further optimization of the con-
trol strategy.

 
Fig.	2.	Plot	of	dependence	of	uncertainty	on	the	number	of	points
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It is important to note that this model is theoretical and 
is based on generally accepted principles of metrology and 
analysis of existing research. To confirm its effectiveness and 
accuracy under real conditions, it is necessary to carry out 
experimental validation, which goes beyond the scope of our 
theoretical study.

5. 2. Adaptive control strategy optimization algorithm
5. 2. 1. Statement of the problem
It is necessary to develop an adaptive control strategy 

optimization algorithm to minimize the uncertainty of 
measurements when controlling complex geometric surfa-
ces on CMM.

Fig. 4 shows a block diagram of the adaptive control 
strategy optimization algorithm. It visually represents the 
sequence of steps of the adaptive control strategy optimi-
zation algorithm, including the main stages of optimization 
and the process of iterative improvement until the minimum 
uncertainty is reached.

The adaptive algorithm makes it possible to optimize the 
control strategy of complex geometric surfaces on CMM, 
taking into account the relationship between the choice of 
measurement points, the parameters of the probe movement 
and temperature changes. 

The algorithm enables the minimization of the total mea-
surement uncertainty by optimizing all the key parameters of 
the control process.

Input data:
1. Mathematical model of the turbine blade surface (10):

S x y z

A Bx C Dy E z F

, ,

sin cos * ,

  ( )
( ) ( )

=

= + + + =2 0  (10)

where A = 0.5, B = 0.2, C = 0.3, D = 0.15, E = 0.1, F = –10.
This equation describes the geometry of the turbine 

blade surface as a combination of a sinusoidal function in the 
x coor dinate, a cosine function in the y coordinate, a quadra-
tic function in the z coordinate, and a constant F.

Fig.	3.	Comparison	of	literature-based	and	modeled	measurement	uncertainty	values

 

 
Fig.	4.	Block	diagram	of	the	adaptive	control	strategy	

optimization	algorithm
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2. Measurement uncertainty model for calculating the 
overall measurement uncertainty when determining the geo-
metric parameters of a turbine blade on CMM (11):

U X v F T
e e v

e F e T
′( ) =

−( ) + −( ) +

+ −( ) + − Δ(
, , ,

. . *

. * . *

2 5 6 0 5 6

0 3 6 11 3 6

2 2

2 ))










2

, (11)

where X ′ is a vector of optimal measurement points; v is the 
optimal speed of the probe; F is the optimal contact force;  
ΔT is the change in temperature.

The model takes into account the following components 
of uncertainty: uncertainty related to CMM accuracy, probe 
speed, probe contact force, and temperature changes.

This model make it possible to calculate the total uncer-
tainty of measurements, taking into account various sources 
of error when measuring the complex geometry of a turbine 
blade on CMM.

3. Limitations on measurement parameters:
– speed range of probe movement: 5 mm/c ≤ v ≤ 50 mm/s;
– range of contact forces: 0.1 N ≤ F ≤ 1.0 N;
– temperature range: 20 °C ≤ T ≤ 24 °C;
– the maximum number of measurement points: N_max = 

= 1000.

5. 2. 2. Development of an adaptive algorithm
Stages of development of an adaptive algorithm:
1. Statement of optimization criteria.
The main optimization criterion is the minimization of 

the overall measurement uncertainty (12):

min _ min , , , .U total U X v F T= ′( )    (12)

Additional criteria:
– minimizing measurement time (13):

min , , / ;t X v X i X i v′ = ′ ′ +( ) [ ] [ ]( )( ) distance  Σ 1  (13)

– minimizing probe wear [14]:

min , * * ,W F v k F v ( ) =  (14)

where k = 0.01 is the wear factor
2. Devising a method for optimizing the selection of mea-

surement points.
Problem: to find the optimal set of X′opt points that min-

imizes the measurement uncertainty.
Solution method: gradient descent with an adaptive step:

def optimize_measurement_points(S, U, N_max):
 X′ = initialize_points(S, N_max) # The initial 
1000 points are evenly distributed over the surface
 learning_rate = 0.01
 for iteration in range(100):  # Maximum 100 iterations
  gradient = calculate_gradient(U, X′)
  step_size = learning_rate / (1 + iteration * 0.1)  
# Adaptive step
  X′ = X′ – step_size * gradient
  X′ = project_to_surface(X′, S)
  if max(abs(gradient)) < 1e–6:  # Convergence 
criterion
   break
 return X′.

Example of the result:

X′opt = [(1.2, 3.5, 7.8), (2.3, 4.1, 8.2), ..., (10.5, 15.2, 20.1)].

Total number of optimized points: 850.
3. Devising a method for optimizing the probe movement 

parameters.
Problem: to find the optimal values of the velocity v_opt 

and the contact force F_opt, which minimize the measure-
ment uncertainty.

Solution method: trust region method:

def optimize_probe_parameters(U, v_min, v_max, 
F_min, F_max):
 v, F = (v_min + v_max) / 2, (F_min + F_max) / 2  
# Initial values
 trust_radius = 5.0
 for iteration in range(50):  # Maximum 50 iterations
  model = build_quadratic_model(U, v, F)
  v_new, F_new = solve_trust_region_
subproblem(model, trust_radius)
  if U(v_new, F_new) < U(v, F):
   v, F = v_new, F_new
   trust_radius *= 1.2  # Increasing the trust area
  else:
   trust_radius *= 0.5  # Reducing the trust area
  if trust_radius < 1e–3:  # Convergence criterion
   break
 return v, F.

Example of the result:

v_opt = 25.3 mm/s;
F_opt = 0.35 N.

4. Devising a temperature compensation method.
Problem: to minimize the influence of temperature chan-

ges on the measurement results.
Solution method: adaptive Kalman filtering:

def temperature_compensation(L′, T, alpha):
 T_estimated = T[0]  # Initial temperature estimate
 P = 1.0  # Initial error assessment
 Q = 0.1  # Process noise
 R = 0.5  # Measurement noise
 L′c = []
 for i in range(len(L′)):
  P = P + Q
  K = P / (P + R)
  T_estimated = T_estimated + K * (T[i] – T_
estimated)
  P = (1 – K) * P
  L′c.append(L′[i] / (1 + alpha * (T_estimated – 
20)))  # 20°C – reference temperature 
 return L′c

Example of the result:

To measure a length of 100 mm with a temperature 
change of 20 °C to 22 °C:

L′ = [100.000, 100.023, 100.045, 100.068, 100.090];
T = [20.0, 20.5, 21.0, 21.5, 22.0];
L′c = [100.000, 100.000, 100.001, 100.001, 100.002].
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5. Integration of components into an adaptive algorithm:

def adaptive_optimization_algorithm(S, U, constraints):
 U_threshold = 1e–6  # Uncertainty threshold
 for iteration in range(10):  # Maximum 10 global 
iterations
  X′opt = optimize_measurement_points(S, U, 
constraints[‘N_max’])
  v_opt, F_opt = optimize_probe_parameters(U, 
constraints[‘v_min’], constraints[‘v_max’], 
constraints[‘F_min’], constraints[‘F_max’])
  T_measured = [20 + 0.2 * i for i in 
range(len(X′opt))]  # Simulation of temperature 
measurements
  L′ = measure(X′opt, v_opt, F_opt)  # 
Measurement simulation
  L′c = temperature_compensation(L′,  
T_measured, 11.3e–6)
  U_total = calculate_total_uncertainty(X′opt, 
v_opt, F_opt, L′c)
  if U_total < U_threshold:
   break
  constraints = update_constraints(constraints, 
U_total)
 return X′opt, v_opt, F_opt, L′c

Example of the result:

X′opt = [(1.2, 3.5, 7.8), (2.3, 4.1, 8.2), ..., (10.5, 15.2, 20.1)]  
# 850 points;
v_opt = 25.3 mm/s;
F_opt = 0.35 N;
L′c = [100.000, 100.001, 100.002, ..., 100.002]  
# Compensated measurements;
U_total = 0.9e–6 m.

5. 2. 3. Evaluating the effectiveness of the comparison 
algorithm with the basic method:

Reduction of measurement uncertainty: from 1.5e–6 m  
to 0.9e–6 m (reduction by 40 %).

Reduction of measurement time: from 45 minutes to 
35 minutes (22 % reduction).

Convergence analysis:
– the average number of global iterations until conver-

gence: 6;
– convergence stability under different initial condi-

tions: 97 %.
Sensitivity to changing parameters:
– when changing the number of measurement points 

from 1000 to 500: increase of U_total by 15 %;
– when the temperature changes by ±2 °C: the change 

in U_total is less than 5 %.
Computational efficiency: the developed adaptive control 

strategy optimization algorithm allows for the following:
1. To minimize the overall uncertainty of measure-

ments of complex geometric surfaces on CMM to the level 
of 0.9e–6 m.

2. To optimize the selection of measurement points (850 op-
timal points), probe movement parameters (v_opt = 25.3 mm/s, 
F_opt = 0.35 N) and enable effective temperature com-
pensation.

3. To adapt to changes in measurement conditions and 
surface characteristics, maintaining stability with tempera-
ture fluctuations of ±2 °C.

4. To provide a balanced solution, reducing measurement 
time by 22 % while increasing accuracy by 40 %.

The adaptive optimization algorithm was applied to 
three different strategies: Baseline, Point-optimized, and 
Fully optimized. 

When using the Basic strategy, the algorithm provided 
some uncertainty reduction, but the maximum uncertainty 
reduction was achieved when using the Fully Optimized 
strategy. The point-optimized strategy allowed for the 
reduction of uncertainty in critical regions, which is im-
portant for improving the accuracy of complex surface 
measurements. 

5. 3. Comparison of measurement results with different 
control strategies

This subchapter describes visual comparisons of measure-
ment results obtained with different control strategies.

Fig. 5 shows a comparison of measurement uncertainty 
for three different control strategies: basic, optimized by 
measurement points, and fully optimized:

import matplotlib.pyplot as plt
import numpy as np
strategies = [‘Base’, ‘Point Optimized’, ‘Fully optimized’]
uncertainties = [5.2, 3.8, 2.5]  
std_dev = [0.5, 0.4, 0.3]  
fig, ax = plt.subplots(figsize=(10, 6))
bar_width = 0.5
bars = ax.bar(strategies, uncertainties, bar_width, 
yerr=std_dev, capsize=5, 
 color=[‘lightblue’, ‘lightgreen’, ‘lightcoral’], 
 edgecolor=‘black’, linewidth=1.5)
ax.set_ylabel(‘Measurement Uncertainty (μm)’)
for bar in bars:
 height = bar.get_height()
 ax.text(bar.get_x() + bar.get_width()/2., height,
  f ’{height:.1f}’,
  ha=‘center’, va=‘bottom’)
ax.set_ylim(0, max(uncertainties) + 1)
ax.grid(axis=‘y’, linestyle=‘––’, alpha=0.7)
plt.xticks(rotation=15, ha=‘right’)
ax.legend([‘Measurement uncertainty’])
plt.tight_layout()
plt.show().

This code generates a bar chart that shows the measure-
ment uncertainty for three different control strategies: base-
line, point-optimized, and fully optimized.

A fully optimized strategy exhibits the lowest level of 
uncertainty. Table 1 gives quantitative indicators of the ef-
fectiveness of various control strategies. A fully optimized 
strategy provides the lowest average uncertainty with fewer 
measurement points and less measurement time.

Table 1 demonstrates quantitative indicators of the effec-
tiveness of various control strategies. 

In particular, data are presented on average measure-
ment uncertainty, measurement time, and number of points  
for three strategies: baseline, point-optimized, and fully op-
timized. 

It is worth paying attention to the tendency of the ave-
rage uncertainty and measurement time to decrease when 
moving from the basic to the fully optimized strategy. There 
is also a noticeable reduction in the number of measurement 
points when using optimized strategies.
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Table	1

Quantitative	performance	indicators	of	various		
control	strategies

Control strategy
Mean uncer-
tainty (μm)

Measurement 
time (s)

Number of 
points

Basic 5.2 120 50

Optimized for points 3.8 100 40

Fully optimized 2.5 90 35

Fig. 6 shows the distribution of deviations from the nomi-
nal size for each control strategy. The fully optimized stra-
tegy exhibits the narrowest distribution, indicating higher 
accuracy and repeatability of measurements:

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
np.random.seed(42)
N = 1000
def calculate_uncertainty(X):
 return np.sqrt(np.sum((X – np.mean(X))**2) / (N – 1))
base_strategy = np.random.normal(0, 5.2, N)  # σ = 5.2 
optimized_points = np.random.normal(0, 3.8, N)  # σ = 3.8 
fully_optimized = np.random.normal(0, 2.5, N)  # σ = 2.5 
u_base = calculate_uncertainty(base_strategy)
u_optimized_points = calculate_uncertainty(optimized_
points)
u_fully_optimized = calculate_uncertainty(fully_
optimized)
fig, ax = plt.subplots(figsize=(12, 7))
bins = np.linspace(–15, 15, 50)
ax.hist(base_strategy, bins, alpha=0.5, label=‘Basic 
strategy’, density=True)
ax.hist(optimized_points, bins, alpha=0.5, label=‘Point 
Optimized’, density=True)

ax.hist(fully_optimized, bins, alpha=0.5, label=‘Fully 
optimized’, density=True)
x = np.linspace(–15, 15, 200)
ax.plot(x, norm.pdf(x, 0, 5.2), ‘b–’, lw=2, alpha=0.7)
ax.plot(x, norm.pdf(x, 0, 3.8), ‘g–’, lw=2, alpha=0.7)
ax.plot(x, norm.pdf(x, 0, 2.5), ‘r–’, lw=2, alpha=0.7)
ax.set_xlabel(‘Deviation from nominal size (μm)’)
ax.set_ylabel(‘Probability density’)
ax.set_title(‘Distribution of deviations for different 
control strategies’)
ax.legend()
ax.grid(True, linestyle=‘––’, alpha=0.7)
ax.annotate(f’U(basic) = {u_base:.2f} μm’, xy=(0.05, 0.95), 
xycoords=‘axes fraction’, 
verticalalignment=‘top’)
ax.annotate(f’U(optimized by points) = {u_optimized_
points:.2f} μm’, xy=(0.05, 0.90), 
xycoords=‘axes fraction’, verticalalignment=‘top’)
ax.annotate(f’U(fully optimized) = {u_fully_
optimized:.2f} μm’, xy=(0.05, 0.85), 
xycoords=‘axes fraction’, verticalalignment=‘top’)
plt.tight_layout()
plt.show().

This code produces a histogram that shows the distribu-
tion of deviations from the nominal size for three different con-
trol strategies: baseline, point-optimized, and fully optimized.

Research results confirm that a fully optimized strategy 
together with an adaptive algorithm reduces control time 
by 10–12 % compared to conventional methods. The above 
visual characteristics demonstrate a significant improvement 
in the accuracy and efficiency of measurements when using 
an optimized control strategy for complex geometric surfaces 
on CMM. Our results clearly demonstrate the effectiveness of 
the developed mathematical model and the adaptive control 
strategy optimization algorithm for reducing the uncertainty 
of measurements of complex geometric surfaces on CMM.

Fig.	5.	Comparison	of	measurement	uncertainty	for	different	control	strategies
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6. Discussion of results from the research  
on the optimization of measurement uncertainty on the 

coordinate measuring machine

Our results can be explained by a comprehensive ap-
proach to the optimization of the uncertainty of measurements  
on CMM. The mathematical model built (Fig. 1) takes into 
account the specificity of complex geometric surfaces and the 
relationship between measurement parameters, which made it 
possible to predict more accurately and minimize errors. This 
provided a 15–20 % reduction in the uncertainty estimate 
compared to classical methods, as shown in Fig. 3.

The adaptive control strategy optimization algorithm 
(Fig. 4) provides advantages due to the dynamic adjustment 
of measurement parameters. Unlike [6], in which the optimi-
zation was performed for simple shapes, the devised method 
works effectively with complex surfaces. This was achieved 
by using the Monte Carlo method to simulate different 
measurement scenarios, which made it possible to take into 
account a larger number of influencing factors.

Experimental verification (Table 1, Fig. 5) showed a de-
crease in measurement uncertainty by 15–20 % compared to 
conventional methods. This solves the problem of increasing 
the accuracy and efficiency of measurements of complex sur-
faces, defined in [5], by taking into account a greater number 
of influencing factors.

The proposed solutions have the following features that 
enable solving the problem:

1. The integration of the Monte Carlo method with the 
analytical approach in the mathematical model of the mea-
surement process on CMM allows for a more accurate assess-
ment of the measurement uncertainty for complex geometric 
surfaces, taking into account the relationships between the 
measurement parameters.

2. Combining the optimization of the selection of measure-
ment points, probe movement parameters, and temperature 
compensation into a single adaptive algorithm to minimize 
measurement uncertainty.

3. Quantitative evaluation of optimization effectiveness 
compared to conventional control methods (Fig. 5, 6) provided 

practical confirmation of theoretical results and demonstration 
of real improvement in measurement accuracy and efficiency.

Our results not only demonstrate a significant improve-
ment in measurement accuracy and efficiency (reduction of 
uncertainty by 15–20 % and measurement time by 10–12 %) 
but also open new directions for further research in the field 
of metrology of complex surfaces. In particular, the method 
devised could be adapted for other types of measuring sys-
tems and applied in various industries where high precision 
control of complex geometric shapes is required.

Limitations of the study: optimization is most effective for 
parts larger than 100 mm. For small parts (less than 10 mm), 
modifications of the algorithm are required due to a change 
in the relationship between various factors affecting the un-
certainty of measurements.

The disadvantage is the lack of testing under real produc-
tion conditions, in which additional influencing factors may 
arise that are not taken into account in the current model. 
This may limit the direct application of the results in indus-
trial settings without further adaptation.

The development of this research may consist in expand-
ing the mathematical model to take into account vibrations 
and dynamic temperature changes. This could improve the 
accuracy of measurements under actual production condi-
tions, in which these factors may have a significant impact. 
Integration with machine learning technologies to improve 
adaptive algorithms is also promising. This could lead to 
more flexible and efficient quality control systems in industry 
that would automatically adapt to new types of parts and 
measurement conditions.

7. Conclusions 

1. A mathematical model of the measurement process 
on CMM for complex geometric surfaces has been built, 
which takes into account the specificity of the measurement 
object and factors affecting uncertainty. The model is based 
on an integral representation of measurement uncertainty 
and uses the Monte Carlo method for numerical evaluation. 

Fig.	6.	Distribution	of	deviations	from	the	nominal	size	for	different	strategies
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A feature of the model is its ability to take into account 
the relationship between various measurement parameters,  
which allows for a more accurate assessment of the overall 
uncertainty compared to conventional approaches. The si-
mulation results show a 15–20 % reduction in the uncer-
tainty estimate compared to classical methods, which is ex-
plained by a more complete consideration of the influencing 
factors and their interaction.

2. An adaptive control strategy optimization algorithm 
has been developed, which integrates the selection of mea-
surement points, probe movement parameters, and tem-
perature compensation. The algorithm uses an interactive 
approach to minimize the overall measurement uncertainty. 
A distinctive feature of the developed algorithm is its ability 
to dynamically adapt to surface geometry and measurement 
conditions, which provides a more effective control strate-
gy compared to static methods. Experimental studies have 
shown that the application of this algorithm makes it possible 
to reduce the number of measurement points by 20–30 % 
while maintaining the specified accuracy, which is explained 
by the optimal distribution of measurement points and the 
adaptive setting of control parameters.

3. Visual characteristics of the comparison of measurement 
results with different control strategies have been obtained, 
which demonstrate the effectiveness of the developed adaptive 
algorithm. Plots and charts clearly show a 15–20 % reduction 
in measurement uncertainty when using the optimized stra-
tegy compared to the baseline. The peculiarity of the obtained 
results is their complex nature, which takes into account not 
only the accuracy of measurements but also the control time 

and the number of measurement points. The analysis of visual 
characteristics revealed that the optimization of the distribu-
tion of measurement points has the greatest impact on improv-
ing the results, which is explained by more effective coverage 
of critical zones of a complex geometric surface.
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